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This paper deals with robust modelling of mouth shapes

in the context of sign language recognition using deep con-

volutional neural networks. Sign language mouth shapes

are difficult to annotate and thus hardly any publicly avail-

able annotations exist. As such, this work exploits related

information sources as weak supervision. Humans mainly

look at the face during sign language communication, where

mouth shapes play an important role and constitute natural

patterns with large variability. However, most scientific re-

search on sign language recognition still disregards the face.

Hardly any works explicitly focus on mouth shapes. This

paper presents our advances in the field of sign language

recognition. We contribute in following areas: We present a

scheme to learn a convolutional neural network in a weakly

supervised fashion without explicit frame labels. We pro-

pose a way to incorporate neural network classifier outputs

into a HMM approach. Finally, we achieve a significant im-

provement in classification performance of mouth shapes

over the current state of the art.

1. Introduction

Automatic Sign Language Recognition (ASLR) helps to

bridge the communication gap between deaf and hearing

people who are not able to communicate in the same lan-

guage. It is well known that sign languages (SLs) make

use of the hands but also of the face to convey information

[23]. Recently, among SL linguists, there has been increas-

ing interest in so-called mouthings, i.e. sequences of mouth

shapes or visemes visible on the signer’s face, that convey a

substantial part of signs’ meaning [2, 24, 22]. However, in

ASLR mouth shapes have not received much attention, de-

spite their promise to distinguish semantically close signs

that otherwise share the same hand shapes and movements.

The aim of this work is to learn a classifier that can

recognise mouth shapes as part of sign language. These

mouth shapes, linguistically termed as mouthings, accom-

pany the manual parts of a sign (e.g. the hand movement

and shape) and are often related to the corresponding spo-

ken word. The visible mouth shapes can add information

to the meaning of a sign and make it distinguishable from

a semantically related sign. But in other cases, mouthings

simply provide additional information that is redundant to

the hand’s information channel and not explicitly needed to

understand the sign.

Mouth shapes are difficult to model and to recognise as

their presence seems to be based on personal and situational

preferences of the signers. Currently, no publicly available

data set exist that contain manual mouthing annotations that

would allow for supervised training. The reason lies in the

difficulty to annotate mouth shapes. Sometimes, they repre-

sent the mouth pattern of shortened parts of a related spoken

word, sometimes the whole spoken word or sometimes no

mouth shape at all may be visible.

This paper will therefore explore a way to train mouth

shapes with additional information sources used as weak su-

pervision. Todate, sign linguists have not found any gram-

matical rules that constrain the usage of mouthings within

sign languages, turning it into a challenging test bed for al-

gorithms that are able to learn without explicit annotations.

Our approach relies on spoken language transcripts as a

source of weak supervision. The data we are dealing with

features natural signing that originates from interpreters

making the daily broadcast news accessible to the Deaf. The

signing represents the interpreted spoken German news and

thus, we have access to the spoken German’s news tran-

scripts. However, the reader has to note that the transcripts

(being in spoken German) and the sign language footage

(being in German Sign Language) constitute two different

languages with different vocabulary, syntax and word or-

der. We will accommodate this fact in the way we design

our learning algorithm.

This paper presents contributions in following areas: We

present a scheme to learn a Convolutional Neural Net-

work (CNN) in a weakly supervised fashion without ex-

plicit frame labels. We demonstrate how to incorporate

CNN classifier outputs into an HMM approach allowing

forced temporal alignment and iterative learning of CNNs

on video. By doing so, we achieve a significant improve-

ment in classification performance over the state of the art.

This paper is organised as follows: In the next section

1 85



a brief overview of the state of the art is given. Section 3

describes the approach presented in this paper. In Section 4

the data set and statistical details are provided, while Sec-

tion 5 gives experimental validation and discussion. Finally

the paper closes with the conclusions that can be drawn.

2. Related Work

In 1968 Fisher [7] was the first to mention differences

between spoken phonemes and corresponding visemes as

mouth shapes. Nowadays, lipreading and viseme recogni-

tion is a well established, yet challenging research field in

the context of audio-visual speech recognition. The first

system was reported in 1984 by Petajan [20] who distin-

guished letters of the alphabet and numbers from zero to

nine and achieved 80% accuracy on that task. Since then

the field has advanced in terms of recognition vocabulary,

features and modelling approaches [28, 16, 29, 18].

Facial expression recognition is another related field

for algorithms that relate to mouth shapes. For instance

Tian [26] recognises action units and models the mouth with

only three different states: open, closed, very closed.

When it comes to sign language recognition, the mouth

has mostly been disregarded in recognition pipelines. But

recently, the community has started developing some in-

terest in this area [1]. Recovering the mouth shapes us-

ing a distance measure based on tracked Active Appear-

ance Model (AAM) landmarks with an iterative Expectation

Maximization (EM) learning has been proposed by [14],

whereas other work focuses on automatically annotating

mouth shapes [15]. Pfister et al. [21] employ lip-movement

to distinguish signing from silence by inferring the state of

mouth openness. This is used to reduce the candidate se-

quences in multiple instance learning, which is also sup-

ported by a single SIFT descriptor of the mouth region.

In the general scope of automatic sign language recog-

nition several works exist that exploit weak supervision to

learn hand-based sign models [4, 12, 5, 13]. Facial features

have also been used before. Michael et al. [17] employs

spatial pyramids of Histogram of Oriented Graphs (HOG)

and SIFT features together with 3D head pose and its first

order derivative to distinguish three grammatical functions

trained on isolated American Sign Language (ASL) data of

three signers. Vogler and Goldstein [27] present a facial

tracker specifically for ASL. Ong et al. [19] use boosted

hierarchical sequential pattern trees to combine partly par-

allel, not perfectly synchronous features through feature se-

lection by the trees.

3. Method

This work provides a solution to the problem of learn-

ing a CNN model on sequence data without having manual

class annotations for supervised training available. The un-

derlying idea is to iteratively 1) learn a mouth shape CNN

model and 2) to find the most likely frame-model-state-

alignment in a Hidden-Markov-Model (HMM) framework,

while constraining the overall sequence of mouth shapes to

concatenations of valid mouth shape patterns defined by a

mouth shape lexicon. This lexicon constitutes the source of

weak supervision applied to solve the problem jointly with a

language model providing the order of signs following each

other.

Thus, we consider the weakly supervised mouth shape

training to be a search problem of finding the sequence of

mouth shapes vZ
1

:= v1, . . . , vZ belonging to a sequence

of silently pronounced words mN

1
:= m1, . . . ,mN , where

the sequence of features xT

1
:= x1, . . . , xT best matches

the mouth shape models. We maximise the posterior proba-

bility p(vN
1
|xT

1
) over all possible viseme sequences for the

given sequence of glosses.

xT

1
→ v̂Z

1
(xT

1
) = argmax

vZ

1

{

p(mN

1
)p(xT

1
|vZ

1
)
}

, (1)

where p(mN

1
) denotes the prior probability defined by

the pronunciation lexicon.

In a first step we model each viseme by a 3 state HMM

and a garbage model having a single state. The emission

probability of a HMM state is represented by a single Gaus-

sian density with a diagonal covariance matrix. The HMM

states have a strict left to right structure. Global transition

probabilities are used for the visemes. The garbage model

has independent transition probabilities. We initialise the

viseme models by linearly partitioning the video frames

(flat start). Following [14] we use distance measurements

of facial landmarks based on signer-dependent AAMs. We

then use the EM algorithm 1) to iteratively estimate the best

alignment based on the current models and 2) to accumulate

updated viseme models.

After the alignment has converged, we use it as class la-

bels to learn a new CNN model. To overcome the signer-

dependency of the AAMs and the requirement of manually

annotated landmarks to train them, the aim and the contri-

bution of this work is to replace the AAM feature extraction

and the Gaussian Mixture Models (GMMs) by learnt con-

volutional Deep Neural Networks (DNNs).

3.1. Convolutional Neural Network Architecture

Knowing that we can only solve our task in a weakly

supervised fashion, where the actual training samples con-

stitute noisy samples of each class, we base our work on a

CNN model previously trained in a supervised fashion for

the ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC) 2014 . We choose a 22 layers deep network ar-

chitecture following [25] which achieved a top-1 accuracy

of 68.7% and a top-5 accuracy 88.9% in the ILSVRC. The
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network involves an inception architecture, which helps to

reduce the numbers of free parameters while allowing for

a very deep structure. Our model has about 6 million free

parameters. All convolutional layers and the last fully con-

nected layer use rectified linear units as non-linearity. Addi-

tionally, a dropout layer with 70% ratio of dropouts is used

to prevent overfitting. We base our CNN implementation

on [11], which is an efficient C++ implementation using the

NVIDIA CUDA Deep Neural Network GPU-accellerated

library.

We replace the pretrained output layer with a 40 dimen-

sional fully connected layer. As a preprocessing step, we

apply a global mean normalisation to the images prior to

fine-tuning the CNN model with Stochastic Gradient De-

scent (SGD) and a softmax based cross-entropy classifica-

tion loss E

E = −
1

N

N
∑

n=1

log(p(v|xn)). (2)

The DNN learns the output probabilities in terms of 40 pos-

teriors for each of the originating phoneme classes plus a

garbage model. The overall learning rate, the learning rates

across different parts of the network and the shuffling of the

input data are studied in Section 5. Based on the validation

data, the best performing training iteration is chosen.

3.2. Sequential HMM­Decoding

After a successful CNN training, the model’s softmax

outputs p(v|xn) are used in a HMM framework to add tem-

poral information and re-align the data in order to measure

the final alignment error. We decided not to retrain the

GMMs with features from the CNN in the so-called tandem

approach [10]. We opted for the cleaner hybrid approach [3]

known from Automatic Speech Recognition (ASR) for this

procedure. The latter usually shows equal or superior per-

formance in comparative automatic speech or handwriting

recognition experiments, is faster as it does not require re-

training of Gaussian mixtures and is thus more appropriate

to evaluate the direct impact of the CNN [9].

To successfully decode a mouth shape sequence, we per-

form a maximum likelihood search on the visual model as

given in Equation 1 and therefore convert the CNN’s poste-

rior output to likelihoods using the Bayes’ rule as follows:

p(xn|v) ∝ p(v|xn)/p(c)
α. (3)

This allows us to add prior knowledge from the pronuncia-

tion lexicon and language model. Equation 1 then becomes

argmax
vZ

1

{

p(mN

1
)
p(vZ

1
|xZ

1
)

p(c)α
}

, (4)

Figure 1. Example of cropped and up-scaled images used as input

for the DNN.

where p(vZ
1
|xZ

1
) constitutes the mouth shape probabilities

given by the CNN and p(c) represents the class counts used

to train the CNN. The scaling factor α is empirically set to

0.3 in our experiments.

4. Data Set

The proposed approach uses the publicly available

RWTH-PHOENIX-Weather corpus [8], which contains 7

hearing interpreter’s continuous signing in German Sign

Language (DGS). The corpus consists of a total of 190 TV

broadcasts of weather forecast recorded on German pub-

lic TV. It provides a total of 2137 manual sentence seg-

mentations and 14717 gloss annotations, summing up to

189.363 image frames. Glosses constitute a less labour in-

tense way of annotating sign language corpora. They can

be seen as an approximate semantic description of a sign,

usually annotated w.r.t. the manual components (i.e. the

hand shape, orientation, movement and position), neglect-

ing many details. For instance, the same gloss ‘MOUN-

TAIN’ denotes the sign alps but also any other mountain,

as they share the same hand configuration and differ only in

mouthing. Moreover, the RWTH-PHOENIX-Weather cor-

pus contains 22604 automatically transcribed and manually

corrected German speech word transcriptions. The bound-

aries of the signing sentences are matched to the speech sen-

tences. It is worth noting that the sentence structures for

spoken German and DGS do not correlate. This is a trans-

lation rather than a transcript.

The interpreters’ original images containing the whole

upper body and measuring 210x260 pixels are cropped

based on the smallest crop covering all AAM tracked points

(being the whole face) and scaled to 227x227 pixels. This

is shown in Fig. 1. To add more variation to the training

data we further crop the images randomly to 224x224 pix-

els (central cropping to the same dimension for test data).

4.1. Manual Ground Truth

The ground truth, which is made available by the authors

of [14], constitutes annotations of 5 sentences per signer on

the frame level with 39 phoneme labels (using the SAMPA

phoneme inventory) and one garbage label (used when en-

countered unclear or non-mouth shapes). The annotations

cover a total of 3687 video frames. As stated by [14], each

frame may contain more than a single label (being a total of
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Figure 2. Ground truth label count, including only clear frames.

6226 labels for all frames, covering 36 of all 40 phoneme

classes applicable to the training data). About 56% of all

annotated frames (2071 frames with a total of 3207 labels)

contain clear mouth shapes, where none of the given la-

bels contains a garbage tag. The frequency of the ground

truth labels is summarised in Fig. 2, where only clear mouth

shapes have been considered. Fig. 3 shows some exam-

ples of the manual labels. The reader may note the large

intra-class variability paired with a high inter-class similar-

ity, which are due to co-articulation effects and the fact that

the human annotators had access to the whole signed se-

quences rather than isolated images during annotation. To

have a very strict evaluation criterion, we evaluate our ap-

proach both on the whole sequence and in a per frame fash-

ion (see Section 5).

5. Experiments

In this section, we present our experimental results. We

evaluate our approach on the RWTH-PHOENIX-Weather

data set [8]. We compare ourselves to previously estab-

lished state-of-the art results from [14]. The task involves

two different sub tasks: 1) An alignment-task: predicting

a sequence of mouth shapes given a language model that

provides knowledge about the sequence of signs and 2)

A classification-task: predicting a single image’s class la-

Visemes Phonemes

A a a˜ a:

E e: E E:

F f v

I i: I j

L l

O 2: 9 o: O

P b m p

Q 6 C g h k N @ R x

S S tS

T d n s ts t z

U u: U y: Y

A I aI

A U aU

O I OY

P F pf
Table 1. Phoneme to viseme mappings in SAMPA notation, Elliott

[6]. This mapping is used for evaluation in the experimental results

in Section 5.

1) Alignment 2) Classification

precision recall precision recall

AAMs [14] 55.1 36.9 47.1 48.2

our CNNs 64.5 44.2 55.7 55.6
Table 2. Results for the alignment task and the single frame clas-

sification task compared to state of the art in [%].

bel without any additional information resources, such as a

grammar or any sequence constraints. We provide evalua-

tion results on the 40 modelled phoneme classes and test

the final classifier on 12 reduced viseme (mouth shape)

classes after applying the mapping presented in Tab: 1,

which makes results comparable to [14].

As shown in Table 2, we are able to outperform the state

of the art results both in the alignment task (Task 1) and in

the single frame classification task (Task 2) by around 8%
absolute.

In Table 5 a deeper insight in the class confusion of our

classifier is possible. It can be seen that the vowel classes

“A”, “O” and “U” achieve above 60% precision. Which is

not surprising, as the underlying phonemes tend to produce

more visible and more easily distinguishable mouth shapes.

“S” (being spread out lips coming from the /sh/ sound) is

partially confused with “U”, which clearly share a lot of vi-

sual similarity. “P” (a closed mouth) is often confused with

the background class (“GB”), which may be explained due

to the fact that non-mouth-patterns often involve a closed

mouth, as the signer does not make use of it during these

periods. Furthermore, class “I” and “E” are mutually con-

fused, as they also share visually similar characteristics.
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A E F I L O P Q S T U GB

64.4 5.3 3.5 1.2 6.7 2.1 2.5 7.4 0.0 3.4 0.0 3.6
6.8 42.0 4.3 34.5 0.0 0.5 0.2 12.3 0.0 2.2 0.0 7.1
0.2 0.5 32.2 0.0 0.0 1.0 2.4 1.7 1.8 3.2 0.0 10.7
1.1 19.8 5.1 28.6 3.3 2.4 1.3 5.4 0.6 6.8 0.0 14.3
8.5 1.5 0.2 0.0 33.3 1.0 0.3 3.1 0.0 1.9 0.0 0.0
4.1 0.0 0.9 0.0 22.2 60.2 3.8 13.4 1.2 3.9 6.8 0.0
0.9 0.0 1.8 0.0 0.0 0.8 51.8 1.7 0.0 2.2 9.9 3.6
5.4 11.4 4.7 4.2 0.0 3.8 2.9 22.2 0.6 7.2 0.5 3.6
1.2 0.0 1.1 0.0 12.2 6.6 0.1 0.8 50.0 2.2 0.7 0.0
2.2 9.9 11.6 10.1 6.7 7.7 2.8 1.1 9.7 37.0 2.8 7.1
1.2 0.0 0.2 0.0 0.0 8.3 1.8 13.7 16.1 3.8 60.6 0.0
4.1 9.5 34.6 21.4 15.6 5.4 30.2 17.1 20.0 26.0 18.8 50.0

Table 3. Class confusion in [%], showing the per class precision

on the diagonal. On the y-axis are the true classes, whereas on the

x-axis are the predicted classes. “GB” corresponds to the garbage

class.

5.1. Learning Rate

Figure 4 shows the impact of the most important hy-

per parameter, the overall learning rate, which is kept sta-

ble during the DNN training iterations. We notice that a

higher learning rate yields more instability during training,

but is also capable of learning a stronger classifier. More-

over, we note that the DNN’s evaluation accuracy on the 40

phoneme classes increases and then worsens after reaching

a maximum. This effect, possibly due to increased influence

of falsely aligned training samples and over fitting, makes

a careful selection of the number of training epochs neces-

sary.

The employed CNN-architecture is based on a pretrained

net, as stated in Section 3.1. Originally, it has been trained

with a large amount of out-of-domain supervised data. Un-

der the point of view that we are fine-tuning these learnt

parameters to match a different task with different data, the

question arises if the previously learnt parameters should be

altered at all (learning just the new fully connected output

layer, which starts off a random initialisation) or if every-

thing needs adaptation. We want to answer this question by

attributing different weights to the learning rate across dif-

ferent layers in our net. We compare an equal learning rate

across all layers with emphasising the last layer’s learning

rate to just learning the last layer, while keeping all other

layers constant. The learning rate has been optimised for

each of the experiments separately. In Figure 5 we see that

an equal learning rate across all layers yields an accuracy

increase of about 1% to 2% absolute compared to weight-

ing the last layer with factor 10 or factor 50. Exclusively

fine-tuning the last layer and keeping all pretrained param-

eters fixed is about 8% worse. These findings suggest that

it is crucial to adapt the weights of all layers similarly. This

may be mainly related to the very different task the initial-

ising network was trained on (ILSVRC vs. mouth shape

images).

Moreover, Figure 5 shows a more thorough look at the

training behaviour, as we performed 4 measurements per

epoch (as opposed to Figure 4, where we just measure the

accuracy once per epoch). We notice frequent variation of

classification accuracy around a mean value. It seems that

parts of the training data contribute negatively while oth-

ers improve the evaluation performance, which may be at-

tributed to large visual dissimilarity of different signers or

wrongly aligned frames.

5.2. Impact of Shuffling

In Figure 6 we analyse the impact of shuffling the train-

ing data. Two main points can be observed: 1) if the data

is unshuffled we see a regular oscillation of the evaluation

accuracy. This backs the hypothesis that parts of the data

(maybe even some specific signers) influence the training

negatively. 2) the unshuffled training takes much longer to

convergence and does not reach the same accuracy as the

shuffled data.

6. Conclusion

This work shows a promising way to model mouth

shapes with convolutional DNNs without having explicitly

labelled data available. We search for the most likely se-

quence of mouth shapes using loosely related information

as guidance in a weakly supervised fashion. The approach

relies on sequence data in which the target classes occur

multiple times in varying contexts. The image-class align-

ment is then used to fine-tune a CNN that has been pre-

trained on out-of-task data. Therefore, just the new output

layer starts with a random initialisation.

We propose a method to include the CNN’s output into a

HMM framework that outperforms state of the art results of

mouth shape classification in the context of sign language

recognition by an absolute improvement of around 8%. Be-

sides the higher accuracy, the new approach does not re-

quire any feature preprocessing, such as expensive signer-

dependent AAMs, but it recognises mouthings directly from

a single image.

We analyse the impact of the learning rate on different

layers of the pretrained net, finding it benificial to set it

equal on both the pretrained and the new output layer. Fur-

thermore, we experimentally confirm the need for shuffling

the training samples.

In terms of future work, it seems interesting to inves-

tigate the cause for the variability in evaluation accuracy

during the CNN training with the weakly supervised frame

labels. Furthermore, it seems promising to look at the loss

function to make the learning more robust to the outliers

inherent in training with weak supervision.
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Figure 3. Examples of the three most frequent ground truth classes,

showing the intra-class variability.
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Figure 4. Different learning rates, evaluated on 40 classes.
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Figure 5. Learning rates between the pretrained layers and the new

output layer have different weights. Evaluated on 40 phonemes.
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Figure 6. Shuffling the training data, evaluated on 40 phonemes.
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