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Abstract

In conventional video summarization problems, contexts

(e.g., scenes, activities) are often fixed or in a specific struc-

ture (e.g., movie, sport, surveillance videos). However, ego-

centric videos often include a variety of scene contexts as

users can bring the cameras anywhere, which makes these

conventional methods not directly applicable, especially be-

cause there is limited memory storage and computing power

on the wearable devices. To resolve these difficulties, we

propose a context-based highlight detection method that im-

mediately generates summaries without watching the whole

video sequences. In particular, our method automatically

predicts the contexts of each video segment and uses a

context-specific highlight model to generate the summaries.

To further reduce computational and storage cost, we de-

velop a joint approach that simultaneously optimizes the

context and highlight models in an unified learning frame-

work. We evaluate our method on a public Youtube dataset,

demonstrating our method outperforms state-of-the-art ap-

proaches. In addition, we show the utility of our joint ap-

proach and early prediction for achieving competitive high-

light detection results while requiring less computational

and storage cost.

1. Introduction

There has been enormous growth in egocentric videos,

which are extremely unstructured and can vary in length

from a few minutes to a few hours. Thus, it is becom-

ing increasingly important to derive an efficient algorithm

that extracts a brief summary of these videos to enable fur-

ther browsing or indexing of such large-scale data. Severe

camera motion, varied illumination conditions, and clut-

tered background in egocentric videos make it difficult to

use shot detection algorithms to find important key-frames,
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Figure 1. We propose a context-based highlight detection approach

that detects highlight segments based on the predicted contextual

information, and generates the summaries immediately without

watching the whole video sequences. The highlight and contextual

model are trained using structured SVM, where different learning

strategies are proposed. Our method can handle continuous events

with multiple contexts, which are ubiquitous in egocentric videos.

which are commonly used in previous video summarization

approaches [23, 21, 4]. As a result, there is a growing in-

terest [17, 16, 22, 24] in analyzing and summarizing ego-

centric videos captured by wearable cameras (e.g., Google

Glass, GoPro) in unconstrained environments.

Summarizing egocentric videos is different from conven-

tional video summarization problems at least in two ways:

First, they often include a variety of scene types, activities,

and environments, as users can take the cameras anywhere.

Therefore, we cannot directly apply existing video summa-

rization methods specifically designed for a certain context

or structure (e.g., surveillance, news and sport videos) to

egocentric domains. Also, unlike taking photos, the ego-
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centric camera is always on, which makes it difficult for

users to manually specify the context label of each video

event. Second, mobile devices only have limited memory

storage and computing power. For example, Google Glass

can operate approximately 45 minutes during continuous

use and only has 2 GB RAM and 12 GB storage. There-

fore, it is impractical to store whole video sequences and

perform summarization afterwards. A better strategy would

be to only summarize and save the most important and in-

formative content, discarding uninformative content while

recording.

Specifically, we aim at developing a method that can

summarize informative content in unconstrained videos and

requires less power and memory storage to meet the con-

straints in the mobile devices. Recent work [24] proposed

an online video summarization method that removes redun-

dant video footage based on signal reconstruction errors and

group sparse coding framework. However, these video sum-

maries might not be semantically meaningful, e.g., unseen

backgrounds can be selected as highlights based on low-

level reconstruction error. Different from their approach,

we propose a context-based highlight detection method that

leverages contextual information to select informative seg-

ments. Our method sequentially scans the video stream,

estimates the context label of each video segment and de-

tects highlights (using the inferred context label to select

corresponding highlight models) (ref. Fig. 1). Unlike

[24], where a not-seen-yet background can have high con-

struction errors and be mistakenly selected as highlights,

our method will not highlight a background as it will have

a low highlight confidence value under a certain context

with our proposed constraints. We use structured SVM to

learn highlight and context models, where different learning

strategies are proposed, i.e., optimizing both tasks indepen-

dently or jointly. The proposed approach is able to perform

early prediction, inferring the most probable class label at

an early stage, and using the class-specific model to sum-

marize video highlights, further reducing both computing

power and storage space.

Experiments demonstrate several key properties of our

models. First, our approach successfully performs video

highlight detection, despite having no advance knowledge

of the context labels. In particular, we show superior per-

formance on a public YouTube dataset [19] over other base-

line methods, demonstrating the advantages of leveraging

contextual information and using more powerful highlight

models. Second, our joint approach can achieve compet-

itive highlight detection results, while requiring less com-

putational and storage cost. Third, our method predicts the

context label accurately at the segment-level, which allows

us to estimate the contextual information in an early stage

and summarize only for the predicted class model to further

reduce the computational cost.

The main contributions of this work include:

• We propose a context-based highlight detection

method to summarize important video highlights,

which achieves better performance compared to state-

of-the-art approaches on a public YouTube highlight

dataset [19].

• We summarize video highlights immediately with-

out watching the whole video sequence, resolving the

problem of limited memory and computing power on

wearable cameras.

• We explore different learning strategies in a structured

SVM framework for learning the highlight and con-

text models; we show the utility of the joint and early

prediction approach for achieving competitive high-

light detection results while requiring less computa-

tional and storage cost.

Our approach can handle continuous events where mul-

tiple contexts occur within the one video (we predict the

contexts and highlights at the segment-level). This is im-

portant because context commonly changes in egocentric

videos and done fully automatically without any manual la-

bel information at testing time.

2. Related Work

Early video summarization methods mainly focus on

edited and structured videos, e.g., movies, news, and sports

[1, 12] and often extract key-frames by shot detection al-

gorithms [23, 21, 4]. However, user-generated video data,

such as egocentric or YouTube-style videos, typically do not

contain clear shot boundaries and often include a variety of

scene types, activities and environments, which makes prior

methods not directly applicable.

Recently, [11, 14, 3] summarize a egocentric video by

leveraging high-level object cues (e.g., people, hands, ob-

jects). These schemes perform well when the objects are

clearly present. However, some important frames may only

have small object or even no objects. Others use web-image

priors learned from large image collections to select impor-

tant frames as summaries [8, 22]. Adopting image priors

may lead to generalization problems as mentioned in [8],

e.g., large variety and inconsistency in appearance for food

items. [2] uses the self-expressiveness property of sum-

marization in a group sparse coding framework to select

highlights. [24] proposes an online video highlighting ap-

proach removes redundant video footage based on a low-

level signal reconstruction and group sparse coding frame-

work. Namely, if an input video segment has high recon-

struction error, this indicates that it includes unseen content

from previous video data and will be selected as highlight.
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Kitani et al. [9] adopt unsupervised learning for video seg-

mentation. However, the drawback of these types of ap-

proaches is that generated video summaries may have no

semantic meaning.

Some approaches exploit temporal segmentation to ex-

tract a video summary [13, 5, 16]. Kang Li et al. [13] de-

compose a video into sub-segments based on the different

camera motion types and extract multiple features related to

motion and scale at each segment to construct a videogra-

phy dictionary. Gygli et al. [5] segment videos into a set

of super frames and select an optimal subset to create an

summaries. Poleg et al. [16] suggest temporal segmenta-

tion of an egocentric video by leveraging motion cues (e.g.,

wearer’s head motion).

If the event category is already known, the summariza-

tion can be also category-specific. Potapov et al. [17] pro-

pose a category-specific video summarization approach for

producing higher quality video summaries. The authors per-

form temporal segmentation to generate segments and adopt

SVM for assigning an importance score to each segment.

Sun et al. [19] rank domain-specific video highlights by

analyzing online edited videos and formulate the problem

into a latent ranking model. However, the assumption that

the event category is given in advance is not appropriate for

egocentric videos as it is hard for users to specify the class

label for each time interval in always-on wearable cameras.

Also, it is infeasible to save whole videos (e.g., [5, 17]) into

the limited amounts of available memory on wearable cam-

eras.

Different from prior methods, we propose a context-

based highlight detection approach that summarizes the

most important and interesting content for egocentric

videos. Our method automatically predicts the contextual

label for each video segment, and can therefore handle con-

tinuous changing background contexts. We use structured

SVM to learn our highlight and context model, improving

on prior online summarization methods [24] while immedi-

ately summarizing the content without watching the whole

video sequence. We further show that joint modeling and

early prediction can reduce computational and storage cost

while achieving competitive results.

3. Method Overview

Our system consists of two main phases. The offline

phase consists of learning our discriminative models for

highlight detection and context prediction by a structured

SVM framework with different learning strategies (see Sec.

4). The online phase consists of evenly partitioning the in-

put videos into temporal segments and processing each seg-

ment sequentially to generate summaries while discarding

uninformative content such as background clutter. Context

labels are automatically inferred during inference to provide

additional category knowledge without manually given in
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Figure 2. Proposed constraints for learning context and highlight

models in a structured SVM framework. The highlight detection

constraints require that the highlight segments have higher values

than the other segments within the same video sequence; the con-

text prediction constraints require that segments with the correct

context label have higher value than other context labels.

advance (see Sec.5).

4. Structured Learning for Highlight and Con-

text Models

We adopt a structured SVM (SSVM) formulation using

a margin rescaling loss for learning highlight and context

models. Two learning strategies are investigated, sequential

and joint SSVM learning. The first one learns two disjoint

sets of weights independently, one for detecting video con-

text and another one for determining highlights. The sec-

ond one jointly optimizes both tasks and have a single set

of weights being able to simultaneously detect highlights

and estimate context labels.

Formally, given the training data in the form of

{(Xi, yi)}1,...,N where Xi denotes a video sequence and

yi = (yc, ys, yf ) ∈ Y is a tuple of labels. yc ∈ {1, ..., k} is

the context label, ys ∈ [0, 1] is the confidence score for the

highlight, and yf ∈ {1i, ..., Ti} is the temporal position for

the highlight segment in the video sequence Xi
1.

Sequential SSVM. A structured SVM learns two dis-

joint sets of model weights with the constraints that high-

light segments should have higher scores than other seg-

ments (second constraint in Eq. 1), and correct context

(class) labels achieve higher scores than the incorrect ones

(first constraint in Eq. 1) (see Fig. 2). We employ loss

functions (∆context and ∆highlight) to penalize the outputs

1For a video with several highlights, it can be represented by mul-

tiple data sequences, e.g., (X1, y1), (X2, y2), ..., (Xm, ym), where

X1, X2, ..., Xm correspond to the same video sequence.
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y (for context prediction) and y′ (for highlight detection)

that deviate from the correct outputs yi. These constraints

enable our models to select the correct contexts and detect

highlights during testing, since they should higher values

with our proposed constraints.

min
wh,wc,ξh,ξc

∥

∥wh
∥

∥

2

2
+ ‖wc‖2

2
+ λ1

N
∑

i=1

ξhi + λ2

N
∑

i=1

ξci

sb.t.∀y ∈ {yf = y
f
i , y

c 6= yc
i }, ∀y

′ ∈ {y′f 6= y
f
i , y

′c = yc
i } :

〈wc,Ψ(Xi, yi)〉 − 〈wc,Ψ(Xi, y)〉+ ξci ≥ ∆context(yi, y)
〈

wh,Ψ(Xi, yi)
〉

−
〈

wh,Ψ(Xi, y
′)
〉

+ ξhi ≥ ∆highlight(yi, y
′)

(1)

Here λ1 and λ2 are the parameters controlling the trade-off

between a large margin and constraint violation. The slack

variables ξhi and ξci corresponding to Xi penalizes the con-

straint violation. For a more concise notation, the features

are stacked for learning multi-class models, Ψ(Xi, yi) =
Ψ(yc) ⊗ ΨX(Xi) =

[

0, ..., 0|...|ΨX(Xi, y
f )|...|0, ..., 0

]

.

Here ΨX(Xi, y
f ) is a feature map extracting the segment

features at the temporal position yf . The vector Ψ(yc) has

a 1 in the place of current class yc and 0 otherwise. Fi-

nally, wc = {wc
1
, ..., wc

k} are model parameters for con-

text prediction (Context SSVM) and wh = {wh
1
, ..., wh

k} are

model parameters for highlight detection (Highlight SSVM).
〈

w{h,c},Ψ(Xi, yi)
〉

represents the inner product between

the model parameters and the feature descriptors.

The inequality constraints of Eq. 1 require the highlight

segments to have higher values than other segments; seg-

ments with correct class labels should be relatively higher

than any other class by a large margin defined by the loss

functions:

∆context(yi, y) = α · [yci 6= yc]

∆highlight(yi, y
′) = β · (ysi − y′

s
)[yfi 6= y′

f
]

(2)

where [.] is the Iverson bracket notation. The variables α

and β · (ysi − y′
s
) are the losses for context prediction and

highlight detection respectively. λ1 and λ2 are automati-

cally selected (both are set to 10) to maximize the highlight

detection and context prediction performance for all classes

in the training set respectively.

Joint SSVM. As motivated before, we attempt to use

more compact models to further reduce the computational

and storage cost while maintaining the highlight detection

performance. The intuition is that both tasks are correlated

and can be jointly optimized. For example, a taking off seg-

ment in surfing is considered informative (more salient than

other segments) and discriminative (different from other

contexts). In other words, informative in a certain degree

implies that it is also discriminative, thus both constraints

are related and can be jointly trained. For this purpose, we

jointly optimize both tasks using a unary set of weights in a

SSVM learning framework, where the objective function is

re-formulated as:

min
w,ξ

‖w‖
2

2
+ λ

N
∑

i=1

ξi,

sb.t.∀y ∈ {yf 6= y
f
i ∨ yc 6= yci },

〈w,Ψ(Xi, yi)〉 − 〈w,Ψ(Xi, y)〉+ ξi ≥ ∆(yi, y)

(3)

The notations are similar to the definitions in Eq. 1. We

combine highlight wh and context wc models into a single

set of models w and define a new loss function as:

∆(yi, y) =

{

α if yc
i 6= yc

β · (ys
i − ys) if yc

i = yc, y
f
i 6= yf (4)

The terms α and β are selected by maximizing the highlight

detection accuracy on the training set.

The optimization problem in Eq. 3 contains a num-

ber of constraints, namely |Y | inequalities per training

sample. Therefore, we adopt a cutting plane method [7]

for constraint generation. This approach searches for the

best weight vector and the set of active (most violated)

constraints simultaneously in an iterative manner. While

searching for the most violated constraints during opti-

mization, we avoid using video segments from two differ-

ent videos, since scores might not be directly comparable

across videos. The label ȳi is selected by maximizing the

following equation:

ȳi = argmax
y∈Y

∆(yi, y)+ 〈Ψ(Xi, y), w〉− 〈Ψ(Xi, yi), w〉 , (5)

In our preliminary experiments, we observed that even if

the context prediction constraints for non-highlights are

not included, the learned models still generalize to non-

highlights. The reason might be that both highlights and

non-highlights share a common structure, so that what

helps discriminate between highlight segment categories

also helps discriminates between non-highlight segment

categories. Therefore, we only keep the context prediction

constraints for highlights, which is more efficient (due to

fewer constraints) for parameter optimization in the struc-

tured SVM framework.

5. Online Context Prediction and Highlight

Detection

Given the learned models, our method sequentially scans

the input video X = {x1, ..., xT }, predicts the context la-

bels for each video segment at time t, and generates the

highlight confidence scores based on contextual labels. The

final summary is generated by thresholding these confi-

dence scores (here, we give a way to generate the summary

for real situation. For comparing with the baseline meth-

ods (e.g., [19], [24]), we follow the same evaluation criteria

as in [19]. Given the predicted highlight confidence scores

and ground truth, we compute the AP scores, which capture

performance for all possible thresholds.)
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We only show the method for joint SSVM approach,

while sequential SSVM follows a similar procedure, except

using different sets of highlight and context models (i.e.,

sequentially applying context and highlight models). For

each video segment at time t, the context prediction score

for each class is defined as

score(c, t) = 〈wc,Ψ(X, t)〉 , c = {1, ..., k} (6)

Then, the highlight confidence scores are given by

v(t) = max
c

score(c, t) (7)

Since our model jointly optimizes both context prediction

and highlight detection, we can compute the highlight con-

fidences by selecting the max scores by different context

classes. The computational and storage costs are less than

sequential SVM method, as we do not need to use differ-

ent sets of weights to predict video context and detect high-

lights.

Early prediction. To further reduce the computational

and storage cost, we investigate early prediction in prelimi-

nary experiments. Our method accurately predicts the con-

text label at segment-level, which enables us to use past pre-

diction results to infer the most probable context label at an

early stage and only use the context-specific model to sum-

marize video highlights. To do this, we compute cumulative

scores that integrate all past class prediction scores and use

the difference between the max and second max of the cu-

mulative scores to infer the target class label early:

d(t) = Γ(ĉ, t)− Γ(c̃, t) > ε

ĉ = max
c

Γ(c, t), c̃ = max
c 6=ĉ

Γ(c, t) (8)

where Γ(c, t) = Γ(c, t − 1) + score(c, t) accumulates the

past prediction results. If the difference exceeds a pre-set

threshold ε (the effect of different threshold values is inves-

tigated in Sec. 6.4), we use the context-specific model (i.e.,

ĉ) to generate highlights, significantly reducing the compu-

tational cost by avoiding the application of all context mod-

els to compute the prediction scores (see Eq. 6)

Here, we assume the transition points for different con-

text are given for this pilot study, so we know where to ini-

tialize the cumulative scores. We can utilize existing meth-

ods to find the transition points, e.g., the method [14] cat-

egorized each frame into different classes, e.g., static, in

transit or moving the head and finds sub-events with these

classes or re-initialize the cumulative score automatically if

the highlight confidence is low for a period, i.e., the camera

wearer probably transits to other context, and current model

can not detect highlights. Then we reinitialize the cumula-

tive score and use all context models to find the correct con-

text by Eq. 8, but leave this to future work. For handling the

unseen contexts, we can use our method when the context

is known and adopt existing context-independent methods

otherwise. Thus, our method will not reduce the quality for

this case.

6. Experiments

6.1. Dataset and Evaluation Criteria

We evaluate our method on a public YouTube Highlight

dataset [19] (totally 1430 minutes) 2, which includes six

event categories: “skating”, “gymnastics”, “dog”, “park-

our”, “surfing”, and “skiing”. As our method predicts the

contexts and selects highlights at segment-level, the evalu-

ation results on separate categories (contexts) are as same

as on the concatenation of multiple categories. Thus, we

report our results on each event category. The ground truth

highlights are annotated by Amazon Mechanical Turkers.

Segments annotated more than two times as highlights are

considered ground truth highlights (three times for parkour

and skiing). We use the training and testing set, and eval-

uation criteria as in [19]. We calculate the average preci-

sion (AP) for highlight detection, and compute mean aver-

age precision (mAP) to summarize the performance of all

videos. The AP is computed by using the ground truth la-

bels (1 for highlights; 0 for non-highlights) and estimated

highlight confidence scores.

6.2. Feature Representation

We define a video segment as 100 frames evenly sam-

pled across each raw video as in [19]. We extract STIP

features based on an off-the-shelf tool [10]. Experiments

show that STIP works well on this dataset, and requires less

storage and computational cost compared to more sophisti-

cated features, e.g., dense trajectory [20] and CNN features

[6, 18]. We reduce the feature dimension to 64 by principal

component analysis (PCA). Video features with the same

class are used to learn a Gaussian mixture model (GMM)

with 120 components to generate Fisher vectors (FV) [15]

with a final feature dimension of 15360. Power and L2 nor-

malization schemes are also applied.

6.3. Highlight Detection Results

We compare our methods with several state-of-the-

art methods: Sun et al. [19], Zhao et al. [24]

and HOG/HOF+FV+Binary SSVM on Youtube Highlight

dataset [19], where Zhao et al’s method has been shown

to outperforms the other baseline approaches, e.g., evenly

spaced segments, K-means clustering and DSVS algorithm

proposed in [2]. For Zhao et al’s method, we fix the dictio-

nary size to 200 following the same settings in the original

paper and use the reconstruction errors from ℓ1/ℓ2 group

2To evaluate and analyze whether context benefits highlight detections

requires both highlight and context annotations. To our best knowledge,

this is the largest publicly available one.
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Category Method skating gymnastics surfing dog parkour skiing Ave. mAP

Given context label Turk-rank [19] 63% 41% 61% 49% 50% 50% ∼52%

Latent-rank [19] 62% 40% 61% 60% 61% 36% ∼53%

Binary SSVM 61% 33% 59% 70% 40% 42% 51%

Highlight SSVM (ours) 57% 41% 58% 70% 52% 66% 57%

No context label Zhao et al. [24] 51% 30% 37% 27% 55% 51% 42%

Random Context 22% 24% 41% 37% 47% 39% 35%

Sequential SSVM (ours) 52% 33% 58% 71% 44% 54% 52%

Joint SSVM (ours) 54% 44% 56% 69% 47% 59% 55%

Joint SSVM (GT Class) (oracle) 52% 45% 56% 69% 57% 59% 56%

Table 1. Video highlight detection comparison. We report the results of our method and baseline methods on a public Youtube highlight

dataset [19]. We categorize these methods into two groups: given context label and no context label, depending on whether the class label

is provided at test time. Our Sequential SSVM and Joint SSVM detect video highlights based on the estimated contextual information,

and significantly outperforms Zhao et al.’s method [24], which detects the highlights based on the low-level reconstruction errors from

group sparse coding framework. Our highlight model (Highlight SSVM) shows better results to [19] and Binary SSVM, demonstrating the

effectiveness of using margin rescaling loss in SSVM learning. We also report the results with random context labels (Random Context)

and ground truth context label for our joint approach (Joint SSVM (GT class)), verifying the importance of using contextual information for

video summarization and showing that our approach doest not cause the performance degradation compared to the ground truth (oracle)

case.

sparse coding system to compute the average precision for

each video. The threshold (denoted by ε0 in [24]) for con-

trolling the summary length is selected to maximize the per-

formance on the dataset. For Sun et al’s method, we com-

pare two variants of their approach: Turk-rank and Latent-

rank. Turk-rank is trained with annotations from turkers

while Latent-rank is trained by using noisy data harvested

online. We directly use the numbers reported in their paper.

For Binary SSVM, we use highlight segments of each event

category as positives and other segments as negatives and

feed them into a SSVM framework using 0/1 loss. We cat-

egorize these methods into two groups: given context label

and no context label, based on whether a context label is

provided at test time or not.

Table 1 summarizes the overall highlight detection re-

sults for different methods. Our approach (Sequential SSVM

and Joint SSVM) significantly outperforms Zhao et al.’s

method [24], as their video summaries might not have se-

mantic meaning, e.g., unseen backgrounds can also be se-

lected as highlights based on low-level reconstruction error.

Instead, our approach predicts the most likely context label

at each video segment and uses it to generate the highlight

confidence score. By taking into account the context of the

video being observed, our summaries capture more infor-

mative and interesting contents than [24]. In addition, our

highlight model (Highlight SSVM) also outperforms [19]

and Binary SSVM, demonstrating the effectiveness of using

margin rescaling loss for learning more powerful highlight

models. Note that our method uses less powerful feature

descriptors than [19] (STIP [10] vs. dense trajectory [20])

and with fewer feature dimensions (15360 vs. 26000).

We evaluate two variants of our method, Sequential

SSVM and Joint SSVM, where we optimize the highlight and

context models independently and jointly respectively. Both

achieve superior performance compared to the state-of-the-

art method [24]. Interestingly, our joint modeling approach

even shows slightly better performance than sequential ap-

proach and requires fewer model parameters. The reason

might be that highlight detection and context prediction are

correlated, therefore additional constraints from other tasks

benefit to the original models and improve the results.

We also report results with random context label Random

Context, where the context label of each segment is ran-

domly selected and ground truth context label Joint SSVM

(GT class), where we use the ground truth context label for

each video segment as the oracle. The results indicate that

a random context label does not perform very well, demon-

strating the importance of using context label information

for video summarization. Moreover, our joint approach

doest not lead to performance degradation compared to the

ground truth case, despite predicting video categories au-

tomatically. The reason is that misclassified examples often

appear in the non-highlight segments. Therefore, even if we

use the wrong context model for non-highlight segments, it

does not affect the final highlight detection results notably,

i.e., still have low confidence values in other highlight mod-

els.

We also evaluate the classification accuracy (i.e., context

prediction accuracy) of our joint modeling approach. The

ground truth context label of each video segment is obtained

from the event category for the whole video sequence. We

compute classification accuracy by measuring the label dif-

ferences (including both highlight and non-highlight seg-

ments) between our prediction results and ground truth la-

bels. The results show that joint model JointSSVM (aver-

age accuracy = 81%) achieves slightly better results com-

pared to ContextSSVM (average accuracy = 78%), showing

the feasibility of our joint modeling approach.
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Figure 3. Average model parameters versus average mAP. The

points close to the left-corner are more cost-effective, having

fewer model parameters while achieving higher average mAP. Our

method achieves better highlight detection performance while us-

ing less model cost compared to the state-of-the art method ([24]).

Note that [19] and Binary SSVM requires additional context label

information during testing, while ours are not. See Sec. 6.4 for

more details.

6.4. Computational Cost

Having discussed the power of our joint approach for

highlight detection and class prediction, we also investi-

gate computational cost of our method against baseline ap-

proaches. We measure computational cost by the average

number of model parameters used per video 3. Fig. 3 shows

the computational cost with different methods. For Sun et

al.’s method [19] and HOG/HOF+FV+Binary SSVM, high-

light confidence scores are computed by the inner product

of the model and feature descriptors for every video seg-

ment. Therefore, the computing cost for each video can be

computed as #parameters × #segments. For Zhao et

al.’s method [24], it is not straightforward to compute ex-

act number of model parameters used for group sparse cod-

ing and online dictionary learning framework. Therefore,

we approximate the computational cost of their method

by D ∈ Rm×k × #segments + (Pt ∈ Rk×k + Qt ∈
Rm×k)×#updates, where D is the dictionary, Pt and Qt

are matrices used for online dictionary learning. The param-

eter m denotes feature dimension (i.e., 162 for HOG/HOF)

and k denotes codebook size (i.e., 200). See [24] for more

details.

For our sequential approach (Sequential (full)), we ap-

ply both context and highlight models to compute the high-

3The source codes for baseline methods are not publicly available, thus

we approximate the complexity by average model parameters.

light confidence scores. Therefore, the computing cost

is (#classes+1) × #parameters × #segments, while

the cost for joint approach (Joint (full)) is #classes ×
#parameters×#segments (the storage cost of joint ap-

proach is half to sequential approach). We also experi-

ment our method with fewer feature dimensions (Joint (re-

duced))). For early prediction approach (Joint (early)), we

predict the class label early and only use the context-specific

model to compute highlight confidence scores. Therefore,

the model cost can be computed as

#classes×#parameters× η+
1×#parameters× (#segments− η),

(9)

where η denotes the decision point for early class predic-

tion controlled by the threshold (ε) on the difference values

in Eq. 8. Different thresholds show different result points

in Fig. 3. The results show that our method is very cost-

effective, achieving better highlight detection performance

(average mAP) and requiring less model usage compared

to state-of-the-art method method [24]. Note that for [19]

and binary SSVM, their context label is given during testing

time while ours are not. Moreover, our method uses linear

models to detect video highlights, which is much more effi-

cient than solving a ℓ1/ℓ2 signal decomposition problem as

in [24].

6.5. Conclusions

In this work, we propose a context-based highlight detec-

tion approach that generates video highlights immediately

without watching the whole videos. Experiments show

that our method outperforms baseline approaches, showing

the utility of leveraging contextual information. To learn

our models, we utilize a structured prediction framework,

where different learning strategies are investigated. We

demonstrate that our joint modeling and early approach can

achieve competitive results while requiring less computing

power and storage.
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