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Abstract

We present a wearable assistance system for visually im-
paired persons that perceives the environment with a stereo
camera and communicates obstacles and other objects to
the user. We develop our idea of combining perception
on an increased level of scene understanding with acous-
tic feedback to obtain an intuitive mobility aid. We describe
our core techniques of scene modelling, object tracking, and
acoustic feedback and show in an experimental study how
our system can help improving the mobility and safety of
visually impaired users.

1. Introduction

People with severe visual impairment are faced with
huge challenges when moving through unknown environ-
ments. For many people independent movement is re-
stricted to well known areas. The traditional white cane
allows to sense the space directly in front of the person, but
it does not provide any information about objects further
away. Overhanging objects like tree branches or open win-
dows, which pose great danger, cannot be sensed. Guide
dogs as the most auxiliary assistive aid are unaffordable for
most blind persons. The development of intelligent and af-
fordable technical mobility aids would be an important con-
tribution to increase the autonomous mobility of these per-
sons.

Early approaches towards assistance systems for the vi-
sually impaired trace back to the 1960s, when experiments
with wearable ultrasonic range sensors were carried out
(e.g. [12, 20]). Several approaches have been developed in
the recent years [6]. Most of these systems notify the user
about non-traversable directions in the scene [8, 17, 10], or
they guide the user into walkable free space [23, 16]. Both
options do not require a deep technical level of scene un-
derstanding. Either the difficult task of correctly interpret-
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Figure 1: Our assistance system detects obstacles in the
surrounding and transmits them to the user through spatial
sounds.

ing the haptic or acoustic feedback is left to the user [15],
which can cause substantial cognitive load, or the naviga-
tion is completely taken over by the system.

Meanwhile, the progress in the field of environment per-
ception and scene understanding becomes visible with the
launch of intelligent applications and systems as seen in
robotics, driving assistance, or surveillance. These sys-
tems are able to understand different aspects of their en-
vironment, they detect and track objects, assess risks and
act accordingly. This has motivated us to develop an assis-
tance aid which interprets its environment in order to offer
feedback on a high level of abstraction to the user. This
facilitates the usage significantly, but also entails high re-
quirements since the system must be wearable, lightweight,
and unobtrusive. Furthermore, the sensed information must
be conveyed in an intuitive manner to the visually impaired
user, which does not interfere the natural sensing.

In this paper we describe the basic design of such as-
sistance system. We introduce the methods for scene un-
derstanding and show how acoustic feedback is applied to
intuitively inform the user about its environment. We report
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Figure 2: Prototype setup built out of a bicycle helmet, a
binocular camera, headphones and an inertial measurement
unit (IMU).

on a experimental study which shows how blind persons can
benefit from such system.

2. Requirements and System Design

A mobile navigation aid must provide reliable informa-
tion in an intuitive form to the user. The purpose of our mo-
bility aid is to inform the user about objects in the local en-
vironment. This information shall enable the person to plan
further ahead and avoid obstacles more prospectively. We
convey the location and relevant semantic information of
objects through binaural acoustic feedback. Using a head-
phone, the natural acoustic environment is augmented with
sounds which can be localized in terms of direction and dis-
tance. This idea is exemplified in Fig. 1.

The environment perception (Section 3) of our system
builds upon a head-worn binocular camera. This allows
to perceive the environment from a natural point of view,
and offers to easily direct the viewing range towards points
of interest or objects of interaction [14]. These opportu-
nities come along with the challenging task of operating
under almost unconstrained and unpredictable camera mo-
tion. Based on the binocular camera images we detect and
track generic static and moving objects and classify them
into predefined groups of obstacles.

Special care needs to be given to the aspect of communi-
cating the information to the user. The generated feedback
needs to transport as much information as possible of the
sensed environment, while it needs to be intuitive enough to
be used without extensive training. Acoustic feedback has
been shown to offer this potential [ 1], but is critical to ap-
ply in our context since visually impaired persons strongly
rely on the hearing sense. Acceptance can only be expected
if natural sounds are not blocked but carefully augmented
with artificial sounds. Physically, we ensure this by plac-
ing the headphones slightly in front rather directly on the
outer ear. Bone conduction speakers can be considered as
an alternative, but require more careful setup and position-
ing. Furthermore, the selection and filtering of these sounds
is critical for intuitive and pleasant usage. We summarize a
range of experiments regarding this in Section 5.

The generated sounds are perceived relative to the head
orientation. To create a realistic acoustic impression of a
world-fixed sound source, the sound position relative to the
moving head needs to be updated frequently and with min-
imal delay. These requirements are hard to achieve with a
sequential computer vision process chain since computing
times are by orders of magnitudes higher than the required
acceptable delay between head and sound motion. For this
reason an important building block in our system design is
a module that estimates the head orientation with minimal
delay fusing data from an inertial measurement unit (IMU)
and camera (Section 4).

3. Binocular Environment Perception

One of the technical core challenges in the develop-
ment of the assistance aid was to develop algorithms for
the camera-based environment perception which are reli-
able and efficient enough to be operated in real time on a
wearable system with limited computation power.

A forward directed camera with limited aperture angle
perceives only a small part of the environment surrounding
the user. This might be sufficient to warn of imminent col-
lisions but it is not sufficient to inform about objects next or
even behind the user. To inform about such vanished objects
we need to keep track of everything that was once seen.

In comparison with traditional travel aids like the laser
cane [3] it is not sufficient to detect the walkable free space,
we rather need to understand what is limiting the free space.
In urban environments with buildings, parking cars, cycles,
trees and bushes, shop displays, chairs and tables, stairs
leading up and down, or moving pedestrians this is a large
amount of information. Only a small part of this informa-
tion can be communicated to the user. Hence, it is required
to condense the information into an abstract representation
of the environment, in which we ignore irrelevant details.
This representation has to be flexible and expressive enough
to depict the variety of different objects and their motion
relative to the user, while it needs to be compact enough to
keep the computational processing load small.

A large part of inner-urban scenes is covered by high
walls, building facades, fences, or bushes. These kind of
natural and man-made structures can be understood as a
scene background in front of which small, independently
positioned objects define a foreground. Foreground and
background differ strongly in their extension and the fact
that the scene background is always static. The scene back-
ground can provide high-level context knowledge that can
be applied for obstacle detection. Furthermore, the align-
ments of building facades are valuable orientation hints for
visually impaired users. Objects of interest are usually part
of the foreground, which motivates us to model the geomet-
ric scene background structure independently of movable
foreground objects in our environment representation.
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The underlying environment model can best be described
as a blocks-world composed of planar surfaces representing
the scene background geometry and independently moving
aligned boxes which represent foreground objects or obsta-
cles. This provides information on a level beyond any tra-
ditional mobility aid for the visually impaired.

The task of the vision system is to build and maintain this
environment model while the user is moving through the
scene. A dense disparity estimator provides the basis for
extracting the geometric scene background structure (Sec-
tion 3.1) within which we detect and track generic obstacles
(Section 3.2). To handle objects moving out of camera view
we represent all measurements in a global reference frame
and estimate our position within that frame using a combi-
nation of visual odometry and the inertial measurement unit
(Section 4).

3.1. Scene Geometry

Our scene geometry model consists of a composition of
planar surfaces in global 3d-space. Specifically, we keep
track of a common ground plane, and structures like build-
ing facades, fences or bushes which constitute planes or-
thogonal to the ground plane.

3.1.1 Plane estimation

Measuring such planes is a multi-model fitting problem that
we treat with a combination of multi-model RANSAC plane
fitting and least-squares optimization. To avoid the non-
linear stereo reconstruction error in Euclidean XY Z-space
[21] we determine planes directly in disparity (uvd-)space
as

au+ pv+v+6(u,v) =0 (1)

with (u, v) being the image coordinates and J(u, v) the ac-
cording disparity measurement. Given the camera calibra-
tion, the uvd plane can be expressed in XY Z-space through
anormal vector and camera distance as p = (n, d)

nX+n,Y +n,Z+d=0 2)
(n:ﬂany7nzad)oc(af’ﬂf7acu+ﬁcv+7abf) (3)

with focal length f, principal point (c,, ¢,) and stereo
baseline b.

We apply the RANSAC scheme and generate plane hy-
potheses by repeatedly sampling planes through 3 random
points. A plane is evaluated by counting the support points
with point-to-plane distance |au+ Sv+y+(u, v)| smaller
than a disparity margin e around the plane to find the best
hypotheses.

Having obtained an initial solution we optimize the pa-
rameters using robust iterative least-squares estimation. The
set of wvd plane support points (u;,v;,0;), ¢ =1,...,N
is used to update the plane parameters by solving the linear
system
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This estimation is applied a few iterations until no con-
siderable update in the parameters remains.

3.1.2 Plane tracking

An estimated plane is transformed into an XY Z-plane
Pioca; and added to the global environment model as
Pylobal = (Tk_l)T Plocar With T}, being the current ego-
pose (cf. Sec. 4). In the next video frame we estimate T}, 1
and use the predicted plane p,,.,, = TkT 1 Pglobal s initial-
ization for the least-squares plane optimization.

Using this plane detection and refitting scheme our sys-
tem is able to keep track of the ground plane. Special care
needs to be taken in order to handle cases of heavy oc-
clusion and situations in which the camera is temporarily
pointed away from the surface. To handle theses situations
we extract the vertical scene vanishing direction from the
input images. It is represented by a vector ny which coin-
cides with the plane normal vector n estimated in the dis-
parity data. Both information are fused in a Kalman filter
and allow robust tracking of the ground in cluttered envi-
ronments [22].

3.1.3 Vertical structures

To estimate planes which represent vertical scene structures
we want to constrain the plane orientation to be orthogo-
nal to a given plane (here the ground plane, represented
by its normal vector n), i.e. enforce the inner product of
their Euclidean normal vectors to be zero, while optimizing
the plane parameters in uvd space. We seek the parameters
which minimize

N
mi(zzg?yize ;(a w4 Bv oy +6;)?
subject to ny(af) + ny(Bf) + n;(ac, + e, +v) =0
&)
The constraint can be reformulated to
Jng /n
7:7( +Cu)o“4>7( K +Cv)/6 (6)
nZ nZ
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and inserted into the cost term. The resulting linear sys-
tem for « and § is listed in equation (7).

To initialize planes vertical to the ground we apply a
RANSAC variant in which vertical plane hypotheses are
created from two wvd-points and the orthogonal ground
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plane normal vector. Planes are deleted from the environ-
ment model when they could not be remeasured for a few
subsequent frames.

3.2. Generic Obstacle Detection and Tracking

In contrast to vision systems trained to detect obstacles
of specific categories like pedestrians, cyclists or cars based
on their appearance (e.g. [7]), our detection stage needs
to be independent of obstacle appearance in order to detect
arbitrary obstacles. Furthermore it is not sufficient to detect
obstacles based on their motion [ 1, 5], since most parts of
the scene which we are analysing are static.

In our case an obstacle can be defined as an assembly of
spatially neighboured points, which do not belong to parts
of the scene background geometry. Hence, detecting obsta-
cles leads to a segmentation problem, in which each seg-
ment represents an object detection [24], which needs to be
associated with known objects to be tracked over time [2].
Segmentation of low-resolution disparity data is a challeng-
ing problem and hardened by the facts that the number of
objects is usually unknown and hardly any prior knowledge
about their shape or size can be applied — foreground objects
can be as tall as a truck and as small as a post.

We treat this problem as a combination of clustering and
tracking before detection. To avoid merging objects close

Figure 3: Vision algorithms applied in the system. (a) Fea-
ture flow of moving objects (b) dense disparity estimation
(c) tracked ground plane (green) and building facades (pur-
ple) (d) tracked obstacles with aligned bounding boxes. The
line indicates the predicted motion of the cyclist.

together into one detection we partition the foreground dis-
parity points into small segments in which all points are
clearly located close to each other. We apply single link-
age agglomerative clustering and use as distance measure
the difference of disparity of two points to yield an over-
segmentation of the scene with small computational ex-
pense.

After segmenting we group the segments into objects.
We apply a reasoning process based on the previously in-
stantiated object tracks in the environment model. Each seg-
ment becomes assigned to the closest object based on two
features, (a) the overlap ratio in image space of a segment

. . ! NAObjec
with the projected contour of an object —Se&pent —ahicet
cgment

and (b) the Mahalanobis distance in 3d-space between the
ground plane projection of segment and the objects’ center
of gravity. The group of segments that was assigned to the
same object forms an observation for this object.

The state of an object consists of its position, its velocity
and direction, and a 3d aligned bounding box. An extended
Kalman filter with constant velocity model updates the state
with the observed objects. Furthermore, each object keeps
a history of reconstructed 3d points of the past 20 obser-
vation. This allows us to determine the object contour in
the current camera image for segment assignment and to
measure the object extend in order to update the bounding

)

Cluster O

Figure 4: Disparity over-segmentation and object grouping
for situation in Figure 3: Disparity segments are shown as
colored dots. 3d points of existing obstacles are projected
into the current view to find their contour in image space,
here depicted as red polygons.
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Figure 5: Results of the vision algorithms. (a) and (b) Estimated scene geometry with ground surface and building facades
shown as colored overlay (bottom row), and estimated obstacle bounding boxes (top row) with their velocity indicated by
a line. (c¢) small posts detected in 12m distance (top), passing cyclist tracked up to 20m distance (bottom). (d) Cluttered
disparity data of parking cars (top left) and its segmentation (top right) after removing the scene geometry (bottom left).
Resulting obstacles (bottom right) with two small erroneous instantiated objects in the vicinity of the car (green and blue).

box dimensions. We align the boxes with the main princi-
pal component of their 3d points projected onto the ground
plane (white dots in Figure 4).

We initialize objects in the environment model with seg-
ments which could not be assigned to any existing object.
Objects are deleted from the representation when they are in
the field of view, but have not been re-detected for a number
of consecutive frames.

3.3. Results

The algorithms are embedded into a parallelized soft-
ware framework in order to ensure a high data throughput.
We capture images of 640x480 pixels with 30fps. The dis-
parity is estimated using OpenCV semi-global matching at
half-resolution while the egomotion is computed parallel by
means of visual odometry (libViso2 [9]) with around 20fps.
Using the disparity data we update the scene geometry and
the foreground objects parallel with around 15fps on an i7
2.4 GHz dual-core notebook.

Figure 5 shows results of obstacle detection and geome-
try estimation. Depending on the size, objects are initialized
into the tracking scheme in a distance between 10 (small
posts) and 20 meters (cars) and tracked until they leave the
field of view. Possible kinds of errors are close objects
merged into a single track, or objects becoming segmented
in multiple tracks (Fig. 5d). While the first is normally un-
critical in our application, the second can lead to confusing
feedback when single obstacles are reported with multiple
sound sources. To avoid confusing the user with such ghost
objects we apply temporal filtering and delay the initializa-
tion until an object was successfully observed 5 times.

As in all object detection methods based on surface mod-

els, the proper estimation of scene geometry is important
to avoid wrong object initializations. Since we align all
building facades relative to the ground, the estimation of
the ground plane is the most significant. Our plane tracking
scheme shows to be robust also in situations of temporary
total occlusion or situations in which the user’s head is tem-
porarily pointing too far up. In these cases we predict the
plane until it is visible again and new measurements can be
made.

4. Egopose Estimation

The information of camera position and camera orien-
tation w.r.t the environment model is used in two ways:
First, it is needed to update the global environment model
with measurements obtained from processed camera im-
ages. Secondly, a delay free localization enables to pre-
dict a local view onto the model which we use to gener-
ate feedback. The localization needs to be locally accurate
enough to update the environment model with current mea-
surements, but we do not require a globally consistent long
term estimation.

This task of head tracking can be solved by camera based
visual odometry. A few conditions need to be met here:
scene illumination has to be sufficient to avoid motion blur
and the captured scene needs to contain textured and ap-
parent static parts. Rapid camera motion must be lim-
ited, which can not be guaranteed with uncontrolled head-
worn cameras. A principal drawback in our application is
the larger latency of up to 50ms, which can cause confu-
sion when perceiving the artificial, environment-fixed sound
sources.

As an alternative, an inertial measurement unit can be
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Figure 6: Measurements of IMU and visual odometry re-
lated to the orientation measurement. At points in time t,
and ¢, we obtain rotation estimates from visual odometry
while in between we only obtain updates from the IMU.

applied which offers incremental absolute orientation esti-
mation with heading and roll compensation based on a com-
bination of 3-axis accelerometers, gyroscopes and magnetic
field sensors. Because of high processing rates this estima-
tion is also precise under strong motion and can outperform
camera motion estimation here. However, translational mo-
tion can not be directly measured and would require a global
reference like GNSS for a drift-free estimate.

To overcome the shortcomings of both methods we com-
bined both in an integrated approach. We can obtain delay-
free orientation measurements even under strong head ac-
celerations and benefit from accurate orientation and trans-
lation estimation through visual odometry in low-velocity
situations. To fuse both measurements one has to deal with
the different update rates and latencies of the two sensors.
Our implementation builds upon libViso2 [9] to estimate
the camera motion and fuses inertial measurements into the
estimation using a Stochastic Cloning Kalman filter [18].

The core of the filter is a common orientation filter based
on inertial and magnetic field measurements (compare e.g.
[13]). The filter state contains the orientation represented
by a quaternion g;, and the bias of the gyroscope. Simi-
lar to a gyroscope, visual odometry also measures the ro-
tation. Integrating the gyroscope over the interval between
the capturing of subsequent video frames yields the same
measurement as the rotation calculated by the visual odom-
etry using these frames. Thus, while the visual odometry
does not provide any new information, it can statistically
improve the orientation estimation and can also help to de-
tect or handle irregular measurements, e.g. in the case of
magnetic distortion. This fusion scenario with the involved
measurements is sketched in figure 6.

The stochastic cloning approach proposed in [19] al-
lows us to consider incremental measurements which relate
a state at time t; with a state at time ¢g,. For that pur-
pose, the state is augmented at time ¢; with a clone of it.

Figure 7: Estimated trajectory for a walk using pure vi-
sual odometry (blue) and the stochastic cloning Kalman
filter (red). Further improvements are achieved by includ-
ing measurements of the earths’ magnetic field (pink and
black). The ground truth is depicted with a green dashed
line.

This clone will remain an estimate for the time ¢; so that
the augmented state at time ¢x,,, contains an estimate for
the time ¢, as well as for the time ¢, which can be used
for correction with the incremental measurement. Accord-
ingly, stochastic cloning is suitable to fuse the orientation
information given by the gyroscope and visual odometry in
a statistical consistent way.

Every time, say ¢, when a new pair of video frames is
captured the state is augmented by a clone of the orienta-
tion quaternion. Then, at time ¢, = trx + Atvideo =
ti + nAtyyp the next pair of video frames is captured and
visual odometry determines the rotation based on the pair
of subsequent camera images. Obviously, the incremental
rotation calculated by visual odometry is a measure of the
difference between the orientation at time k£ and k+n which
can be calculated as the difference between the present ori-
entation estimate and the cloned orientation. This provides
the innovation step of the filter.

The position of the head is determined outside of the fil-
ter according to the translation provided by visual odometry
every n IMU samples. As the translation dy,, calculated
by visual odometry is given in the local frame it has to be
rotated into the global frame before it can be incremented:

tign = ti + (qkfiﬂ ® ditn @ Qi kot+n) @)

where ® denotes quaternion multiplication. The current
egopose (as used in Sec. 3) is expressed as affine trans-

formation
R Qk+n t n
T |: ( k+ ) k+ :| (8)

with R(q) the left-handed rotation matrix equivalent to the
rotation quaternion q.
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Fig. 7 provides the estimated trajectory for a walk of
approximately 500 m.

5. Acoustic Feedback

The acoustical feedback generated by the system shall
offer an enhanced perception of the surrounding environ-
ment. This can have a warning as well as an informing
function. On the basis of the environment model detailed
in Section 3 and the ego-pose estimation in Section 4, the
distances and directions of objects and obstacles around
the user can constantly be calculated relative to the current
head pose. Each object is represented by a sound source
which encodes the spatial location through binaural render-
ing. Binaural rendering refers to the technique of creating
sounds that can be localized in direction and distance using
a headphone. It requires the head-related transfer function
(HRTF) of both ears to render a sound depending on the di-
rection and distance as if it was naturally distorted through
the outer ear and delayed according to the ear distance [4].
An acoustic image of the environment arises which the user
can freely interact with by turning or moving the head. The
acoustic representation of the environment can carry lots of
information. Several aspects need to be considered in or-
der to keep the cognitive load of interpreting the feedback
small and the system intuitive to use. The most crucial is
the selection of appropriate sounds, which we treated in a
row of surveys and simulator studies with visually impaired
as well as sighted persons.

To avoid confusion, the system sounds need to be clearly
distinguishable from natural environmental sounds. Addi-
tionally, they need to be pleasant to listen to and transport
semantic information about the obstacle, e.g. its kind, its
motion or its potential danger in an intuitive way. To keep
the cognitive load small and minimize required training ef-
forts, the number of different sounds has to be limited. We
conducted a study with 26 visually impaired persons to find
an appropriate categorization based on a set of 40 differ-
ent obstacles. The best fitting categorization consisted of
(a) wide objects (e.g. ticket machines, cars, benches), (b)
pole-like objects, (c) elevated objects (awnings, barriers)
and (d) approaching dynamic objects. Additional desirable
categories were drop-offs and holes, high curbs and stairs,
and crosswalks. Objects of these categories are currently
not modelled in the vision framework.

The technical aspect of locatability plays an important
aspect. Localising sounds in terms of their direction and
distance requires the sound to be composed of a wide fre-
quency spectrum. The human outer ear distorts the fre-
quency spectrum depending on the sound direction to al-
low sound source localisation. Sounds exhibiting wide fre-
quency spectra often conflict with the requirement of com-
fort. Especially high frequencies can only be used carefully.
The sounds selected should furthermore be in some kind of

harmony with each other since usually multiple sounds will
be rendered simultaneously. To find appropriate sounds,
we carried out an experimental study with 30 persons (15
of which visually impaired) in a sound simulator. Using a
headphone we played 18 synthesized sounds from 20 dif-
ferent directions distributed in a 140° field in front of the
head. The participants pointed a marker towards the per-
ceived sound source which we used to automatically mea-
sure the localization error. Furthermore, we asked to assign
the sounds to the previously defined categories and asked
a grade to judge the comfort. On the horizontal plane, ex-
perimental studies with real sounds reveal angular localiza-
tion accuracies of around 10°.The localization errors in our
virtual sound experiments were about twice as high. How-
ever, in reality we are able to turn the head towards a sound
source, which strongly increases the localization accuracy
but is not reflected in our experiments.

A final important step is the selection of relevant obsta-
cles in the current situation. In urban environments there
are typically many more objects in the vicinity of a person
than the number of sounds that are distinguishable simulta-
neously. To keep the acoustic feedback intuitive we select
the three most relevant objects in terms of distance and de-
viation from the current walking direction. Sound sources
are virtually placed at their positions. Using the current ego-
pose (Sec. 4) the sound locations are transformed into local
head coordinates, convolved with the HRTF of the users and
their amplitudes adapted to the distance.

6. Experiments

The experimental setup consists of two Flea2 cameras
with a baseline of around 18 cm and wide-angle lenses of
3.5 mm focal length mounted on a helmet (Figure 2). The
IMU (Xsens MTi-300) is flush-mounted into the helmet on
top of the person’s head. The cameras are calibrated to each
other and to the IMU. The headphones are Sennheiser PX
100-II and mounted to the helmet sharing the IMU coordi-
nate frame. Thereby we avoid the required extrinsic calibra-
tion between headphone and camera frame. The computing
platform is an i7 2.4GHz dual-core notebook carried in a
backpack.

6.1. Field Test

Proving the system concept and assessing its value and
usefulness for visually impaired persons required testing the
system under realistic conditions. Since the behaviour of
the user is influenced by the system output, it was impor-
tant to test the whole control loop containing the perception
algorithms, the acoustic feedback and the user behaviour.

The developed prototype was put to a field test with 8
visually impaired persons at the age of 20 to 50 years. Five
of the participants are independently mobile, the remaining
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Figure 8: Parcours used in the fieldtest.

three persons are more restricted in their mobility and rely
on the support of others.

As a first part of the test we set up a training scenario
consisting of two big obstacles on an open field. The partic-
ipants were asked to navigate towards the obstacles and pass
between them to validate the sound localization concept.
The feedback principle was immediately clear to all the par-
ticipants. The scenario is well suited to experience the con-
cept of spatial sound and allows simple interaction by ap-
proaching the object or passing it, which causes the sound
to move correspondingly around the user. After around 10
minutes we moved on to a more complex 2nd parcours.

The parcours consisted of a more complex scenario with
the purpose to find out whether the participants could use
the acoustic information to redirect their path of travel in
order to avoid collisions. The task was to navigate along the
turf between a pavement and lawn as orientation guideline
using the white cane. Along this path we placed different
obstacles (low boxes, high poles and one obstacle hanging
overhead) with a few meters distance, some directly on the
path, some to the left and right (see Figure 8). The sys-
tem classified these obstacles into flat, pole-like, dynamic
and overhead obstacles, each with a distinct sound. In the
beginning the participants tended to shortly stop walking
whenever a new obstacle was sonified and turn their head
in order to confirm the sound direction. Later, new obsta-
cle sounds caused them to decrease their walking speed un-
til the white cane touched the obstacle. It turned out that
the distance to objects was difficult to assess based on the
sound intensity alone. The training period was too short to
develop a proper sense for the relationship between sound
volume and distance. This effect was intensified by the use
of four different sounds, which were perceived differently
loud by the individual participants. During a second and
third walk through the parcours some probands had devel-
oped a sense that allowed them to avoid obstacles before
they could touch them with the white cane. The biggest re-
ported difficulty was to assess the object extension, since it
was not reflected in the feedback.

Most participants were sceptical about the principle of
artificial spatial sounds after participating in our simulator
studies. The experience with the system under real condi-
tions turned out more positive than expected for these users.
The acoustic overlay did not cause them to feel limited in
their natural sense of hearing. The concept of informing the
person about the environment rather than generating navi-
gation clues was received positive. Devolving the decision
making to the assistance system is a high hurdle for most
visually impaired persons, they like to stay in control. All
of our participants could imagine to apply such system for
assistance.

7. Conclusion

With the aim of improving the individual mobility of
visually impaired persons we have developed a wearable,
camera based aid. In this work we developed our con-
ceptual idea of combining scene perception on object level
with spatial acoustic feedback to overcome the limitations
of present assistive aids. A core challenge in this develop-
ment was to bring together the limited technical possibilities
of a wearable platform with the demands of the users.

The perception of the environment was based on the esti-
mation of the geometric scene background and the detection
and tracking of generic static and dynamic objects within
the scene foreground. This compact abstract representation
serves as a base for the acoustic feedback. A robust tech-
nique for head-tracking was developed which combines an
inertial measurement unit with camera based visual odom-
etry to allow high frequent measurements of head position
and orientation with small delay.

In a set of surveys and simulator studies we adapted the
feedback concept to the wishes of the visually impaired
users. We selected sounds which allow good obstacle lo-
calization and intuitive interpretation of the virtual acoustic
world. The developed concept notifies and warns about po-
tential dangers, but the user stays in control how to use this
information, which increases acceptance of such systems.

Our final experiments under realistic conditions gave ev-
idence that the assistance system is useful for visually im-
paired persons and that it can be used in an intuitive way.
It extends the sensing range from approximately 1 m (white
cane) to 10-20 m and, thus, allows the user to avoid obsta-
cles and dangerous situations earlier. Moreover, it allows to
detect obstacles like tree branches or barriers, which cannot
be recognized with the white cane.
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