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Abstract

In this paper, we propose a two stage pedestrian detec-

tor. The first stage involves a cascade of Aggregated Chan-

nel Features (ACF) to extract potential pedestrian windows

from an image. We further introduce a thresholding tech-

nique on the ACF confidence scores that seggregates can-

didate windows lying at the extremes of the ACF score dis-

tribution. The windows with ACF scores in between the up-

per and lower bounds are passed on to a Mixture of Expert

(MoE) CNNs for more refined classification in the second

stage. Results show that the designed detector yields better

than state-of-the-art performance on the INRIA benchmark

dataset[5] and yields a miss rate of 10.35% at FPPI=10−1.

1. Introduction

Pedestrian detection is an important problem in com-

puter vision which finds application in several areas such

as monitoring, surveillance, smart vehicles, healthcare and

assistive robotics. The problem becomes challenging owing

to several factors such as variation in appearance, pose and

size of pedestrians, illumination, backgound and degree of

occlusion. Autonomous vehicles are crucial for improving

the quality of life for disabled. These require reliable pedes-

trian detection to ensure safety during autonomous navi-

gation.Autonomous medical robots are currently providing

healthcare assistance and require pedestrian detection for

effective navigation in hospitals [1, 25].

Recent years have seen significant progress in this field

with the appearance of several state-of-the-art pedestrian

detectors [12] [16] [10]. Most of these methods use some

hand-crafted features such as Haar [23], HOG [5] along

with a cascade of (boosted) classifiers to detect pedestri-

ans. The detection rate was further enhanced by using de-

formation part based model (DPM) [15] where a human is

represented as a collection of parts in a deformable config-

uration.

Recently, deep learning techniques has been shown to

provide remarkable results in large scale object recognition

tasks [18] [17]. This has encouraged researchers to apply

deep learning techniques to the pedestrian detection prob-

lem as well. For instance, Sermanet et al. [21] proposed a

two layer convolutional model where the layers were pre-

trained by convolutional sparse coding. Chen et al. [4]

used a pre-trained Deep Convolutional Neural Networks

(DCNN) to learn features from windows obtained from an

ACF detector [6]. These features are then applied to a SVM

classifier to detect pedestrians. Zeng et al. [28] propose a

deep model to automatically learn scene-specific features so

that a generic detector can work satisfactorily over different

datasets. Similarly, Ouyang et al. [20] propose a deep learn-

ing technique that jointly learns the four key components in

pedestrian detection simultaneously: feature extraction, de-

formation handling, occlusion handling and classifiers. Re-

cently, Cai et al. [3] have proposed a cascade design proce-

dure where an optimization algorithm is used to select com-

plex features which are progressively pushed to later stage

of cascades. This allows a single detector to work with a

wide variety of features having different complexities.

Our work is primarily motivated by Chen’s approach [4]

where a DCNN is used to extract features from the pro-

posal candidate windows obtained from an ACF detector.

These features are then fed to a SVM classifier to confirm

the presence of pedestrians in these windows. Essentially, it

uses three stages for pedestrian detection, namely, an ACF

detector, a CNN feature extractor and a SVM classifier.

We propose to simplify this architecture by using only two

stages comprising of an ACF detector and a CNN Mixture

of expert (MoE) module which itself is used as a classifier

thereby obviating the need for a separate classifier module.

This Mixture of Experts trained on ACF detected windows

is used for classifying the difficult candidates accurately for

which the ACF confidence scores lie within a statistically

identified band. This band represents those cases where

the correct decisions could not be made by merely using

thresholds on the ACF confidence scores. We use a feed-

forward neural network to provide the adaptive combination

of experts for classification similar to conventional adaptive
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boosting frameworks. The difference lies in the fact that the

input itself decides the weightage for a given CNN expert

in the ensemble. The resulting detector is shown to pro-

vide lowest miss-rate at FPPI=10−1 on the INRIA dataset

as compared to the existing methods.

The main contributions made in this paper are as follows.

(1) A mixture of experts (MoE) is used as an adaptive com-

bination of CNN classifiers for improving the performance

of standard ACF detectors. Here, CNN is used as classi-

fier unlike [4] where it is used as feature extractor. Use of

MoE in the context of CNN-based pedestrian detectors is

novel. (2) We present novel use of ACF confidence scores

for identifying the difficult samples which are then used for

training the MoE CNNs. The upper and lower bounds on

the confidence scores computed for these difficult cases are

shown to augment the performance of ACF detectors.

The remainder of the paper is organized as follows. An

overview of related work is provided in Section 2. The de-

tails of the proposed method is provided in Section 3. This

is followed by Section 5 which provides details of various

experiments conducted. Section 6 outlines the results. Fi-

nally, the conclusion and discussion on future work is pro-

vided in Section 7.

2. Related Work

Pedestrian detection is a well defined problem with es-

tablished benchmarks and evaluation metrics. It has at-

tracted a considerable amount of attention in the recent

years which has resulted in development some of the best

detectors in literature. Viola and Jones [23] were the first

to demonstrate that a cascade of weak classifiers could be

used for complex object detection tasks. They used Ad-

aBoost algorithm to select critical features from a larger set

to build efficient classifiers. On the other hand Dalal and

Triggs [5] used complex features such as HoG with a sim-

ple classifier such as SVM to achieve detection. Either of

these two frameworks were extensively used along with a

number of features to detect pedestrians - Haar [24], LBP

[26], ICF [9] and recently, Aggregated Channel Features

(ACF) [6]. Felzenszwalb et al. proposed the deformable

part model (DPM) [15] which is a considered to be a break-

through in pedestrian detection. Readers are referred to sur-

vey papers [12] [16] [10] to get an overview on the current

state-of-the-art in pedestrian detection.

The success of deep learning techniques in object de-

tection [18] has prompted researchers to apply it to other

problems including pedestrian detection [20] [28] [4] [3].

Among these models, Convolutional Neural Networks

(CNN) have been found to provide state-of-the-art perfor-

mance in pedestrian detections. Convolutional Neural Nets

combine features at each layer using a non-linear transfor-

mation and generate hierarchies of features. Sermanet et

al [21] obtained state of the art results using a convolution

network whose filters were pre-trained using convolutional

sparse coding, with feedforward connections across mul-

tiple layers. Chen et al. [4] used an Aggregated Channel

Feature (ACF) Detector [6] whose candidate windows are

fed into rich and deep Convolutional neural network pre-

trained on the ImageNet dataset. The resulting features

were then classified using an SVM. Zeng et al [28] pro-

pose a deep joint network for learning scene specific fea-

tures using a novel objective function which allows them

to learn both unsupervised and discriminative feature rep-

resentations. They address the problem of transferring de-

tector performance from one dataset to another. In order

to improve the detection performance further, Ouyang and

Wang [20] propose a unified deep model for jointly learning

feature extraction, a part deformation model, an occlusion

model and classification. Recently, Cai et al. [3] proposed

a cascade design procedure where an optimization module

is used to select features based on complexity which are

pushed to later stages of the cascade. Their focus was to

develop an optimal cascade learning for deep networks.

Mixture of experts (MoE) [19] is an ensemble of classi-

fiers which can be utilized for improving the performance

of pedestrian detection [13]. Readers can refer to [27] for

a survey in this area. In this paper, we use a MoE CNNs

to augment the detection capabilities of a standard ACF de-

tector unlike the above approaches where CNNs have been

primarily used as feature extractors and classifiers. The pro-

posed method is explained next in this paper.

3. Pedestrian Detection Framework

Our pedestrian detection utilises a combination of an

ACF detector and a Mixture of Expert (MoE) CNNs. Fig

1 depicts our MoE combining five CNNs with varying ar-

chitectures. The CNNs are trained using the augmented

train set as explained in the Section 4. The trained network

hyperparameters are determined via error minimization on

a validation set. Subsequently, a four stage ACF detector

is trained on our train set. The lower (lt) and upper (ut)

ACF score cut-off thresholds are determined via five fold

cross validation. At each fold of the cross validation, can-

didate windows are extracted via ACF, and different thresh-

olds are imposed on the ACF scores for the candidate win-

dows. Windows with ACF scores higher than the current

upper threshold are classified as pedestrian and windows

with ACF scores lower than the current lower threshold are

classified as non-pedestrian. The windows with intermedi-

ate ACF score are classified based on the MoE train as de-

scribed above. The thresholds that yield the best miss rate

at 0.1 FPPI are selected for that fold. The mean thresholds

over all the folds are selected as the final threshold values lt
and ut to be applied for testing.

164



Figure 1. The proposed approach consists of a combination of ACF and Mixture of Expert(MoE) CNNs. The output of ACF are the

candidate windows and their respective confidence scores. The ACF scores are used to segment candidate windows into pedestrian, non-

pedestrian and uncertain cases. The windows with confidence scores below the lower threshold are treated as non-pedestrians and the

windows with confidence scores above upper threshold are classified as pedestrians. The ACF candidate windows that are within the

threshold limits are passed onto the MoE for fine classification. The MoE learns to weigh the different CNNs dynamically based on the

candidate windows.

3.1. Detector

We have trained the ACF detector with our train set im-

ages for localizing candidate windows. The three chan-

nel features considered are normalized gradient magnitude,

HOG (Histogram of Oriented Gradients) and LUV color

channels. These channels are generated from the input im-

age and summed up in a 5× 4 pixel grid. Next, a bootstrap-

ping iteration is performed to construct a cascade of clas-

sifiers. We have used a cascade of 4 stages that combines

32, 128, 512 and 2048 classifiers at each stage.

3.2. CNN Architecture

Figure 2 depicts a sample CNN architecture. The input

images are fed to alternating convolutional and pooling lay-

ers as in a standard CNN. The outputs of the final pooling

layers are fed into local layers. Local layers are similar to

the convolutional layers except that there is no weight shar-

ing at local layers. The activation function used at convolu-

tional and local layers is ReLu (i.e. Rectified Linear Units).

The CNN takes a 64× 64 color image (3 channels) as input

and produces two output values, these two values are the

probabilities of the input image belonging to the pedestrian

or non-pedestrian class. Mini-batch gradient descent was

used to train the CNNs using the cuda-convnet library[18]

on an NVIDIA Quadra 4000 GPU processor. Table 1 lists

the parameters of the CNN architectures used as inputs for

the MoE model.

The gating function in the MoE was trained via a sin-

gle hidden layer with sigmoidal activation function, which

was fed into a softmax layer to generate a probability dis-

tribution over the different classifiers. The MoE network
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Figure 2. Illustration of CNN Architecture used: The windows with intermediate ACF scores (between the upper and lower bounds) are

passed to multiple CNNs (having different architectures) for classification. The different CNNs yield different output probabilities for the

candidate pedestrian windows. These output probabilities are merged through a gating function Mixture of Experts (MoE) to get the final

output.

Figure 3. ACF confidence score histogram: Aggregated Channel Features (ACF) are extracted from the input images. The output of ACF

are the candidate windows and their respective confidence values. The ACF score is used to decide on probability of candidate windows

being pedestrian. The windows with confidence score below the lower threshold (37) are non-pedestrian windows and the windows with

confidence score above upper threshold (68) are pedestrian windows. The windows in the band between upper and lower bounds are

probabilistic and they need to be passed to the CNN network. Grid search to decide the best lower and upper ACF score cutoff. This

greatly reduces the additional overhead on the CNN. The upper and lower thresholds are determined by varying thresholds from minimum

to maximum value and determining when a best missed rate at 0.1 FPPI is acheived.

was trained over the same training and validation sets used

to train the CNNs. The weights for the gating function of

the MoE are adaptive to the input data i.e. the weights dy-

namically change depending on the input image, thereby

allowing the MoE to adapt to changes in data distributions.

3.3. Combining ACF and MoE

The windows with intermediate ACF scores (between ut

and lt ) are passed to the MoE for classification. The dif-

ferent CNNs yield different output probabilities for the can-

didate pedestrian windows. These output probabilities are

merged through a Mixture of Experts (MoE) to get the final

166



Table 1. Architectures for 5 layer CNN’s

CNN # Conv. layers # Pooling layers # Feature maps Filter size (Conv.)

1 1 1 [64] [ 3× 3]

2 1 1 [16] [ 11× 11]

3 1 1 [16] [ 15× 15]

4 2 2 [16 16] [ 5× 5 5× 5 ]

5 2 2 [32 32] [ 3× 3 3× 3 ]

Table 2. Parameters for Mixture of Experts (MoE) training

Sl. No. Parameter Numeric Value

1 No. of CNN’s used 5
2 No. of hidden units 51
3 Momentum 0.02
4 Weight Decay 0.01
5 Learning rate 0.02
6 Learning decay 1.0

score. Table 2 provides the paremeters of the MoE architec-

ture that could be used to reproduce the pedestrian detection

results on INRIA dataset.

4. Dataset

We utilize the INRIA pedestrian dataset in our experi-

ments. The dataset is very popular in the pedestrian detec-

tion community, both for training detectors and reporting

results. It offers high quality annotations of pedestrians in

diverse settings and poses. The details of the INRIA train-

ing, test images and annotations are provided in Table 3

Table 3. INRIA dataset

Training Test

Positive

images 614 288

Annotated

windows 1237 589

Negative

images 1218 453

The INRIA pedestrian dataset has only train and test sets.

To optimally train our detector and to prevent overfitting, a

validation set was constructed by randomly selecting 25%
of the training set data. The remaining 75% of the training

data is used for training the ACF detector and the CNN’s.

The train set is prepared to train the ACF detector and

CNN. To train ACF detector, the annotated pedestrian win-

dows (provided with the INRIA train set) were extracted

from the positive images of train set. These images were

used as positive samples and the ACF windows generated

from the negative images were used as negative samples.

To train the CNNs, the same data used for training the

ACF detector is used. Additionally, we have augmented the

negative set with images which were obtained as a result of

running the trained ACF detector on the negative images.

The negative set is further augmented with false positive

windows extracted after running ACF on the positive im-

ages of INRIA train set. Finally we have also augmented the

train set with the horizontal flipped images of both positive

and negative samples. Flipping and augmentation makes

the training more robust and less sensitive to noise. Finally,

the prepared training set contains 1750 positives and 4902
negatives. The test set remains unchanged from the original

INRIA test dataset, i.e., it comprised of 288 positive images

and 453 negative images.

5. Experiments

The ACF detector generates many overlapping candidate

pedestrian windows. Non maximal supression in the con-

text of object detection is used to transform a smooth re-

sponse map that triggers many imprecise window hypothe-

ses into a single candidate window. The necessity stems

from the inability of detection algorithms to localize the

concept of interest resulting in groups of multiple detections

near the real location.

5.1. Non­Maximum Suppression (NMS)

The ACF detector generates many overlapping candidate

pedestrian windows. Non-Maximal supression is used to fil-

ter out these overlapping bounding boxes. The object detec-

tion community typically uses the PASCAL overlap criteria

to determine overlap between two bounding boxes as per

equation 1.

OverlapArea =
(IntersectionArea)

(UnionArea)
(1)
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Figure 4. Comparison of miss rate of various detectors with our method (Thresholded ACF-CNN-MoE). We obtain the state of the art miss

rate of 10.35% at 0.1 FPPI.

If two bounding boxes overlap by more than 60% then

the bounding box with highest ACF score is selected.

We have used the PASCAL overlap criteria to determine

overlap between two bounding boxes. To suppress the re-

sulting false positives that arise due to partially occluded

pedestrians, we have augmented our training set for the

CNNs with these type of false positives (discussed in Sec-

tion 4), so that our CNN is better trained to filter them out.

5.2. Determining ACF threshold via Cross Valida­
tion

After applying ACF detection with NMS on validation

images we obtained candidate pedestrian windows. The

overlap of these candidate windows with ground truth win-

dows are used to validate the performance of the ACF de-

tector. Again the PASCAL overlap criteria is used to de-

termine overlap. The ground truth window is declared to be

detected if the overlap area of the candidate window and the

ground truth window exceeds 50%. In our case the ACF af-

ter thresholding is able to detect 92.8% ground truth pedes-

trian windows, in addition to false positives. We pass the

candidate windows to the trained MoE to obtain probabili-

ties that these candidate windows belong to the pedestrian

class.

At this stage, we have the ACF scores and CNN clas-

sification probabilities of all candidate windows generated

by the ACF detector on the validation set. We utilize grid

search to obtain the optimal thresholds on the ACF score

which minimize miss rate on the valdation set at 0.1 FPPI.

The candidate windows having ACF scores greater or equal

than the upper threshold are classified as pedestrian and the

candidate windows having ACF score lesser or equal than

the lower threshold are classified as non-pedestrian. For the

windows having ACF scores between the optimal thresh-

olds, the MoE output probabilities are used to compute the

miss rate at 0.1 FPPI.

5.3. Final Testing

The purpose of dividing the original given train set into –

train and validation sets was to determine the optimal ACF

score thresholds. Now for final testing we use the complete

INRIA train set for training the ACF detector and the MoE.

We train a 4 stage ACF detector on the complete INRIA

train set. We also train the CNNs and the MoE with same

original INRIA train set images augmented as described in

Section 4.

After training the ACF detector and CNN, we give the

entire test set to the ACF detector which extracts candidate

pedestrian windows. To filter out the duplicate overlapping

candidate windows we have applied NMS by utilizing the
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PASCAL overlap criteria to determine overlap between two

bounding boxes as discussed above for validation set eval-

uation. After applying ACF with NMS on the test set im-

ages we obtained the candidate pedestrian windows. The

overlap with ground truth windows are used to check the

performance of ACF. Again the PASCAL overlap criteria is

used to find overlap area. In our case ACF is able to provide

a cover rate of 93.21% on the test set. Now we apply the

lower and upper ACF score cutoffs lt and ut as described

in Section 5.2. Figure 3 shows the application of lt and ut

ACF score cutoff thresholds on the test set. The windows

with intermediate scores were assigned probability scores

by the MoE.

The experiments were run on Intel Xeon CPU ES-2650

running at 2GHz, 40 GB RAM, and GPU card NVIDIA

GF100GL Quadro 4000 on an Ubuntu 14.04 64 bit system.

For implementation of the ACF detector we used Piotr Dol-

lar’s Toolbox1. For implementation of the MoE we used the

cuda-convnet library [18]. The average time for processing

an image was found to be 0.6 secs. which is comparable to

state of the art. The current code is in MATLAB and is yet

to be optimised to work on a real-time hardware.

6. Results

Table 4. Miss rate for various detectors on INRIA dataset

Sl. No. Technique used Missed Rate

1. Voila -Jones [23] 71.56%

2. HOG [5] 44.42%

3. Fisher Boost [22] 20.37%

4. LatSVM-v2[14] 19.63%

5. ConvNet [18] 18.92%

6. Cross Talk[7] 18.60%

7. ACF [6] 16.34%

8. Very Fast [8] 15.77%

9. Roerei [2] 12.84%

10. ACF-DCNN-SVM [4] 19.79%

11. Thresholded ACF-CNN-MoE (Ours) 10.35%

The plot in Figure 4 compares our method, named

Thresholded-ACF-CNN-MoE, against the other leading

methods in pedestrian detection on the INRIA dataset. Ta-

ble 4 denotes the performance of various detectors on the

INRIA dataset at 0.1 FPPI. After applying lower and upper

ACF score thresholds on the candidate windows, and fur-

ther classification by the MoE, we obtained the state of the

art miss rate of 10.35% at 0.1 FPPI. Figure 5 shows exam-

ples of both the pedestrian and non-pedestrian detections

1https://github.com/pdollar/toolbox

with the addition of MoE CNN architecture with thresh-

olded ACF detector. These cases would fail when ACF de-

tector was used stand-alone.

7. Conclusion and Future Work

We conclude by summarising our key contributions:

1. We present a technique involving the combination of

an aggregated channel feature based detector and a

mixture of CNN experts for pedestrian detection and

demonstrate its efficacy on the INRIA dataset. The

proposed detector acheives state of the art performance

in terms of miss rate.

2. We simplify the architecture proposed by Chen et al

[4] by using only two stages comprising of an ACF

detector and a CNN Mixture of expert (MoE) module

which itself is used as a classifier thereby obviating

the need for a separate SVM classifier module listed in

their work.

3. We present the novel use of ACF confidence scores for

identifying the difficult samples which are then used

for training the MoE CNNs. The threshold scores are

determined by using grid search on the bimodal ACF

score histogram.

The research directions are in the broad areas of chang-

ing MoE CNN architecture for transfer learning, exploring

combinations of feature detectors that yeild better cover rate

and miss-rate. In the future, we intend to follow the research

directions listed below.

1. The MoE is robust to changes in data distributions and

thus may be extremely useful when transferring classi-

fiers from one dataset to the another. We would like to

test the proposed method across all pedestrian bench-

mark datasets such as ETH, CALTECH, and KITTI

etc.

2. We plan to fuse the detectors that could potentially pro-

vide complementary descriptions and better detection

rates in combination with the ACF detector. We also

intend to explore feature detectors and object proposal

techniques such as the Edgebox [11] could yield better

true positive rates.

3. It may be possible to feed the ACF as a competing

classifier in MoE instead of using it only to generate

windows. We will experiment with such architectures.
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(a)

(b)

Figure 5. Example of correctly classified pedestrians and non-pedestrian windows are shown in subfigures (a) and (b) respectively. These

windows would otherwise be incorrectly classified by ACF detector alone without MoE CNN architecture.

References

[1] G. A. Bekey. On autonomous robots. The Knowledge

Engineering Review, 13(02):143–146, 1998. 1

[2] R. Benenson, M. Mathias, T. Tuytelaars, and

L. Van Gool. Seeking the strongest rigid detector.

In Computer Vision and Pattern Recognition (CVPR),

2013 IEEE Conference on, pages 3666–3673. IEEE,

2013. 7

[3] Z. Cai, M. Saberian, and N. Vasconcelos. Learning

complexity-aware cascades for deep pedestrian detec-

tion. arXiv preprint arXiv:1507.05348, 2015. 1, 2

[4] X. Chen, P. Wei, W. Ke, Q. Ye, and J. Jiao. Pedestrian

detection with deep convolutional neural network. In

Computer Vision-ACCV 2014 Workshops, pages 354–

365. Springer, 2014. 1, 2, 7

[5] N. Dalal and B. Triggs. Histograms of oriented gra-

dients for human detection. In Computer Vision and

Pattern Recognition, 2005. CVPR 2005. IEEE Com-

puter Society Conference on, volume 1, pages 886–

893. IEEE, 2005. 1, 2, 7

[6] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast

feature pyramids for object detection. Pattern Analy-

sis and Machine Intelligence, IEEE Transactions on,

36(8):1532–1545, 2014. 1, 2, 7

[7] P. Dollár, R. Appel, and W. Kienzle. Crosstalk cas-

cades for frame-rate pedestrian detection. In Com-

puter Vision–ECCV 2012, pages 645–659. Springer,

2012. 7

[8] P. Dollár, S. Belongie, and P. Perona. The fastest

pedestrian detector in the west. In BMVC, volume 2,

page 7. Citeseer, 2010. 7

[9] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral

channel features. In BMVC, volume 2, page 5, 2009.

2

[10] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedes-

trian detection: An evaluation of the state of the

art. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 34(4):743–761, 2012. 1, 2

[11] P. Dollár and C. L. Zitnick. Structured forests for

fast edge detection. In Computer Vision (ICCV), 2013

IEEE International Conference on, pages 1841–1848.

IEEE, 2013. 7

170



[12] M. Enzweiler and D. M. Gavrila. Monocular pedes-

trian detection: Survey and experiments. Pattern

Analysis and Machine Intelligence, IEEE Transac-

tions on, 31(12):2179–2195, 2009. 1, 2

[13] M. Enzweiler and D. M. Gavrila. A multilevel

mixture-of-experts framework for pedestrian classi-

fication. Image Processing, IEEE Transactions on,

20(10):2967–2979, 2011. 2

[14] P. Felzenszwalb, D. McAllester, and D. Ramanan. A

discriminatively trained, multiscale, deformable part

model. In Computer Vision and Pattern Recognition,

2008. CVPR 2008. IEEE Conference on, pages 1–8.

IEEE, 2008. 7

[15] P. F. Felzenszwalb, R. B. Girshick, D. McAllester,

and D. Ramanan. Object detection with discrimi-

natively trained part-based models. Pattern Analy-

sis and Machine Intelligence, IEEE Transactions on,

32(9):1627–1645, 2010. 1, 2

[16] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf.

Survey of pedestrian detection for advanced driver as-

sistance systems. Pattern Analysis and Machine In-

telligence, IEEE Transactions on, 32(7):1239–1258,

2010. 1, 2

[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and

semantic segmentation. In Computer Vision and Pat-

tern Recognition (CVPR), 2014 IEEE Conference on,

pages 580–587. IEEE, 2014. 1

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-

agenet classification with deep convolutional neural

networks. In F. Pereira, C. Burges, L. Bottou, and

K. Weinberger, editors, Advances in Neural Informa-

tion Processing Systems 25, pages 1097–1105. Curran

Associates, Inc., 2012. 1, 2, 3, 7

[19] S. J. Nowlan and G. E. Hinton. Evaluation of adaptive

mixtures of competing experts. In NIPS, volume 3,

pages 774–780, 1990. 2

[20] W. Ouyang and X. Wang. Joint deep learning for

pedestrian detection. In Computer Vision (ICCV),

2013 IEEE International Conference on, pages 2056–

2063. IEEE, 2013. 1, 2

[21] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. Le-

Cun. Pedestrian detection with unsupervised multi-

stage feature learning. In Computer Vision and Pat-

tern Recognition (CVPR), 2013 IEEE Conference on,

pages 3626–3633. IEEE, 2013. 1, 2

[22] C. Shen, P. Wang, S. Paisitkriangkrai, and A. van den

Hengel. Training effective node classifiers for cascade

classification. International journal of computer vi-

sion, 103(3):326–347, 2013. 7

[23] P. Viola and M. Jones. Rapid object detection using a

boosted cascade of simple features. In Computer Vi-

sion and Pattern Recognition, 2001. CVPR 2001. Pro-

ceedings of the 2001 IEEE Computer Society Confer-

ence on, volume 1, pages I–511. IEEE, 2001. 1, 2,

7

[24] P. Viola, M. J. Jones, and D. Snow. Detecting pedes-

trians using patterns of motion and appearance. Inter-

national Journal of Computer Vision, 63(2):153–161,

2005. 2

[25] K. Wada, T. Shibata, T. Saito, and K. Tanie. Effects

of robot-assisted activity for elderly people and nurses

at a day service center. Proceedings of the IEEE,

92(11):1780–1788, 2004. 1

[26] X. Wang, T. X. Han, and S. Yan. An hog-lbp human

detector with partial occlusion handling. In Computer

Vision, 2009 IEEE 12th International Conference on,

pages 32–39. IEEE, 2009. 2

[27] S. E. Yuksel, J. N. Wilson, and P. D. Gader.

Twenty years of mixture of experts. Neural Net-

works and Learning Systems, IEEE Transactions on,

23(8):1177–1193, 2012. 2

[28] X. Zeng, W. Ouyang, M. Wang, and X. Wang. Deep

learning of scene-specific classifier for pedestrian de-

tection. In Computer Vision–ECCV 2014, pages 472–

487. Springer, 2014. 1, 2

171


