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Abstract

In this paper, we propose a two stage pedestrian detec-
tor. The first stage involves a cascade of Aggregated Chan-
nel Features (ACF) to extract potential pedestrian windows
from an image. We further introduce a thresholding tech-
nique on the ACF confidence scores that seggregates can-
didate windows lying at the extremes of the ACF score dis-
tribution. The windows with ACF scores in between the up-
per and lower bounds are passed on to a Mixture of Expert
(MoE) CNNs for more refined classification in the second
stage. Results show that the designed detector yields better
than state-of-the-art performance on the INRIA benchmark
dataset[5] and yields a miss rate of 10.35% at FPPI=10"".

1. Introduction

Pedestrian detection is an important problem in com-
puter vision which finds application in several areas such
as monitoring, surveillance, smart vehicles, healthcare and
assistive robotics. The problem becomes challenging owing
to several factors such as variation in appearance, pose and
size of pedestrians, illumination, backgound and degree of
occlusion. Autonomous vehicles are crucial for improving
the quality of life for disabled. These require reliable pedes-
trian detection to ensure safety during autonomous navi-
gation.Autonomous medical robots are currently providing
healthcare assistance and require pedestrian detection for
effective navigation in hospitals [1, 25].

Recent years have seen significant progress in this field
with the appearance of several state-of-the-art pedestrian
detectors [12] [16] [10]. Most of these methods use some
hand-crafted features such as Haar [23], HOG [5] along
with a cascade of (boosted) classifiers to detect pedestri-
ans. The detection rate was further enhanced by using de-
formation part based model (DPM) [15] where a human is
represented as a collection of parts in a deformable config-
uration.

Recently, deep learning techniques has been shown to

provide remarkable results in large scale object recognition
tasks [18] [17]. This has encouraged researchers to apply
deep learning techniques to the pedestrian detection prob-
lem as well. For instance, Sermanet et al. [21] proposed a
two layer convolutional model where the layers were pre-
trained by convolutional sparse coding. Chen et al. [4]
used a pre-trained Deep Convolutional Neural Networks
(DCNN) to learn features from windows obtained from an
ACF detector [6]. These features are then applied to a SVM
classifier to detect pedestrians. Zeng et al. [28] propose a
deep model to automatically learn scene-specific features so
that a generic detector can work satisfactorily over different
datasets. Similarly, Ouyang et al. [20] propose a deep learn-
ing technique that jointly learns the four key components in
pedestrian detection simultaneously: feature extraction, de-
formation handling, occlusion handling and classifiers. Re-
cently, Cai et al. [3] have proposed a cascade design proce-
dure where an optimization algorithm is used to select com-
plex features which are progressively pushed to later stage
of cascades. This allows a single detector to work with a
wide variety of features having different complexities.

Our work is primarily motivated by Chen’s approach [4]
where a DCNN is used to extract features from the pro-
posal candidate windows obtained from an ACF detector.
These features are then fed to a SVM classifier to confirm
the presence of pedestrians in these windows. Essentially, it
uses three stages for pedestrian detection, namely, an ACF
detector, a CNN feature extractor and a SVM classifier.
We propose to simplify this architecture by using only two
stages comprising of an ACF detector and a CNN Mixture
of expert (MoE) module which itself is used as a classifier
thereby obviating the need for a separate classifier module.
This Mixture of Experts trained on ACF detected windows
is used for classifying the difficult candidates accurately for
which the ACF confidence scores lie within a statistically
identified band. This band represents those cases where
the correct decisions could not be made by merely using
thresholds on the ACF confidence scores. We use a feed-
forward neural network to provide the adaptive combination
of experts for classification similar to conventional adaptive
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boosting frameworks. The difference lies in the fact that the
input itself decides the weightage for a given CNN expert
in the ensemble. The resulting detector is shown to pro-
vide lowest miss-rate at FPPI=10~"! on the INRIA dataset
as compared to the existing methods.

The main contributions made in this paper are as follows.
(1) A mixture of experts (MoE) is used as an adaptive com-
bination of CNN classifiers for improving the performance
of standard ACF detectors. Here, CNN is used as classi-
fier unlike [4] where it is used as feature extractor. Use of
MOoE in the context of CNN-based pedestrian detectors is
novel. (2) We present novel use of ACF confidence scores
for identifying the difficult samples which are then used for
training the MoE CNNs. The upper and lower bounds on
the confidence scores computed for these difficult cases are
shown to augment the performance of ACF detectors.

The remainder of the paper is organized as follows. An
overview of related work is provided in Section 2. The de-
tails of the proposed method is provided in Section 3. This
is followed by Section 5 which provides details of various
experiments conducted. Section 6 outlines the results. Fi-
nally, the conclusion and discussion on future work is pro-
vided in Section 7.

2. Related Work

Pedestrian detection is a well defined problem with es-
tablished benchmarks and evaluation metrics. It has at-
tracted a considerable amount of attention in the recent
years which has resulted in development some of the best
detectors in literature. Viola and Jones [23] were the first
to demonstrate that a cascade of weak classifiers could be
used for complex object detection tasks. They used Ad-
aBoost algorithm to select critical features from a larger set
to build efficient classifiers. On the other hand Dalal and
Triggs [5] used complex features such as HoG with a sim-
ple classifier such as SVM to achieve detection. Either of
these two frameworks were extensively used along with a
number of features to detect pedestrians - Haar [24], LBP
[26], ICF [9] and recently, Aggregated Channel Features
(ACF) [0]. Felzenszwalb et al. proposed the deformable
part model (DPM) [15] which is a considered to be a break-
through in pedestrian detection. Readers are referred to sur-
vey papers [12] [16] [10] to get an overview on the current
state-of-the-art in pedestrian detection.

The success of deep learning techniques in object de-
tection [18] has prompted researchers to apply it to other
problems including pedestrian detection [20] [28] [4] [3].
Among these models, Convolutional Neural Networks
(CNN) have been found to provide state-of-the-art perfor-
mance in pedestrian detections. Convolutional Neural Nets
combine features at each layer using a non-linear transfor-
mation and generate hierarchies of features. Sermanet et
al [21] obtained state of the art results using a convolution

network whose filters were pre-trained using convolutional
sparse coding, with feedforward connections across mul-
tiple layers. Chen et al. [4] used an Aggregated Channel
Feature (ACF) Detector [6] whose candidate windows are
fed into rich and deep Convolutional neural network pre-
trained on the ImageNet dataset. The resulting features
were then classified using an SVM. Zeng et al [28] pro-
pose a deep joint network for learning scene specific fea-
tures using a novel objective function which allows them
to learn both unsupervised and discriminative feature rep-
resentations. They address the problem of transferring de-
tector performance from one dataset to another. In order
to improve the detection performance further, Ouyang and
Wang [20] propose a unified deep model for jointly learning
feature extraction, a part deformation model, an occlusion
model and classification. Recently, Cai et al. [3] proposed
a cascade design procedure where an optimization module
is used to select features based on complexity which are
pushed to later stages of the cascade. Their focus was to
develop an optimal cascade learning for deep networks.

Mixture of experts (MoE) [19] is an ensemble of classi-
fiers which can be utilized for improving the performance
of pedestrian detection [13]. Readers can refer to [27] for
a survey in this area. In this paper, we use a MoE CNNs
to augment the detection capabilities of a standard ACF de-
tector unlike the above approaches where CNNs have been
primarily used as feature extractors and classifiers. The pro-
posed method is explained next in this paper.

3. Pedestrian Detection Framework

Our pedestrian detection utilises a combination of an
ACF detector and a Mixture of Expert (MoE) CNNs. Fig
1 depicts our MoE combining five CNNs with varying ar-
chitectures. The CNNs are trained using the augmented
train set as explained in the Section 4. The trained network
hyperparameters are determined via error minimization on
a validation set. Subsequently, a four stage ACF detector
is trained on our train set. The lower (I;) and upper (u)
ACF score cut-off thresholds are determined via five fold
cross validation. At each fold of the cross validation, can-
didate windows are extracted via ACF, and different thresh-
olds are imposed on the ACF scores for the candidate win-
dows. Windows with ACF scores higher than the current
upper threshold are classified as pedestrian and windows
with ACF scores lower than the current lower threshold are
classified as non-pedestrian. The windows with intermedi-
ate ACF score are classified based on the MoE train as de-
scribed above. The thresholds that yield the best miss rate
at 0.1 FPPI are selected for that fold. The mean thresholds
over all the folds are selected as the final threshold values I;
and u; to be applied for testing.
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Figure 1. The proposed approach consists of a combination of ACF and Mixture of Expert(MoE) CNNs. The output of ACF are the
candidate windows and their respective confidence scores. The ACF scores are used to segment candidate windows into pedestrian, non-
pedestrian and uncertain cases. The windows with confidence scores below the lower threshold are treated as non-pedestrians and the
windows with confidence scores above upper threshold are classified as pedestrians. The ACF candidate windows that are within the
threshold limits are passed onto the MoE for fine classification. The MoE learns to weigh the different CNNs dynamically based on the

candidate windows.

3.1. Detector

We have trained the ACF detector with our train set im-
ages for localizing candidate windows. The three chan-
nel features considered are normalized gradient magnitude,
HOG (Histogram of Oriented Gradients) and LUV color
channels. These channels are generated from the input im-
age and summed up in a 5 x 4 pixel grid. Next, a bootstrap-
ping iteration is performed to construct a cascade of clas-
sifiers. We have used a cascade of 4 stages that combines
32,128,512 and 2048 classifiers at each stage.

3.2. CNN Architecture

Figure 2 depicts a sample CNN architecture. The input
images are fed to alternating convolutional and pooling lay-
ers as in a standard CNN. The outputs of the final pooling

layers are fed into local layers. Local layers are similar to
the convolutional layers except that there is no weight shar-
ing at local layers. The activation function used at convolu-
tional and local layers is ReLu (i.e. Rectified Linear Units).
The CNN takes a 64 x 64 color image (3 channels) as input
and produces two output values, these two values are the
probabilities of the input image belonging to the pedestrian
or non-pedestrian class. Mini-batch gradient descent was
used to train the CNNs using the cuda-convnet library[
on an NVIDIA Quadra 4000 GPU processor. Table 1 lists
the parameters of the CNN architectures used as inputs for

the MoE model.
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The gating function in the MoE was trained via a sin-
gle hidden layer with sigmoidal activation function, which
was fed into a softmax layer to generate a probability dis-
tribution over the different classifiers.
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Figure 2. Illustration of CNN Architecture used: The windows with intermediate ACF scores (between the upper and lower bounds) are
passed to multiple CNNs (having different architectures) for classification. The different CNNs yield different output probabilities for the
candidate pedestrian windows. These output probabilities are merged through a gating function Mixture of Experts (MoE) to get the final
output.
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Figure 3. ACF confidence score histogram: Aggregated Channel Features (ACF) are extracted from the input images. The output of ACF
are the candidate windows and their respective confidence values. The ACF score is used to decide on probability of candidate windows
being pedestrian. The windows with confidence score below the lower threshold (37) are non-pedestrian windows and the windows with
confidence score above upper threshold (68) are pedestrian windows. The windows in the band between upper and lower bounds are
probabilistic and they need to be passed to the CNN network. Grid search to decide the best lower and upper ACF score cutoff. This
greatly reduces the additional overhead on the CNN. The upper and lower thresholds are determined by varying thresholds from minimum
to maximum value and determining when a best missed rate at 0.1 FPPI is acheived.

was trained over the same training and validation sets used 3.3. Combining ACF and MoE

to train the CNNs. The weights for the gating function of

the MoE are adaptive to the input data i.e. the weights dy- The windows with intermediate ACF scores (between u
namically change depending on the input image, thereby and [; ) are passed to the MoE for classification. The dif-
allowing the MoE to adapt to changes in data distributions. ferent CNNs yield different output probabilities for the can-

didate pedestrian windows. These output probabilities are
merged through a Mixture of Experts (MoE) to get the final
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Table 1. Architectures for 5 layer CNN’s

CNN #Conv. layers # Pooling layers # Feature maps Filter size (Conv.)
1 1 1 [64] [3x3]

2 1 1 [16] [11 x 11]

3 1 1 [16] [ 15 x 15]

4 2 2 [16 16] [5x5 5x5]
5 2 2 [3232] [3x3 3x3]

Table 2. Parameters for Mixture of Experts (MoE) training

SI. No. Parameter Numeric Value
1 No. of CNN’sused 5

2 No. of hidden units 51

3 Momentum 0.02

4 Weight Decay 0.01

5 Learning rate 0.02

6 Learning decay 1.0

score. Table 2 provides the paremeters of the MoE architec-
ture that could be used to reproduce the pedestrian detection
results on INRIA dataset.

4. Dataset

We utilize the INRIA pedestrian dataset in our experi-
ments. The dataset is very popular in the pedestrian detec-
tion community, both for training detectors and reporting
results. It offers high quality annotations of pedestrians in
diverse settings and poses. The details of the INRIA train-
ing, test images and annotations are provided in Table 3

Table 3. INRIA dataset
Training Test

Positive

images 614 288
Annotated

windows 1237 589
Negative

images 1218 453

The INRIA pedestrian dataset has only train and test sets.
To optimally train our detector and to prevent overfitting, a
validation set was constructed by randomly selecting 25%
of the training set data. The remaining 75% of the training
data is used for training the ACF detector and the CNN’s.

The train set is prepared to train the ACF detector and
CNN. To train ACF detector, the annotated pedestrian win-
dows (provided with the INRIA train set) were extracted
from the positive images of train set. These images were
used as positive samples and the ACF windows generated
from the negative images were used as negative samples.

To train the CNNs, the same data used for training the
ACF detector is used. Additionally, we have augmented the
negative set with images which were obtained as a result of
running the trained ACF detector on the negative images.
The negative set is further augmented with false positive
windows extracted after running ACF on the positive im-
ages of INRIA train set. Finally we have also augmented the
train set with the horizontal flipped images of both positive
and negative samples. Flipping and augmentation makes
the training more robust and less sensitive to noise. Finally,
the prepared training set contains 1750 positives and 4902
negatives. The test set remains unchanged from the original
INRIA test dataset, i.e., it comprised of 288 positive images
and 453 negative images.

5. Experiments

The ACF detector generates many overlapping candidate
pedestrian windows. Non maximal supression in the con-
text of object detection is used to transform a smooth re-
sponse map that triggers many imprecise window hypothe-
ses into a single candidate window. The necessity stems
from the inability of detection algorithms to localize the
concept of interest resulting in groups of multiple detections
near the real location.

5.1. Non-Maximum Suppression (NMS)

The ACF detector generates many overlapping candidate
pedestrian windows. Non-Maximal supression is used to fil-
ter out these overlapping bounding boxes. The object detec-
tion community typically uses the PASCAL overlap criteria
to determine overlap between two bounding boxes as per
equation 1.

(IntersectionArea)
(UnionArea)

OverlapArea = (D)
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Figure 4. Comparison of miss rate of various detectors with our method (Thresholded ACF-CNN-MoE). We obtain the state of the art miss

rate of 10.35% at 0.1 FPPI.

If two bounding boxes overlap by more than 60% then
the bounding box with highest ACF score is selected.

We have used the PASCAL overlap criteria to determine
overlap between two bounding boxes. To suppress the re-
sulting false positives that arise due to partially occluded
pedestrians, we have augmented our training set for the
CNNs with these type of false positives (discussed in Sec-
tion 4), so that our CNN is better trained to filter them out.

5.2. Determining ACF threshold via Cross Valida-
tion

After applying ACF detection with NMS on validation
images we obtained candidate pedestrian windows. The
overlap of these candidate windows with ground truth win-
dows are used to validate the performance of the ACF de-
tector. Again the PASCAL overlap criteria is used to de-
termine overlap. The ground truth window is declared to be
detected if the overlap area of the candidate window and the
ground truth window exceeds 50%. In our case the ACF af-
ter thresholding is able to detect 92.8% ground truth pedes-
trian windows, in addition to false positives. We pass the
candidate windows to the trained MoE to obtain probabili-
ties that these candidate windows belong to the pedestrian
class.

At this stage, we have the ACF scores and CNN clas-

sification probabilities of all candidate windows generated
by the ACF detector on the validation set. We utilize grid
search to obtain the optimal thresholds on the ACF score
which minimize miss rate on the valdation set at 0.1 FPPIL.
The candidate windows having ACF scores greater or equal
than the upper threshold are classified as pedestrian and the
candidate windows having ACF score lesser or equal than
the lower threshold are classified as non-pedestrian. For the
windows having ACF scores between the optimal thresh-
olds, the MoE output probabilities are used to compute the
miss rate at 0.1 FPPL

5.3. Final Testing

The purpose of dividing the original given train set into —
train and validation sets was to determine the optimal ACF
score thresholds. Now for final testing we use the complete
INRIA train set for training the ACF detector and the MoE.
We train a 4 stage ACF detector on the complete INRIA
train set. We also train the CNNs and the MoE with same
original INRIA train set images augmented as described in
Section 4.

After training the ACF detector and CNN, we give the
entire test set to the ACF detector which extracts candidate
pedestrian windows. To filter out the duplicate overlapping
candidate windows we have applied NMS by utilizing the
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PASCAL overlap criteria to determine overlap between two
bounding boxes as discussed above for validation set eval-
uation. After applying ACF with NMS on the test set im-
ages we obtained the candidate pedestrian windows. The
overlap with ground truth windows are used to check the
performance of ACF. Again the PASCAL overlap criteria is
used to find overlap area. In our case ACF is able to provide
a cover rate of 93.21% on the test set. Now we apply the
lower and upper ACF score cutoffs [, and u; as described
in Section 5.2. Figure 3 shows the application of [; and w
ACF score cutoff thresholds on the test set. The windows
with intermediate scores were assigned probability scores
by the MoE.

The experiments were run on Intel Xeon CPU ES-2650
running at 2GHz, 40 GB RAM, and GPU card NVIDIA
GF100GL Quadro 4000 on an Ubuntu 14.04 64 bit system.
For implementation of the ACF detector we used Piotr Dol-
lar’s Toolbox'. For implementation of the MoE we used the
cuda-convnet library [18]. The average time for processing
an image was found to be 0.6 secs. which is comparable to
state of the art. The current code is in MATLAB and is yet
to be optimised to work on a real-time hardware.

6. Results

Table 4. Miss rate for various detectors on INRIA dataset

with the addition of MoE CNN architecture with thresh-
olded ACF detector. These cases would fail when ACF de-
tector was used stand-alone.

7. Conclusion and Future Work

We conclude by summarising our key contributions:

1. We present a technique involving the combination of
an aggregated channel feature based detector and a
mixture of CNN experts for pedestrian detection and
demonstrate its efficacy on the INRIA dataset. The
proposed detector acheives state of the art performance
in terms of miss rate.

2. We simplify the architecture proposed by Chen et al
[4] by using only two stages comprising of an ACF
detector and a CNN Mixture of expert (MoE) module
which itself is used as a classifier thereby obviating
the need for a separate SVM classifier module listed in
their work.

3. We present the novel use of ACF confidence scores for
identifying the difficult samples which are then used
for training the MoE CNNs. The threshold scores are
determined by using grid search on the bimodal ACF

score histogram.

Sl. No.  Technique used Missed Rate

1. Voila -Jones [23] 71.56% The research directions are in the broad areas of chang-
2. HOG [5] 44.429  ing MoE CNN architecture for transfer learning, exploring
3. Fisher Boost [27] 2037% combinations of feature detectors that yeild better cover rate
4. LatSVM-v2[14] 19.63%  and miss-rate. In the future, we intend to follow the research
5. ConvNet [18] 18.929,  directions listed below.

6. Cross Talk[7] 18.60%

7. ACF [0] 16.34% 1. The MoE is robust to changes in data distributions and
8. Very Fast [8] 15.77% thus may be extremely useful when transferring classi-
9. Roerei [2] 12.84% fiers from one dataset to the another. We would like to
10. ACF-DCNN-SVM [4] 19.79% test the proposed method across all pedestrian bench-
11. Thresholded ACF-CNN-MoE (Ours) 10.35% mark datasets such as ETH, CALTECH, and KITTI

The plot in Figure 4 compares our method, named
Thresholded-ACF-CNN-MoE, against the other leading
methods in pedestrian detection on the INRIA dataset. Ta-
ble 4 denotes the performance of various detectors on the
INRIA dataset at 0.1 FPPIL. After applying lower and upper
ACEF score thresholds on the candidate windows, and fur-
ther classification by the MoE, we obtained the state of the
art miss rate of 10.35% at 0.1 FPPI. Figure 5 shows exam-
ples of both the pedestrian and non-pedestrian detections

Uhttps://github.com/pdollar/toolbox

etc.

2. We plan to fuse the detectors that could potentially pro-
vide complementary descriptions and better detection
rates in combination with the ACF detector. We also
intend to explore feature detectors and object proposal
techniques such as the Edgebox [1 1] could yield better
true positive rates.

3. It may be possible to feed the ACF as a competing
classifier in MoE instead of using it only to generate
windows. We will experiment with such architectures.
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(b)

Figure 5. Example of correctly classified pedestrians and non-pedestrian windows are shown in subfigures (a) and (b) respectively. These
windows would otherwise be incorrectly classified by ACF detector alone without MoE CNN architecture.
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