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Abstract

Visual object tracking is a challenging computer vision

problem with numerous real-world applications. This pa-

per investigates the impact of convolutional features for the

visual tracking problem. We propose to use activations

from the convolutional layer of a CNN in discriminative

correlation filter based tracking frameworks. These acti-

vations have several advantages compared to the standard

deep features (fully connected layers). Firstly, they miti-

gate the need of task specific fine-tuning. Secondly, they

contain structural information crucial for the tracking prob-

lem. Lastly, these activations have low dimensionality. We

perform comprehensive experiments on three benchmark

datasets: OTB, ALOV300++ and the recently introduced

VOT2015. Surprisingly, different to image classification,

our results suggest that activations from the first layer pro-

vide superior tracking performance compared to the deeper

layers. Our results further show that the convolutional fea-

tures provide improved results compared to standard hand-

crafted features. Finally, results comparable to state-of-the-

art trackers are obtained on all three benchmark datasets.

1. Introduction

Visual tracking is the task of estimating the trajectory of

a target object in an image sequence. It has many impor-

tant real-world applications, such as robotics [11] and road

scene understanding [18]. In the generic tracking problem,

the target can be any object, and only its initial location is

known. This problem is challenging due to several factors,

such as appearance changes, scale variations, deformations

and occlusions. Most state-of-the-art approaches tackle the

tracking problem by learning a discriminative appearance

model of the target object. Such approaches [9, 12, 21] rely

on rich feature representations for describing of the target

and background appearance. This paper investigates robust

feature representations for visual tracking.

Among the discriminative tracking methods, correlation

filter based approaches have recently shown excellent per-

formance on benchmark tracking datasets [24, 39]. These

1Both authors contributed equally to this work.
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Figure 1. A comparison of the proposed feature representation

with three commonly employed hand-crafted features, namely im-

age intensity, Color Names (CN) and Histogram of Oriented Gra-

dients (HOG). Tracking results from our DCF tracker on three ex-

ample sequences are shown. The convolutional features used in

our tracker provides a richer description of target apperance, lead-

ing to better performance.

approaches learn a discriminative correlation filter (DCF),

from example patches of the target appearance. Initially, the

DCF framework was restricted to a single feature channel

(e.g. a grayscale image) [4]. Later works have investigated

extending the single-channel DCF to using multi-channel

feature representations for tracking [12]. However, existing

DCF based approaches [12, 21, 4] suffer from the periodic

boundary effects induced by circular correlation. Only re-

cently, Danelljan et al. [10] proposed Spatially Regularized

Discriminative Correlation Filters (SRDCF) to mitigate the

negative effects of the inherent periodic assumption of the

standard DCF. In this work, we investigate convolutional

features within both the standard DCF framework and the

more recent SRDCF framework.

Initially, most tracking approaches relied on using only

image intensity information or simple color transformations

[4, 30, 32] for feature representation. In recent years, hand-

crafted histogram-based descriptors have shown improved

results for visual tracking. Feature representations such as
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HOG [21], Color Names [12] and channel representations

[8] have successfully been employed in DCF based track-

ing frameworks. These descriptors aim at capturing the

shape, color or luminance information of the target appear-

ance. Combining multiple features have also been investi-

gated [28] within a DCF framework.

Recently, Convolutional Neural Networks (CNNs) have

significantly advanced the state-of-the-art in many vision

applications, including object recognition [25, 31] and ob-

ject detection [19]. These networks take a fixed sized RGB

image as input to a sequence of convolution, local normal-

ization and pooling operations (called layers). The final lay-

ers in the network are fully connected (FC), and are typi-

cally used to extract features for classification. CNNs re-

quire a large amount of training data, and are trained on the

large scale ImageNet dataset [13]. It has been shown that

the deep features extracted from the network (the FC layer)

are generic and can be used for a variety of vision applica-

tions [2].

As discussed above, the common strategy is to extract

deep features from the activations of the FC layer of the

pre-trained network. Other than the FC layer, activations

from convolutional layers of the network have recently been

shown to achieve superior results for image classification

[6]. These convolutional layers are discriminative, seman-

tically meaningful and contain structural information cru-

cial for the localization task. Additionally, the use of con-

volutional features mitigates the need of task-specific fine-

tuning employed with standard deep features. In such ap-

proaches, it has been shown that activations from the last

convolutional layer provides improved results compared to

other layers of the same network [6].

In this work, we investigate the impact of convolutional

features in two DCF based tracking frameworks: a standard

DCF framework and the SRDCF framework [10]. Contrary

to in image classification, we show that activations from

the first layer provides superior tracking performance com-

pared to the deeper layers of the network. Finally, we pro-

vide both qualitative and quantitative comparison of convo-

lutional features with standard hand-crafted histogram de-

scriptors, commonly used within the DCF based trackers.

Comprehensive experiments are performed on three

benchmark datasets: the Online Tracking Benchmark

(OTB) [39], the Amsterdam Library of Ordinary Videos for

tracking (ALOV300++) [35] and the Visual Object Track-

ing (VOT) challenge 2015 [1]. Our results demonstrate

that superior performance is obtained by using convolu-

tional features compared to standard hand-crafted feature

representations. Finally, we show that our proposed tracker

achieves state-of-the-art tracking performance on all three

benchmark datasets. Figure 1 provides a comparison of our

tracker employing convolutional features with commonly

used feature representations within the same DCF based

tracking framework.

The paper is organized as follows. Section 2 discusses

related work in tracking and convolutional neural networks.

Our tracking framework is described in section 3. The em-

ployed DCF and SRDCF frameworks are briefly presented

in section 3.1 and section 3.2 respectively, while the used

convolutional features are discussed in section 3.3. Sec-

tion 4 contains the experimental evaluations and results. Fi-

nally, conclusions are provided in section 5.

2. Related Work

The visual tracking problem can be approached using

generative [34, 22] or discriminative [20, 3, 40] appear-

ance models. The latter methods apply machine learning

techniques to discriminate the target appearance from the

background. Recently, the Discriminant Correlation Filter

(DCF) [4] based approaches have achieved state-of-the-art

results on benchmark tracking datasets [24, 39]. The suc-

cess of DCF based methods is evident from the outcome

of the Visual Object Tracking (VOT) 2014 challenge [24],

where the top three entries employ variants of the DCF

framework. Related methods [12, 21] have also shown ex-

cellent results on the Object Tracking Benchmark (OTB)

[39]. In this work, we employ the DCF framework to inves-

tigate the impact of convolutional features for tracking.

The DCF based tracking approaches learn a correla-

tion filter to discriminate between the target and back-

ground appearance. The training data is composed of ob-

served samples of the target appearance and the surround-

ing background. Bolme et al. [4] initially proposed the

MOSSE tracker, which is restricted to using a single fea-

ture channel, typically a grayscale image. Henriques et al.

[21] introduced a kernelized version of the tracker, to al-

low non-linear classification boundaries. More recent work

[12, 9, 21] have achieved significant increase in tracking

performance by investigating the use of multi-dimensional

features in the DCF tracking framework.

Despite their success, it is known that standard DCF

based trackers greatly suffers from the periodic assumption

induced by circular correlation. This leads to inaccurate and

insufficient training samples as well as a restricted search

area. Galoogahi et al. [16] propose to solve a constraint

problem using the Alternating Direction Method of Mul-

tipliers (ADMM) to preserve the correct filter size. This

method is however restricted to using a single feature chan-

nel and hence not applicable for our purpose. Recently,

Danelljan et al. [10] tackles these issues by introducing the

Spatially Regularized DCF (SRDCF). Their approach al-

lows the expansion of the training and search regions with-

out increasing the effective filter size. This increases the

discriminative power and robustness of the tracker, leading

to a significant performance gain. Moreover, the filter is op-

timized directly in the Fourier domain using Gauss-Seidel,

59



while every ADMM iteration in [16] requires a transition

between the spatial and Fourier domain.

In the last few years, convolutional neural networks

(CNN) have significantly advanced the state-of-the art in

object recognition and detection benchmarks [33]. The

CNNs learn invariant features by a series of convolution and

pooling operations. These layers of convolution and pool-

ing operations are followed by one or more fully connected

(FC) layers. The entire CNNs are trained using raw pixels

with a fixed input size. In order to train these networks, a

large amount of labeled training data [26] is required. The

activations of fully connected layers in a trained deep net-

work are known to contain general-purpose features appli-

cable to several visual recognition tasks such as attribute

recognition, action recognition and scene classification [2].

Interestingly, recent results [6, 29] suggest that improved

performance is obtained using convolutional layer activa-

tions instead of those extracted from the fully connected

layers of the same network. The convolutional layers in

deep networks are discriminative, semantically meaningful

and mitigate the need to apply task specific fine-tuning. The

work of [29] proposes a cross-convolutional layer pooling

approach. The method works by employing feature maps

of one convolutional layer as local features. The image rep-

resentation is obtained by pooling the extracted features us-

ing the feature maps of the successive convolutional lay-

ers. A multi-scale convolutional feature based approach is

proposed by [6] for texture classification and object recog-

nition. In their method, activations from the convolutional

layer of the pre-trained network are used as local features.

Further, it was shown that the activations of the last convo-

lutional layer of the network provide superior performance

compared to other layers [6] for visual recognition.

Despite the success of deep features in several computer

vision tasks, less attention has been dedicated to investi-

gate deep features in the context of visual tracking. A hu-

man tracking algorithm is proposed by Fan et al. [14] by

learning convolutional features from offline training data.

The authors of [38] propose a compact deep feature based

tracking framework that learns generic features by employ-

ing a stacked denoising auto-encoder. Zhou et al. [42] in-

vestigate boosting techniques to construct an ensemble of

deep networks for visual tracking. Li et al. [27] propose a

deep tracking framework using a candidate pool of multiple

CNNs. Different from the above mentioned work, we in-

vestigate the impact of deep features for DCF based track-

ing. We exploit the spatial structure of the convolutional

features for learning a DCF (or SRDCF), which acts as a

final classification layer in the network. In this paper, we

also investigate the performance of different convolutional

layers and compare with standard hand-crafted features.

3. Method

Our tracking approach is based on learning a DCF or

a SRDCF from samples of the target appearance. For

image description, we employ convolutional features ex-

tracted from these samples. In each new frame, the learned

DCF is applied on the convolutional features extracted from

the predicted target location. A location estimate is then

achieved by maximizing the detection scores.

3.1. Discriminative Correlation Filters

In this work, we use a standard DCF framework to in-

vestigate the impact of convolutional features for tracking.

The DCF framework utilizes the properties of circular cor-

relation to efficiently train and apply a classifier in a slid-

ing window fashion. The resulting classifier is a correlation

(or convolution) filter which is applied to the input feature

channels. Hence, the correlation operation within the DCF

acts similarly to a convolutional layer in a CNN. The cor-

responding learned filter can be viewed as a final convolu-

tional classification layer in the network. Unlike the costly

methods typically applied for training CNNs, the DCF is

trained efficiently by solving a linear least-squares problem

and exploiting the Fast Fourier Transform (FFT).

The discriminative correlation filer ft is learned from a

set of example patches xk which are sampled at each frame

k = 1, . . . , t. Here, t denotes the current frame number.

The patches are all of the same size and are typically cen-

tered at the estimated target location in each frame. We de-

note feature channel j of xk by superscript xj
k. In our case,

xj
k corresponds to the output of channel j at a convolutional

layer in the CNN. The objective is to learn a correlation fil-

ter f j
t for each channel j, that minimizes the following loss,

ǫ =

t
∑

k=1

αk‖ft ⋆ xk − yk‖
2 + λ‖ft‖

2. (1)

Here ⋆ denotes circular correlation generalized to multi-

channel signals in the conventional way by computing inner

products. That is, the correlation output for each channel is

summed over the channel dimension to produce a single-

channel output. The desired correlation output yk is set to a

Gaussian function with the peak placed at the target center

location [4]. A weight parameter λ controls the impact of

the regularization term, while the weights αk determine the

impact of each training sample.

To find an approximate solution of (1), we use the online

update rule of [9]. At frame t, the numerator ĝt and denom-

inator ĥt of the discrete Fourier transformed (DFT) filter f̂t
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are updated as,

ĝjt = (1− γ)ĝjt−1
+ γŷt · x̂

j
t (2a)

ĥt = (1− γ)ĥt−1 + γ

(

d
∑

l=1

x̂l
t · x̂

l
t + λ

)

. (2b)

Here, the hat denotes the 2-dimensional DFT, the bar de-

notes complex conjugation and · denotes pointwise mul-

tiplication. The scalar γ ∈ [0, 1] is a learning rate pa-

rameter and d is the number of feature channels. The

sought filter can then be constructed by a point-wise divi-

sion f̂ j
t = ĝjt /ĥt.

To locate the target at frame t, a sample patch zt is first

extracted at the previous location. The filter is then applied

by computing the correlation scores in the Fourier domain

st = F
−1







d
∑

j=1

f̂ j
t−1

· ẑlt







. (3)

Here, F−1 denotes the inverse DFT. To obtain an estimate

of the target scale, we apply the learned filter at multiple

resolutions. The target location and scale in the image are

then updated by finding the maximum correlation score over

all evaluated locations and scales.

3.2. Spatially Regularized Discriminative Correla­
tion Filters

As discussed above, the conventional DCF tracking ap-

proaches have demonstrated impressive performance in re-

cent years. However, the standard DCF formulation is

severely hampered by the periodic assumption introduced

by the circular correlation. This leads to unwanted periodic

boundary effects at both the training and detection stages.

Such periodic boundary effects limit the performance of the

DCF in several aspects. First, the DCF trackers struggle

in cases of fast motion due to a restricted search region.

More importantly, the inaccurate and insufficient training

data limit the discriminative power of the learned model and

lead to over-fitting.

To mitigate the periodic boundary effects, Danelljan et

al. [10] recently proposed Spatially Regularized Correla-

tion Filters (SRDCF), leading to a significant performance

boost for correlation based trackers. The authors introduced

a spatial regularization function w that penalizes filter co-

efficients residing outside the target bounding box. This

allows an expansion of the training and detection regions

without increasing the effective filter size. Instead of (1),

the following cost is minimized,

ǫ =

t
∑

k=1

αk‖ft ⋆ xk − yk‖
2 +

d
∑

l=1

‖w · f l
t‖

2. (4)

The spatial regularization function w reflects the relia-

bility of visual features depending on their spatial location.

The function w is therefore set to smoothly increase with

distance from the target center, as suggested in [10]. Since

background coefficients in the filter ft are suppressed by

assigning larger weights in w, the emphasis on background

information at the detection stage is reduced. On the con-

trary, a naive expansion of the sample size (using a standard

regularization) would also result in a similar increase in the

effective filter size. However, this leads to a large empha-

sis on background features, thereby severely degrading the

discriminative power of the learned model.

The cost (4) can be efficiently minimized in the Fourier

domain by exploiting the sparsity of the DFT coefficients

ŵ. Instead of relying on approximate solutions, such as

(2), [10] propose an iterative minimization scheme based

on Gauss-Seidel, that converges to the global minimum of

(4). We refer to [10] for a detailed description of the SRDCF

training procedure.

3.3. Convolutional Features for DCF Tracking

Traditionally, DCF based approaches rely on hand-

crafted features for image description [12, 21, 28]. In

this work, we instead investigate the use of convolutional

layer activations for DCF based tracking. We employ the

imagenet-vgg-2048 network [5] using the implementation

in the MatConvNet library [37].1 The network is trained

on the ImageNet dataset, for the image classification task.

The employed network contains five convolutional layers

and uses a 224× 224 RGB image as an input. At each con-

volutional layer, we employ the activations produced after

the rectified linear (ReLu) non-linearity. The samples used

for training and detection in the DCF framework (xk and zk
respectively) are obtained by extracting the convolutional

features at the appropriate image location.

When computing the convolutional features, the image

patch is pre-processed by first resizing it to the input size

(224 × 224) and then subtracting the mean of the network

training data. For grayscale images, we simply set the R, G

and B-channels equal to the grayscale intensities. As dis-

cussed in [4], the extracted features are always multiplied

with a Hann window.

4. Experiments

We perform experimental evaluation on three pub-

lic benchmark datasets: the Online Tracking Benchmark

(OTB) [39], the Amsterdam Library of Ordinary Videos for

tracking (ALOV300++) [35] and the Visual Object Track-

ing (VOT) challenge 2015 [1].

1The network is available at http://www.vlfeat.org/

matconvnet/models/imagenet-vgg-m-2048.mat
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Figure 2. Comparison of tracking performance when using differ-

ent convolutional layers in the network. The mean overlap preci-

sion over all color videos in the OTB dataset is displayed. The in-

put RGB image (layer 0) provides inferior performance compared

to the convolutional layers. The best results are obtained using the

first convolutional layer. The performance then degrades for each

deeper layer in the network, until the final layer.

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Spatial size 224×224 109×109 26×26 13×13 13×13 13×13

Dimensionality 3 96 256 512 512 512

Table 1. The spatial size and dimensionality of the convolutional

features extracted from the employed network. Layer 0 denotes

the input RGB image, after the necessary preprocessing steps.

4.1. Feature comparison

We start by evaluating the different convolutional lay-

ers of the imagenet-vgg-2048 network [5], as described in

section 3.3. For simplicity, we employ the standard DCF

framework described in section 3.1 but without any scale es-

timation, for this experiment. The evaluation is performed

on all 35 color videos in the OTB dataset [39]. The re-

sults are presented in terms of overlap precision (OP). It is

computed as the percentage of frames in a sequence where

the intersection-over-union overlap with the ground-truth

bounding box is larger than a threshold T ∈ [0, 1]. In ta-

bles and figures, we report the overlap precision at a thresh-

old of T = 0.5, which corresponds to the PASCAL crite-

rion. We also provide more detailed results in the success

plots, where OP is plotted over the range of thresholds. In

this case we use the area-under-the-curve (AUC) to rank

the different methods. The AUC is displayed in the legend

for each tracker. For more details regarding the evaluation

protocol, we refer to [39].

Figure 2 shows the mean overlap precision, at the thresh-

old T = 0.5, of the input layer (layer 0) and the five con-

volutional layers in the network. All convolutional layers

significantly outperform the input layer, consisting of a re-

sized and normalized RGB image. Unlike image classifica-

tion, the first convolutional layer achieves the best tracking

results. The performance then drops for each deeper layer

in the network, until the final layer. We partly attribute this

effect to the decreased spatial resolution in the deeper layers

(see table 1). Intuitively, better spatial resolution alleviates
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Figure 3. Comparison of the first layer convolutional features with

different handcrafted features: HOG, CN and I (image intensity).

the task of accurately locating the target, which is crucial for

the tracking problem. Interestingly, the final (fifth) convo-

lutional layer provides a significant performance gain com-

pared to the fourth layer. This is likely due to the high level

features encoded by the deepest layers in the network. The

final convolutional layer, which has recently been success-

fully applied in image classification [6], provides a large

amount of invariance while still discriminative. In sum-

mary, our results suggest that the initial convolutional layer

provides the best performance for visual tracking.

We employ the first layer layer for the remainder of our

experiments. Figure 3 shows a comparison of the first con-

volutional layer with hand-crafted features commonly em-

ployed in correlation-based trackers. We compare with us-

ing grayscale intensity (I), Histogram of Oriented Grandi-

ents (HOG) [7] and Color Names (CN) [36]. The success

plot displays the mean overlap precision over all 35 color

videos in the OTB dataset. Similar results are obtained

using HOG and CN. The combination HOG+CN achieves

slightly better performance, with an AUC of 50.2%. How-

ever, the convolutional features provides improved perfor-

mance, with an AUC of 52.1%. The activations of the vari-

ous convolutional features are shown in figure 4.

4.2. State­of­the­art Comparison on OTB

We evaluate the impact of using the convolutional fea-

tures in the DCF (section 3.1) and SRDCF (section 3.2)

approaches. We name our trackers DeepDCF and Deep-

SRDCF respectively. For the DeepSRDCF, we reduce the

feature dimensionality of the first layer to 40 using Prin-

cipal Component Analysis (PCA). The PCA basis is com-

puted in the first frame and then remains fix through out

the sequence. Our trackers are evaluated on the full OTB

dataset (containing 50 videos) and compared with 15 state-

of-the-art trackers: SRDCF [10], DSST [9], KCF [21],

SAMF [28], ACT [12], TGPR [17], MEEM [40], Struck
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Figure 4. Visualization of the employed first-layer convolutional features with the highest energy. Activations are shown for two sample

patches (left), taken from the motorBike (top row) and soccer (bottom row) sequence respectively. The convolutional features capture

different colors and edges over image regions.

ASLA Struck KCF DSST SAMF TGPR MEEM SRDCF DeepDCF DeepSRDCF

OP 56.4 58.8 62.3 67 69.7 62.6 68.7 78.1 75.9 79.4

DP 59.2 68.7 74.0 74.0 77.7 70.6 79.8 83.8 81.8 84.9

Table 2. The mean Overlap Precision (OP) and Distance Precision

(DP) in percent on the OTB dataset containing all 50 videos. The

two best results are shown in red and blue respectively. We only

report the results of the top 10 performing trackers.

[20], CFLB [16], MIL [3], CT [41], TLD [23], DFT [34],

EDFT [15], ASLA [22].

Table 2 shows the mean Overlap Precision (OP) and Dis-

tance Precision (DP) on the OTB dataset. DP is computed

as the percentage of frames in a sequence with a center lo-

cation error smaller than 20 pixels. The DCF based trackers

DSST and SAMF, employing HOG and HOG+CN features,

provide a mean OP of 67.0% and 69.7% respectively. Our

DeepDCF achieves a mean OP of 75.9%, outperforming

DSST and SAMF by 8.9% and 6.2% respectively. By using

the SRDCF framework, our DeepSRDCF achieves a signif-

icant gain of 3.5% mean OP over the DeepDCF. We fur-

ther improve over the SRDCF by 1.3% in mean OP. Similar

conclusions are drawn using Distance Precision (DP). The

success plot on the full OTB dataset is shown in figure 5.

4.2.1 Attribute based comparison

We evaluate our tracker by providing an attribute-based

analysis on the OTB dataset. The sequences in the dataset

are annotated with 11 different attributes: Occlusion, out-

of-plane rotation, in-plane rotation, low resolution, scale

variation, illumination variation, motion blur, fast motion,

background clutter, out-of-view and deformation. Figure 6

shows success plots of four different attributes: scale varia-

tion, in-plane rotation, fast motion and occlusion. For clar-

ity, only the top ten trackers in each attribute plot are shown.

Both our DeepSRDCF and DeepDCF trackers achieves su-

perior performance compared to the existing methods. In

case of scale variation, the standard SRDCF method ob-

tains an AUC score of 59.3%. Our proposed deepSRDCF

provides a gain of 4.3% compared to the standard SRDCF

Overlap threshold
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Figure 5. Success plot showing a comparison of our trackers

with state-of-the-art methods on the OTB dataset contining all 50

videos. The area-under-the-curve (AUC) scores for the top 10

trackers are reported in the legend.

approach with hand-crafted features. In case of in-plane

rotation, the two DCF based trackers SRDCF and DSST

provides the best results among existing trackers. Our ap-

proach based on deep features and SRDCF achives the best

performance with an AUC score of 60.2%. Similarly, our

deepSRDCF approach obtains favorable results for fast mo-

tion and occlusion, compared to existing trackers.

4.3. State­of­the­art Comparison on VOT2015

The visual object tracking (VOT) challenge is a compe-

tition between short-term, model-free visual tracking algo-

rithms. For each sequence in the dataset, a tracker is eval-

uated by initializing it in the first frame and then restarting

the tracker whenever the target is lost (i.e. at a tracking fail-

ure). The tracker is then initialized a few frames after the

occurred failure. The trackers in VOT are evaluated in terms

of an accuracy score and a robustness score. These scores
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Figure 6. Attribute-based comparison of our trackers with some state of-the-art methods on the OTB-2013 dataset. We show success plots

for four attributes: scale variation, in-plane rotation, fast motion and occlusion. The number in each plot title indicates the amount of

sequences associated with a particular attribute. Our trackers provide consitent improvements compared to existing methods.

#032 #037 #048
#146 #158 #166

(a) Fast motion book, dinosaur .

#200 #300 #400 #102 #108 #117

(b) Scale change singer3, graduate .

#017 #020 #028 #034 #052 #065

(c) rotation/deformation motocross3, fernando .

DeepSRDCF DSST SAMF KCF

Figure 7. Comparison of our proposed deepSRDCF tracker with the top three trackers of the VOT2014 challenge on example frames

from the VOT2015 dataset. The image sequences show challenging situations such as fast motion (top row), scale changes (middle row),

rotations and deformations (bottom row).

are computed based on the ground-truth overlap and failure

rate measures respectively. The trackers are then ranked in

terms of accuracy and robustness for each sequence individ-

ually. These ranks are finally averaged to produce the final

ranking scores. We refer to [24] for a detailed description

of the VOT evaluation methodology.

We provide a comparison of our trackers with 11 state-

of-the-art trackers on VOT2015 [1]. In the comparison,

we include the top three performing methods of VOT2014

(DSST, SAMF and KCF) and the top 5 existing methods in

our OTB comparison (SRDCF, SAMF, MEEM, DSST and

KCF). Table 3 shows the results reported by the VOT2015

toolkit [1]. The first two columns contain the mean over-

lap score and failure rate over the dataset. The remaining

columns report the accuracy, robustness and final rank for

each tracker. Our DeepSRDCF achives the best final rank

on this dataset. Figure 7 shows example frames from the

VOT 2015 dataset. Figure 8 shows a visualization of the

overall results on the VOT2015 dataset.

4.3.1 State-of-the-art Comparison on ALOV300++

The ALOV300++ dataset includes 314 sequences collected

from the internet. Results on this dataset are presented in

terms of survival curves, as suggested in [35]. The survival

curve of a tracker is constructed by plotting of the F-score

value for each video in a descending order. For each video,

the F-score is computed based on the percentage of suc-

cessfully tracked frames, using an intersection-over-union

overlap threshold of 0.5. A higher F-score indicates better

performance. For more details on the ALOV300 dataset we

refer to [35].

We compare our trackers with the 19 methods evalu-

ated in [35]. We additionally include the top 6 existing

trackers in our OTB evaluation, namely SRDCF, SAMF,

MEEM, DSST, KCF and TGPR. Figure 9 contains the sur-

vival curves of all trackers. We also report the average F-

score for the top 10 trackers in the legend. Our DeepSRDCF

performs favorably compared to the SRDCF with an aver-

age F-score of 0.796 compared to 0.787.
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Figure 8. A state-of-the-art comparison on the VOT2015 benchmark. In the ranking plot (left) the accuracy and robustness rank for each

tracker is displayed. The AR plot (right) shows the accuracy and robustness scores.

Overlap Failure rate Acc. Rank Rob. Rank Final Rank

DeepSRDCF 0.53 1.05 3.89 4.17 4.03

SRDCF 0.53 1.24 3.77 4.60 4.19

DeepDCF 0.48 1.75 5.87 5.61 5.74

SAMF 0.48 2.05 5.52 6.27 5.89

MEEM 0.46 2.05 6.11 6.23 6.17

DSST 0.48 2.56 6.20 7.63 6.92

ACT 0.41 2.05 7.81 6.48 7.14

KCF 0.43 2.51 7.60 7.28 7.44

MIL 0.39 3.32 8.67 7.92 8.29

DFT 0.39 4.32 8.50 8.79 8.64

Struck 0.40 3.59 8.70 8.60 8.65

EDFT 0.38 4.08 8.88 8.83 8.85

CT 0.34 4.08 9.91 8.57 9.24

Table 3. The results generated by the VOT2015 benchmark toolkit.

The first two columns contains the mean overlap score and failure

rate over the entire dataset. The accuracy and robustness ranks are

reported in the third and fourth column. The trackers are ordered

by their final rank (last column). Our approach provides the best

result on this dataset.

5. Conclusions

In this paper, we investigate the impact of convolu-

tional features for visual tracking. Standard DCF based ap-

proaches rely on hand-crafted features for robust image de-

scription. We propose to use convolutional features within

the DCF based framework for visual tracking. We show

the impact of convolutional features on two DCF based

frameworks: the standard DCF and the recently proposed

SRDCF. To validate our proposed tracker, we perform com-

prehensive experiments on three public benchmarks: OTB,

ALOV300++ and VOT 2015. We show that the first con-

volutional layer provides the best results for tracking, this
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Figure 9. Comparison with state-of-the-art trackers on the

ALOV300++ dataset in terms of survival curves. The mean F-

scores for the top 10 trackers are provided in the legend. On this

dataet, our DeepSRDCF obtains favorable results compared to the

standard SRDCF with hand-crafted features.

is suprising considering that the deeper layers are known to

be better for general object recognition. We compare our

proposed approach with some state of the art methods and

obtain state of the art results on three benchmark datasets.
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[9] M. Danelljan, G. Häger, F. Shahbaz Khan, and M. Fels-

berg. Accurate scale estimation for robust visual tracking.

In BMVC, 2014.
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