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Abstract

Correlation filters for long-term visual object tracking

have recently seen great interest. Although they present

competitive performance results, there is still a need for im-

proving their tracking capabilities. In this paper, we present

a fast scalable solution based on the Kernalized Correlation

Filter (KCF) framework. We introduce an adjustable Gaus-

sian window function and a keypoint-based model for scale

estimation to deal with the fixed size limitation in the Ker-

nelized Correlation Filter. Furthermore, we integrate the

fast HoG descriptors and Intel’s Complex Conjugate Sym-

metric (CCS) packed format to boost the achievable frame

rates. We test our solution using the Visual Tracker Bench-

mark and the VOT Challenge datasets. We evaluate our

tracker in terms of precision and success rate, accuracy,

robustness and speed. The empirical evaluations demon-

strate clear improvements by the proposed tracker over the

KCF algorithm while ranking among the top state-of-the-

art trackers.

1. Introduction

Visual tracking is one of the fundamental research ar-

eas in computer vision. Tracking has several applications,

such as video compression [6], augmented reality [23], traf-

fic control [12], surveillance and security [21]. Although

some settings allow for strong assumptions about the tar-

get [19, 10, 26] , most often tracking an object with no prior

knowledge is desirable. Model-free tracking requires online

learning and adaption of a representation for a given target.

The tracker analyzes sequential video frames and after the

initial detection of a target, outputs the successive positions

of the object from frame to frame. Even though satisfactory

progress has been made in model-free trackers, fast and ro-

bust model-free tracking is still a challenging problem due

to geometric transformations, changes in illumination, fast

motions, noise, occlusions and background clutter.

A considerable amount of work has been dedicated to

monocular single-target visual tracking. Among the rele-

vant work are model-free tracking solutions that use sparse

object representations [14, 20, 24], histogram-based repre-

sentations [2, 1, 11, 9] and combinations of them [5, 14, 13].

Performances measures have also been proposed and differ-

ent benchmark datasets to evaluate visual trackers are avail-

able [28, 15, 4].

Recently, the tracking-by-detection paradigm has ob-

tained excellent performance for their robust tracking of

targets. [2, 9, 1, 20, 11, 13]. This tracking framework

integrates an online learning component that acquires new

information from each successful target detection. Recent

correlation filter-based trackers [3, 1, 8, 11] replace the

time-consuming convolution operation in the time domain

by pointwise multiplication in the frequency domain. Hen-

riques et al. [1, 11] extended correlation filter by exploit-

ing the circulant structure of the tracking object to quickly

incorporate information from all cyclically shifted samples

into the Fourier analysis without iterating over all possible

samples in the target’s neighborhood in the time domain.

Furthermore, Henriques et al. incorporated multiple feature

channels instead of raw pixel into their correlation filter

framework to improve the accuracy and robustness of the

tracker [11]. However, the correlation filter tracker uses a

fixed size template and hence the tracker is not able to han-

dle scale changes of a target occurring during motion.

The main contributions of this paper can be summarized

as follows. First, we propose a correlation filter that over-

comes the fixed-size limitation of the KCF tracker and in

addition is able to run faster than the original KCF tracker.

We extend the KCF tracker with the capability of handling

scale changes by introducing adjustable Gaussian window

functions for better back- and foreground separation around

the target leading to increased accuracy and robustness. We

solve the scale estimation by combining the correlation fil-

ter with sparse keypoints to estimate location and scale. The

window filtering does not alter the pipeline of the correla-

tion filters presented in Henriques et al. [11], i.e., Kernel-

ized Correlation Filter using a Gaussian or polynomial ker-

nel, and Dual Correlation Filter (DCF) using a linear ker-

nel. This allows including scale estimation to any variation

24



of the original correlation filters. Second, we achieve up to

2x speedup of the original solution while reducing the mem-

ory footprint by half by introducing CCS packed format and

fast HoG descriptors. Third, we conducted experiments to

compare the original KCF algorithm against our solution

using the original paper dataset [11]. These experiments

demonstrate the gain in performance in terms of success

rate and precision rate. Finally, the empirical experimen-

tal evaluations are extended with the VOT challenge for a

more accurate representation of the performance gain. Our

proposed solution achieves performance gains in accuracy,

robustness, and speed compared to state-of-the-art trackers.

2. Related Work

Numerous tracking-by-detection algorithms can be

found in the current literature. Many of them have been

evaluated with the Visual Tracker Benchmark [28] and in

the VOT Challenges [15]. We restrict our review here

to those trackers that are close to our work, including

TLD [13], CMT [20], Struck [9], SCM [30], Alien [24],

CSK [1], KCF [11] and SAMF [17].

Struck [9] is a tracking-by-detection algorithm, which

relies on a kernelized structured output Support Vector Ma-

chine (SVM) in order to distinguish between tracked object

and background. The binary classifier employs a Haar-like

vector representation of the target to solve the classifica-

tion problem. SCM [30] combines a binary classifier with a

generative model to achieve high accuracy and robustness.

TLD [13] combines forwards-backwards tracking of grid

points with a sampling detection strategy using a boosted

classifier to predict the target location and scale. Location

and scale estimation are selected as the median value trans-

formation between all pairs of successfully tracked points.

CMT [20] uses a similar tracking strategy to TLD to esti-

mate position, scale and also includes rotation. Instead of

equally spaced points a keypoint-based matching strategy

using BRISK [16] features and descriptor is implemented.

Alien extends the keypoint-based strategy by creating two

sets of keypoints, i.e, object and context. It adopts SIFT [18]

features and descriptors to match keypoints and uses single

value decomposition to estimate position, scale and orien-

tation of the matches.

All the trackers mentioned in the last paragraph achieve

good results in the Visual Tracker Benchmark [28]. How-

ever, their computational cost is high which makes them

less appealing than the correlation filter-based trackers. In

addition, the correlation filter-based trackers CSK and KCF

outperform all of the above mentioned trackers in the Visual

Tracker Benchmark and VOT challenges while being faster.

CSK explores the structure of the circulant patch, which

employs kernel correlation filter to achieve high perfor-

mance. Based on CSK, KCF adds multichannel features to

the correlation filter pipeline. It improves accuracy and ro-

bustness by adopting HoG features instead of the raw pixel

values used in CSK.

SAMF is the closest work to our solution because of its

goal. It adds scale to the KCF framework by sampling the

original target with different scales and learning the model

at each scale. Moreover, it combines HoG descriptor with

colour-naming [27] technique to boost the overall perfor-

mance. However, the inclusion of colour-naming to the

HoG features and computing the kernelized correlation fil-

ter for all possible scale comes at a substantial computa-

tional cost.

Our proposed algorithm is based on the KCF algorithm.

The main difference between our proposed solution and

SAMF is that we learn the scale variations online instead

of learning the model for all possible scales. Furthermore,

instead of adding computation time, we are improving the

high-speed performance of KCF while boosting its accu-

racy and robustness. The Gaussian window filtering allows

us to adjust to scale changes while creating a better sepa-

ration of the object and the background without affecting

the KCF framework. Because of the separate Gaussian fil-

tering, scale estimation can be added to any of the poly-

nomial and linear correlation filters presented in Henriques

et al. [11].In addition, our C++ implementation incorpo-

rates fast HoG descriptors using SSE instructions and CCS

packed format to improve the performance while decreasing

the memory footprint. For scale estimation, we use a simi-

lar approach as in TLD and combine keypoint tracking with

detection. We implement the forward-backward Kanade-

Lucas-Tomasi [29] keypoint tracking strategy initialized at

the position estimated by KCF. However, we select good

features to track instead of grid-points. Also, we include a

different measure to estimate the scale. While TLD uses a

median value to estimate scale we use a weighted arithmetic

mean where points near the center of the tracker contribute

more than those near the boundaries.

3. Scalable Kernelized Correlation Filter

In this section, we first review the KCF [11] algorithm

(See Alg. 1). Second, we discuss the introduction of Gaus-

sian window filtering to allow the correlation tracker react

to scale changes. Furthermore, we introduce the scale esti-

mation used in our approach and how to integrate it into the

KCF pipeline (See Alg. 2). Finally, we describe our addi-

tions to increase the performance of the original approach.

3.1. KCF Algorithm

The key innovation of KCF is the use of the structure of

circulant matrices to enhance the discriminative ability of

the track-by-detection scheme. The algorithm proceedes as

follows: Given the initial selection of a target (i.e., center

position and size), a tracked region is created. The tracked

region is increased from the target size to provide some con-
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text. Features (either raw pixels or other feature channels)

are extracted from the tracked region and each channel is

weighted by a cosine window. A circulant matrix is used to

learn all the possible shifts of the target from a base sample.

The coefficient αf encodes the training samples, consisting

of all shifts of a base sample in the frequency domain. The

fast learning equation is expressed as

αf =
yf

kxx
′

f + λ
(1)

where yf = Fy denotes the Discrete Fourier Trans-

form(DFT) of y. The term kxx
′

f denotes the DFT of kxx
′

;

the kernel correlation function between signals x and x′.

The division represent a element-wise division and the

scalar λ is a regularization term. The training label matrix y
is a Gaussian function that smoothly decays from the value

of one for the centered target to zero for other shifts.
For multiple channel features, the vector x concatenates

the individual vectors of c channels, e.g., the 31 gradi-
ent orientation bins for the HoG descriptor [11] as x =
[x1, x2, ..., xc]. The Gaussian kernel correlation function

kxx
′

is defined as

kxx
′

= exp

(

−
1

σ2

(

‖x‖2 +
∥

∥x′
∥

∥

2
− 2F−1

(

∑

c

xc
f ⊙ (x

′c
f )∗

)))

(2)

where ⊙ represent element-wise multiplication and (xc
f )

∗

the complex-conjugate of xc
f (see lines 9, and 5).

The displacement δ = argmax
loc

(r(kzx̃f )) between the cur-

rent and the next patch z is the spatial index with maxi-

mum response in r(kzx̃f ). The response is computed as the

element-wise multiplication between the learnt alphas α̃f

and the correlation of zf with the learnt model x̃f . The de-

tection response for each location is

r(kzx̃f ) = F−1(kzx̃f ⊙ α̃f ) (3)

The learnt model x̃f and alpha α̃f are linear interpolations

of xf and αf at each detection with the selection of an in-

terpolation factor factor ǫ [0, 1].
A detailed description of KCF algorithm pipeline in

pseudocode follows. For the more detailed formulation,

please refer to [11].

3.2. Adjustable Window Filtering

In image processing, the process of multiplying an im-

age with a smoothly ending function that gradually reduces

its values near the boundaries is called ”windowing”. The

multiplication creates a windowed view of the input signal

where the overlap is the signal of interest and reducing to

zero the rest. The purpose of windowing is usual to iso-

late the signal of interest while reducing the frequency leak-

age in the DFT calculations. Separating the signal from the

background is of vital importance for detection. Frequency

Algorithm 1 : KCF.

Variables with subscript f are in the frequency domain. Circled operators

represent element-wise operations (i.e., ⊙ and ⊘).

• w sz: size of the tracked region, (W×H).

• pos: center location of the tracker in spatial domain.

• patch: region of img centered at pos with size w sz, (W×H×C).

• features(x): extracted features (e.g., HoG), (m×n×c).

• cos window: cosine window weights each feature channel, (m×n×1).

1: for each img in sequence:

2: if not first image:

3: patch ← region(img, pos, w sz)

4: zf ← F (features(patch) ⊙ cos window)

5: kzx̃f ← F (correlation(zf , x̃f )) ⊲ Eq. (2)

6: pos ← pos + argmax
loc

(r(kzx̃f ))) ⊲ Eq. (3)

7: patch ← region(img, pos, w sz)

8: xf ← F (features(patch) ⊙ cos window)

9: kxxf ← F (correlation(xf , xf )) ⊲ Eq. (2)

10: αf ← yf ⊘ (kxxf + λ) ⊲ Eq. (1)

11: if first image: f ← 1 else f ← factor

12: α̃f ← f × αf + (1 - f ) × α̃f

13: x̃f ← f × xf + (1 - f ) × x̃f

leakage takes place when the frequency spectrum of a mea-

sured input has other frequencies than those of the origi-

nal signal. Adjustable windows are functions that are capa-

ble of reducing the frequency leakage while controlling the

bandwidth. They allow controlling how much information

of the original signal we want to analyze. Gaussian win-

dows have been widely used for window filtering because

of their simple formulation and their benefits in reducing

leakage and adjusting to different signal size [25, 22].

In KCF, the target size is strongly linked to the tracked

region (i.e., the search area) because of the cosine window.

Target scale changes will alter the signal to process and

affect the learning process. If the target gets smaller, the

cosine window will merge the target signal with the back-

ground. If the target gets bigger it discards information of

the target and only processes a subset of it. Another issue

linked to this behaviour is that we cannot change the tracked

region (e.g., we would like to increase/decrease the search

area) given the target size.

To overcome this limitation in KCF we replaced their co-

sine window with a Gaussian window G (See Eq. 4) to al-

low for target changes of scale and a better separation from

the background (See Fig. 3.2). The Gaussian window al-

lows us to control the bandwidth of the distribution while

the cosine function is fixed to the region size. Further-

more, the Fourier transform of a Gaussian is also a Gaus-

sian which ensure the separation between foreground and

the background while reducing the frequency leakage. Scal-

ing a cosine window has no such property.
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G(m,n, σw, σh) = g(m,σw) ∗ g(n, σh)
′ (4)

The function g(N, σ) returns a vector of size N com-

puted as follow

g(N, σ) = exp

(

−
1

2

(

i

σ(N − 1)

)

2
)

, 0 ≤ i ≤ N. (5)

The resulting two-dimensional Gaussian window is a

matrix gauss that has size m×n. Note that the W ×H×C
tracked region, is filtered in feature space, (m × n × c).
For example, when using raw pixels as features their values

match, i.e, m = W,n = H, and c = C. In the case of HoG

features with a cell size of 4×4 and 9 orientation bins, their

correspondent values are m = W/4, n = H/4, and c = 31.

The bandwidth σ of the Gaussian function g(N, σ) is

computed independently for the horizontal and vertical ori-

entations. The values of σ are selected as the ratio be-

tween the feature dimensions and the target dimensions for

the horizontal and vertical orientations (i.e., σw = m
w

and

σh = n
h

). The replaced cosine window from KCF is com-

puted as cos window = h(m) ∗ h(n)′; h(x) is the Hann

windowing function

h(N) =
1

2

(

1− cos

(

2π
i

N

))

, 0 ≤ i ≤ N. (6)

Figure 1. Gaussian and cosine window filtering raw pixel value

example. The tracked region has a size of (175 × 113). First

column: same regions with targets at three different scales (i.e.,

small (56 × 32), medium (110 × 61), large (164 × 83). Second

column: Gaussian windows according the target size (i.e., small

(σw = .32, σh = .28), medium (σw = .63, σh = .54), large

(σw = .94, σh = .73). Third column: cosine window for all the

three examples (i.e, size (175 × 113)). Fourth and fifth columns:

images filtered with Gaussian and cosine windows respectively.

Figure shows how the fixed cosine window fails to represent the

target compared to the Gaussian windows. The cosine window

includes background for small targets and discards information for

big targets.

3.3. Scale Estimation

With the adjustable window function the algorithm is

capable of adjusting to changes in scale, we need to de-

fine how to estimate the new dimension of the target at

each frame. The change of scale will be used to up-

date the target size, which in turn, will update the σ val-

ues for the Gaussian window, the regression labels and

the learnt model of the correlation filter. For the estima-

tion, we implemented a keypoint-based strategy where the

most interesting points inside the target area are extracted

Kp1 = Kp1
1 ,Kp1

2 , ...,Kp1
N and tracked to the next region

(i.e., Kp2 = Kp2
1 ,Kp2

2 , ...,Kp2
N ). Pairs of tracked points

are used to estimate the change of scale (i.e., pairs =
(Kp1

1 ,Kp2
1 ), (Kp1

2 ,Kp2
2 ), ..., (Kp1

T ,Kp2
T ), with T ≤ N ).

As in the TLD tracker, we use a forwards-backwards optical

flow strategy where we keep the tracked points with high

confidence value [13]. The differences between TLD and

our approach are that we extract relevant keypoints instead

of grid points and estimate the scale using a different met-

ric. TLD uses the median value of all scale ratios between

matched points to estimate the scale variation and pairs of

points contribute equally to the final estimation. When TLD

selects the grid-points inside the target area, they assume

that the points belongs to the object. During the tracking

process this assumption is generally not correct. The rect-

angular representation of the target might not follow exactly

the geometry of the target. To account for this fact, we

assign different weights to the keypoints. We assume that

points near the center of the target will be more likely to

be part of the object (i.e., they should have greater weight

in the scale estimation) than those near the boundaries (i.e.,

weight lower).

An extracted keypoint Kp1
i and its tracked position Kp2

i

will have an associated weight wi corresponding to the re-

sponse of the extracted keypoint Kp1
i in a Gaussian win-

dow centered at the target area. The horizontal and vertical

bandwidths of the Gaussian function are computed as in the

previous section; relative to the target size. The variation

of scale is computed as the weighted arithmetic mean of

the ratio between all possible pairs of extracted and tracked

points between next patch p2 and the current one p1.

scale(Kp1,Kp2) =

∑T

i

∑T

j wiwj ∗
‖Kp2

i
−K

p2
j ‖

2

‖Kp1
i

−K
p1
j ‖

2

∑T

i

∑T

j wiwj

. (7)

where i and j are the indices of successfully tracked

points T . The weights wi and wj are the responses of the

extracted points.

The proposed sKCF algorithm can be seen in Alg. 2.

Note that the scale estimation step is independent and does

not affect the correlation filter. This allow us to select a dif-

ferent kernel correlation function (i.e., polynomial or linear)

or a different scale estimation strategy without affecting the

sKCF pipeline.
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Algorithm 2 : sKCF.

Changes to the KCF pipeline are showed in different color.

• w sz: size of the tracked region, (W×H).

• t sz: size of the target, (w×h).

• features(x): extracted features (e.g., HoG), (m×n×c).

1: for each img in sequence:

2: if not first image:

3: p2 ← region(img, pos, w sz)

4: zf ← F (features(p2) ⊙ cos window)

5: kzx̃f ← F (correlation(zf , x̃f )) ⊲ Eq. (2)

6: pos ← pos + argmax
loc

(r(kzx̃f ))) ⊲ Eq. (3)

7: t sz ← t sz * scale(Kp1, Kp2) ⊲ Eq. (7)

8: p1 ← region(img, pos, w sz)

9: gauss ← G(m, n, t sz, w sz) ⊲ Eq. (4, 5)

10: xf ← F (features(p1) ⊙ gauss)

11: kxxf ← F (correlation(xf , xf )) ⊲ Eq. (2)

12: αf ← yf ⊘ (kxxf + λ) ⊲ Eq. (1)

13: if first image: f ← 1 else f ← factor

14: α̃f ← f × αf + (1 - f ) × α̃f

15: x̃f ← f × xf + (1 - f ) × x̃f

3.4. Improving Algorithm Run-time

The overall complexity of the correlation filter is deter-

mined by the DFT/IDFT calls. As the algorithm only re-

quires element-wise operations for the fast learning and the

detection, the computational cost is O(n log n) where n is

the number of pixels in the tracked region. Other parts of

the code that can affect the performance of the algorithm

are the scale estimation and the feature extraction, i.e., the

use of raw pixels values demands no extra computation in

the pipeline, but stronger and robust representations such as

HoG descriptors can affect overall performance. Therefore,

we include the following modifications to the original KCF

algorithm to improve its run-time.

When performing the spectral analysis of an image, the

original data is usually padded to get a bigger image that can

be transformed much faster then the original. Images whose

size is a power of two are the fastest to process. Neverthe-

less, data whose size can be represented as S = 2p×3q×5r,

for some integer values of p, q, r are also processed quite

efficiently. Unfortunately, selecting the optimal input size

for DFT/IDFT might be not desirable because the exponen-

tial growth of 2p. For example, the spectral analysis of an

image with size (300 × 300) could be efficiently computed

(i.e., 300 = 52 × 3 × 22) while using the optimal power

of two selection, will end up computing the spectrum in an

image of almost double its original size (i.e., 512 × 512).

We utilize OpenCV getOptimalDFTSize to compute the

minimum number S that is greater or equal to the original

dimensions. We are able to take advantage of this fact be-

cause of our Gaussian window function where the filtered

data is not affected by the size of the tracked region unlike

the original KCF. The bandwidth of the Gaussian distribu-

tion is controlled by the target size. This small modification

can not be adapted directly to the KCF pipeline because of

the cosine window used in KCF; increasing the search area

will fail to correctly filter the target data.

Intel’s CCS packed format exploits the symmetrical

properties of the Fourier spectrum to efficiently encode the

full spectrum of the frequency analysis. The complete spec-

trum is usually encoded into two matrices of floating preci-

sion with the same dimensions of the input data (i.e., for

the real and imaginary part). CCS format interlaces the first

half of the real and the imaginary spectrum data into one

matrix of floating precision. This can be achieved because

of its symmetrical representation. Introducing the CCS for-

mat into the DFT/IDFT calls effectively reduces the com-

putation time and memory footprint by half. OpenCV only

provides CCS data manipulation for their DFT/IDFT calls.

We extended the OpenCV functionality to implement the

element-wise division of the learning Formula 1 using the

CCS packed format.

For the feature extraction, we introduce the fast HoG

descriptor by Felzenszwalb et al. [7] in their work on dis-

criminatively trained deformable part models. The imple-

mentation uses SIMD (SSE) to perform same operations on

multiple data points simultaneously, exploiting data level

parallelism for the HoG descriptor. This implementation

gives nearly identical results to the original HoG descriptors

while speeding up the algorithm 4x [7]. The algorithm is ca-

pable of computing a (640× 480) image in less than 24ms
runtime on a Core i5 (2415M). The original algorithm was

implemented for the Matlab environment and process data

in column-major data format. OpenCV uses a row-major

data format so we adapted the algorithm to be used in the

correct data format.

Finally, in scale estimation the LucasKanade [29] opti-

cal flow for a sparse set of features dominantes run-time.

To accelerate this process we use initial estimations by in-

troducing the location results from the correlation filter to

the tracked points. Also, we only need to compute the opti-

cal flow in the tracked region instead of the complete image

frame. We drop the pyramidal approach under the assump-

tion of small displacements. The overall complexity is then

expressed as O(kn), where k is the number of extracted fea-

tures and n the size of the processed images. The number

of keypoints k is considerable lower than n which in turn is

bound by the tracked region (i.e., search area).

4. Experiments

We conduct the evaluation of the proposed algorithm in

three experiments. First, we compare the speed and ac-

curacy performance using the 50 videos from the Visual
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Tracker Benchmark [28] as in the KCF paper [11]. Sec-

ond, we evaluate and rank the trackers using the VOT Chal-

lenge [15]. Finally, we compare our tracker against state-

of-the-art trackers to show the effectiveness of sKCF. We

report the detailed evaluation on the VOT 2015 dataset.

4.1. Experimental Setup and Methodology

We developed three C++ implementations to compare

against the original KCF algorithm (which is available as

a Matlab implementation only). First, we implemented the

KCF algorithm using Gaussian correlation plus integrating

Gaussian windowing and fast HoG descriptors. This imple-

mentation uses the full Fourier spectrum for the DFT/IDFT

calls (i.e., no CCS). We call it KCFc. Second, we integrated

CSS packed format to the previous implementation (i.e.,

KCFccs). Finally, we integrated scale estimation to the pre-

vious variation (i.e., sKCF). All experiments are conducted

on an Intel i5 (2415M) at 2.3GHz with 8GB of memory. We

compared the three implementations to the original Matlab

KCF implementation using HoG descriptors. We use the

same parameter configurations for all implementations as

described in [11]: interpolation factor = .02, Gaussian

kernel correlation σ = .5, regulation term λ = 1e − 4, a

HoG cell size of 4× 4 and 9 orientations bins.

For the Visual Tracker Benchmark [28] dataset, two eval-

uation criteria are used (i.e., precision and success). Preci-

sion is the percentage of frames in a sequence the tracker

output is under a certain location error value. The location

error is defined as the distance between the center of tracked

results and the ground truth. The overall precision is de-

fined as the mean precision for all location errors; the higher

the more accurate the result. Success is the percentage of

frames the tracker output is under a certain overlap ratio.

The overlap ratio is defined as V OC = Area(BT∩BG)
Area(BT∪BG) ,

where BT is the tracked bounding box, and BG is the

ground truth bounding box. The overlap ratio values go

from 0 to 1. The overall success is defined as the mean

success for all overlap ratio values.

In the VOT Challenge, two evaluation criteria are used

(i.e., accuracy and robustness). Accuracy is measured as the

VOR score. The robustness indicates the number of failures

to track an object in a sequence. A failure is determined

when the VOR score goes to zero.

4.2. Experiment 1: Visual Tracker Benchmark

We evaluated the performance of our three implementa-

tions (i.e., KCFc, KCFccs, and sKCF) against KCF using the

Visual Tracker Benchmark [28] as in the KCF paper [11].

We computed the overall precision and success rates for the

51 video dataset presented by Wu et al. [28].

The introduction of the Gaussian window in KCFc and

KCFccs resulted in increased precision and success rates

over the KCF tracker (see Figure 4.2). KCFc and KCFccs

displayed similar performance validating the idea that the

CCS packed format does not affect the accuracy while

speeding the computations. The sKCF tracker produces bet-

ter results than all the trackers by introducing the scale es-

timation into the pipeline. Furthermore, sKCF displayed an

average speed-up of 2.2x for all the sequences compared to

the KCF implementation. For this experiment, we included

the performances of the top three ranked trackers in Wu et

al. [28] (i.e., SCM, Struck, and TLD) for completeness.

Figure 2. Precision and success plots for our three implementa-

tions (i.e., sKCF, KCFc, KCFccs), KCF, and the top three ranked

trackers in the Visual Tracker Benchmark [28] dataset.

4.3. Experiment 2: VOT Challenge

We continue to evaluate the trackers in terms of accuracy

and robustness. For this experiment we used the VOT 2015

and VOT TIR 2015 datasets (i.e., 60 and 20 video sequences

respectively).

Along with sKCF, KCFc, KCFccs and KCF, we included

the NCC (Fast Normalized Cross-Correlation) implemen-

tation provided in the VOT packages for evaluation pur-

poses. Our three implementations produce superior results

than KCF and NCC trackers in the overall ranking out-

put for both challenges. In terms of speed, NCC was the

faster tracker (i.e., higher frame per seconds) followed by

KCFccs and sKCF. The proposed sKCF algorithm showed

the higher overall accuracy values (i.e., mean accuracy

value from all the sequences) and a lower failure rate for

the VOT 2015 dataset. In the VOT TIR dataset, NCC dis-

played the best accuracy values from all the implementa-

tions but with higher failure rate which translated into the

lowest overall rank from all the implementations. KCFc and

KCFccs had the same positioning above the KCF tracker but

at different speeds.

Table 1 shows the results obtained from the five trackers

in the VOT and TIR 2015 datasets. The tables display the

overall average accuracy and average number of failures in

all the sequences, with their accuracy, robustness and over-

all ranks. The tables also display the average tracker speed

given in frames per seconds (i.e., fps).
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Table 1. VOT and VOT TIR 2015 Results
VOT 2015

Overall Rank

Acc. Fail. Acc. Rob. Overall fps

sKCF 0.50 2.49 2.22 2.60 2.41 64.5

KCFc 0.49 2.58 3.19 2.64 2.92 49.8

KCFccs 0.49 2.58 3.19 2.64 2.92 71.2

KCF 0.47 2.61 3.29 2.68 2.99 24.4

NCC 0.48 11.34 3.18 4.43 3.81 78.5

VOT TIR 2015

sKCF 0.58 5.28 2.92 2.50 2.71 215.0

KCFc 0.57 5.40 3.32 2.52 2.92 180.8

KCFccs 0.57 5.40 3.32 2.52 2.92 216.3

KCF 0.56 5.66 3.40 2.65 3.02 94.8

NCC 0.65 9.52 1.98 4.80 3.39 262.3

Finally, we evaluate our proposed sKCF tracker on the

VOT 2014 dataset (i.e., 25 sequences). Table 2 summarizes

the top three ranked trackers. Our algorithm is the fastest

of the top trackers with competitive high accuracy and low

failure rates. We achieved similar results to the two varia-

tions of the original KCF that incorporate scale support (i.e.,

SAMF and KCF*). The KCF* tracker improves the original

KCF by adding a multi-scale support, sub-cell peak estima-

tion and replacing the model update scheme. We couldn’t

find details of this implementation nor publication with de-

tails of the improvements. The KCF* entry on the VOT

2014 submission only refers to the original KCF paper [11].

The last entry in Table 2 shows the KCF Matlab’s code [11]

results on the VOT 2014 challenge.

Table 2. VOT 2014 Results
Overall Rank

Acc. Fail. Acc. Rob. Overall fps

DSST 0.65 16.90 5.44 12.17 8.81 5.8

SAMF 0.65 19.23 5.23 12.94 9.09 1.6

KCF* 0.66 19.79 5.16 13.55 9.36 24.2

sKCF 0.61 18.44 7.68 13.14 10.41 65.4

KCF 0.56 27.14 13.14 18.02 15.58 20.3

5. Conclusion

We presented a very effective tracker based on the Kernel

Correlation Filter. We introduced a fast scale scheme to im-

prove on the KCF limitation of fixed template size. More-

over, the Gaussian window creates a better separation of the

target and the background improving accuracy. Fast HoG

descriptors, variable template size selection, and the CCS

packed format improved the overall run-time. The mod-

ifications to the KCF pipeline allows the use of different

kernel correlations as in the original paper [11]. The scale

estimation is independent of the framework and a different

approach could be adopted with our approach. The empiri-

cal evaluations on the Visual Tracker Benchmark and VOT

datasets demonstrate the validity of our algorithm. Our pro-

posed solution ranked among the top state-of-the-art track-

ers.
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