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Abstract

In this paper, a novel probabilistic Bayesian tracking

scheme is proposed and applied to bimodal measurements

consisting of tracking results from the depth sensor and au-

dio recordings collected using binaural microphones. We

use random finite sets to cope with varying number of track-

ing targets. A measurement-driven birth process is inte-

grated to quickly localize any emerging person. A new

bimodal fusion method that prioritizes the most confident

modality is employed. The approach was tested on real

room recordings and experimental results show that the pro-

posed combination of audio and depth outperforms individ-

ual modalities, particularly when there are multiple people

talking simultaneously and when occlusions are frequent.

1. Introduction

Person tracking has been extensively studied in the field

of computer vision, with various applications ranging from

surveillance, video retrieval and teleconferencing to human-

computer interactive activities such as video games. Person

tracking can be applied to different modalities, e.g. RGB

images [3, 11, 8], acoustic recordings [24, 14, 15, 6], depth

sensors [13, 22, 17], GPS and thermal sensors. There is

a consensus that different modalities are complementary

to each other, which has motivated an increasing interest

in cross-modal tracking in the last decade. Most of these

works are done in the audio-visual domain [25, 9, 10].

Combination of other modalities has recently started to be-

come more popular. For instance, [16, 23] tracks person

from both laser range and camera data; the work in [18]

fuses RGB, depth and thermal features; [27] reconstructs

3D scenes involving transparent objects, using a depth cam-

era and an ultrasonic sensor. Yet, there are some essen-

tial limitations associated with the existing mono- or cross-

modal person tracking methods. The mono-modal tracking

is not robust enough, while the cross-modal methods often

require a high hardware load.

To address the above limitations, we implemented a bi-

modal person tracking algorithm that combines depth and

audio cues. A time-of-flight depth sensor, i.e. Kinect for

Windows v2.0 [17], as well as a pair of binaural micro-

phones, i.e. Cortex Manikin MK2 binaural head and torso

simulator, are used for person tracking, which are respec-

tively denoted as Kinect2 and Cortex MK2, as shown on the

top right and top left of Fig. 1. Individually, both modalities

have issues. Audio measurements from Cortex MK2 suf-

fer from heavy background noise and the non-stationary na-

ture of speech. Moreover, they are unable to disambiguate

between front and rear sound sources. On the other hand,

depth cues from Kinect2 are affected by occlusions. By

exploiting the complementary between these two modal-

ities, our tracking method becomes more robust. Based

on the random finite set (RFS) theory, we propose a full-

probabilistic model for multi-person tracking. Particle fil-

ters are implemented based on Bayesian filtering [5, 2].

There are several contributions in our method. Firstly,

this is a seminal work in the fusion of audio and depth cues.

Secondly, the proposed method balances the bimodal dif-

ference in their structures and robustness, which evaluates

the validity of both streams and prioritizes the most confi-

dent modality. Thirdly, a measurement driven birth model

is used to quickly localize any emerging person.

The remainder of the paper is organized as follows. Sec-

tion 2 briefly introduces the RFS particle filters in person

tracking. Section 3 presents the overall frame work of our

proposed algorithm, and describes in detail the fusion of

depth and audio streams. Experimental results are shown

and analyzed in Section 4. Finally, conclusions and insights

for future research directions are raised in Section 5.

2. RFS-based particle filters

For single target tracking, the hidden state at time frame

k, e.g. the position and velocity of the target, is often rep-

resented via a vector xk. To generalize this problem to the

multi-object tracking problem, the hidden state is a finite-

set-valued variable Xk = {xk,1, · · · ,xk,Nk
} that contains

Nk targets, with each xk,i being the state vector associated

with the i-th target. When Nk = 0, Xk = ∅ denotes no

target being detected.

Xk can be estimated from a sequence of measure-
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ments [Z1, Z2, · · · , Zk] collected/extracted from the sen-

sors, where Zk = {zk,1, · · · , zk,Mk
} is also a finite-set-

valued variable. Note that Mk does not necessarily equal

Nk, and xk,i is not necessarily associated with zk,i. Some

measurements are clutter (false alarms) and some targets

may fail to generate any measurement.

Bayesian filtering [5, 2] is often applied in target track-

ing, which propagates the posterior density over time with a

recursive prediction and update process. It exploits the tem-

poral involvement as well as the relationship between the

underlying positions and the measurements, i.e. the state-

space approach. However, this problem might be intractable

if the state-space model does not satisfy certain restrictions.

Sequential Monte Carlo (SMC) [5] methods can be devoted

to its approximations, resulting the so-called particle filters

or bootstrap filters [1]. In multi-target tracking, the random

finite set (RFS) approach can be used, which takes into ac-

count the association uncertainty as well as spurious mea-

surements. More details on RFS-based particle filters are

available in [15].

3. Proposed method

Particle filters are applied to a sequence of measurements

for target tracking. These measurements are often features

extracted from the sensors, which are related to the underly-

ing target state. In this paper, we exploit the complementary

relationship between the audio and depth streams, which are

collected by Cortex MK2 and Kinect2 respectively. A novel

bimodal person tracking scheme is proposed, whose main

flow is shown in Figure 1.

Figure 1. Flow of the proposed audio-depth person tracking

method. Synchronized audio and depth measurements are col-

lected from Cortex MK2 and Kinect2 respectively. A RFS par-

ticle filter is then employed to these synchronized measurements

for person tracking.

Figure 2. The input angle (azimuth) of a target source in the hori-

zontal plane. A sound source arrives at the two ears via different

paths, resulting an inter-aural time difference. The input angle in-

creases from 0◦ from the nose anti-clockwisely.

We aim to find the relative angle of any person to Cor-

tex MK2 in the horizontal plane, i.e. the azimuth direction,

as shown in Figure 2. Being a one-dimensional measure-

ment, the azimuth direction is not as informative as 3D po-

sition, but it is of great importance to attention switching in

machine audition (e.g. for source separation and objectifi-

cation) or as an auxiliary measurement to handle occlusions

in computer vision. Azimuth estimation can be challenging

and in this paper we demonstrate the advantages of bimodal

tracking over mono-modalities.

In what follows, we will provide details about the mea-

surements methods and how they are fused together.

3.1. Audio­based likelihood function

The time delay of arrival (TDOA) cues are used as au-

dio measurements in our method. The phase transform

(PHAT)-GCC [12] method is applied to Cortex MK2 bin-

aural recordings. Suppose Lk(ω) and Rk(ω) are the short

time Fourier transforms (STFT) of the two audio segments

at time k. The PHAT-GCC function can be applied as:

C(τ) =

∫ ∞

−∞

Lk(ω)R
∗
k(ω)

|Lk(ω)R∗
k(ω)|

ejωτ dω, (1)

where the superscript ∗ denotes the conjugate operator and

| · | is a modulus operator. By finding peak positions in

PHAT-GCC, Ma
k TDOAs Za

k = {τk,1, · · · , τk,Ma
k

} can be

obtained as the audio measurements1.

Different positions (azimuths) yield different TDOAs.

We need to model the relationship between the audio mea-

surement with the azimuth, i.e. the audio likelihood func-

tion, which is complex due to reflections and diffraction of

the head. From off-line training, we notice there exists a

nonlinear relationship between the resultant TDOA τ and

the azimuth α, as shown in Figure 3. Firstly, the curve is

1The superscript a indicates audio. Similarly, the superscript d stands

for depth, and ad denotes audio-depth.
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Figure 3. Illustration of the relationship between the resultant

TDOA τ with the azimuth α. This was trained from off-line

recordings at 16 kHz and 48 kHz. The third-order polynomial

curve fitting is applied to model the audio likelihood function. We

lifted the curve at 48 kHz, and lowered the fitted curve via a shift

of 0.1 either way to improve visualization.

symmetric through the axis of 90◦ or −90◦. This is quite

understandable as TDOAs are ambiguous between front and

back. Secondly, TDOA from the front can be linearly fitted

with the input azimuth (from −90◦ to 90◦) using the poly-

nomial fitting:

τ = f(α) = p1α+ p3α
3 , (2)

and p1 = 2.405×10−6 and p3 = 1.807×10−2 are obtained

in the off-line training process.

For an azimuth from the back, a mapping function

map(·) can be applied to get its mirror reflection:

map(α) =

{

α, if |α| ≤ 90◦,
sign(α)(180◦ − |α|) otherwise.

(3)

Considering zero-mean additive Gaussian noise with

variance δa,2, we can model the audio likelihood as:

g(τ |α) = N (τ − f(map(α))|0, δa,2), (4)

where N (·) denotes the Gaussian distribution. This noise

term also relaxes the non-perfect fitting in Equation (2).

3.2. Depth­based likelihood function

As mentioned before, to get depth measurements, we

used the Kinect for Windows v2.0 time of flight sensor,

dubbed as Kinect2 in this paper. This sensor emits near

infra-red pulses and a fast infrared camera estimates depth

based on phase difference. The SDK provided by Microsoft

[17] includes a method that detects up to six people and es-

timates their pose based on a skeleton model with 25 joints.

It is based on a method that classifies each point in a point

cloud into a body part (hand, arm, elbow, forearm, etc.) or

as background, where their features do not match a body

part. This is done using simple depth comparison features

and a random decision forest (RDF). This RDF is trained in

with millions of samples of humans, combining real and

synthetic images, at a wide range of poses, with ground

truth labels annotated for each body part. The resulting la-

beled point cloud is spatially filtered and a post-processing

method fits up to six plausible human skeleton models to

the scene and generates the 3D position and orientation for

each body joint.

The center right sub-plot in Figure 1 shows detected

skeletons in a sample point cloud. Since our goal is to ob-

jectify speakers, we are interested in the location of their

mouth, which is close to the center of their head. We thus

use the position of the heads detected by Kinect2 SDK as

the 3D position of the sound sources.

A number of methods have been proposed to detect and

track people in depth images [26, 19], particularly those

generated using sensors based on structured light projec-

tion, such as the first version of Kinect. Although the full

pipeline implemented in Kinect2 SDK has not been dis-

closed, we have performed a set of preliminary experiments

comparing this method with other state of the art implemen-

tations available for 3D head tracking from depth measure-

ments, such as the method of Fanelli et al. [7] and RGB

methods, such as that of Saragih et al. [21]. Our quali-

tative observations indicate that the method implemented

in Kinect2 SDK robustly achieves state-of-the-art accuracy

in head position estimation. Since it has been designed to

work on living rooms, the range of distances where it op-

erates is optimal for our application, whereas other imple-

mentations available off-the-shelf have been optimized to

be used on web-cam scenarios, with a much smaller work-

ing distance range.

Despite its robustness, this method has some drawbacks.

Since it is based on a tracking-as-detection framework, it

does not incorporate a mechanism to handle occlusions

based on inference from tracking results. Occlusions cause

this implementation to lose measurements or to generate

noise outliers and to swap the identity of people being

tracked, as shown in Figure 4. It can also fail due to the lim-

its of its operational range: its field of view is of 70.6◦ and

the working distance between the sensor and targets ranges

from 1.2 meters to approximately 4.5 meters [17]. It also

fails in cluttered scenes or when people are close to each

other.

Further to detecting people, the Kinect2 skeleton detec-

tor also locates the binaural head and torso simulator (Cor-

tex MK2) automatically as a static person sitting at the cen-

ter of the room. By having the prior knowledge that the

Cortex MK2 is the audio recording device and that it re-

mains static, we can easily detect it by analyzing a sequence

of recordings in a pre-processing step. This enables us to

label it as a dummy and distinguish it from moving peo-

ple. It also enables us to project the 3D position of de-

tected humans to the polar coordinate system centered at

Cortex MK2. Since the head position is estimated in 3D

from Kinect2’s viewpoint, there is no front/back ambigu-
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Figure 4. Kinect2 tracking results for a person (Actor B) following

an L-shaped trajectory in the room of Figure 5. The target path that

this person followed is highlighted in blue lines. The cyan stars

show detected positions, which wiggles because the head actually

swings from side to side as this person walked. There is a cluster of

misdetected positions, i.e. this subject’s head was detected around

the dummy head position when he was occluded by the dummy.

Shortly after that, there was a period of consecutive frames where

the target is not detected because of this occlusion.

ity w.r.t. MK2 and the mapping of Equation 3 is not neces-

sary for depth-based cues. The obtained azimuth angle mea-

surements are used as depth-based observations, denoted as

Zd
k = {θk,1, · · · , θ

k,Md
k

}, i.e., in the remainder of this pa-

per, we assume that the pipeline that maps from depth im-

ages to azimuth angles relative to Cortex MK2 is part of the

measurement process.

As mentioned earlier, the head tracker is usually re-

liable, but occlusions introduce severe noise or missing

depth-based measurements, which we approximate using

the zero-mean additive Gaussian noise with variance, de-

fined as δd,2. Therefore, the likelihood of the associated

Kinect detection given an input angle follows

g(θ|α) = N (θ − α|0, δd,2) . (5)

3.3. Audio­depth fusion

As introduced in Section 2, RFS particle filters are ap-

plied to the audio and depth measurements. Their state

space model contains two essential parts: the dynamic

model and the measurement model.

3.3.1 Dynamic model

The dynamic model describes the temporal evolution of tar-

get states. For multi-targets, each state vector xk ∈ Xk at

frame k can either survive with probability Ps or die with

probability 1− Ps at the next frame. Let xk contain the in-

put angle α and the angular velocity α̇; the Largeiven model

can be utilized to model the relationship between a survived

target xk+1 and its previous state:

xk+1 =

[

1 T
0 e−βT

]

xk +

[

0

ν
√
1− e−2βTN (·|0, 1)

]

, (6)

where T is the time duration between two consecutive

frames; β and ν parametrize the motion model.

Moreover, a new target may be born in the searching field

with probability Pb. To quickly localize any appearing tar-

get, we propose a measurements-driven target birth model

as follows.

The current measurements Zk can be mapped to a group

of azimuths. We assume the birth model as is mixture of

Gaussian kernels, whose mean and standard deviation are

these mapped azimuths and 0.1 m. The velocity of newborn

targets is zero. Following that distribution, newborn targets

are enforced to those potential positions yielding the current

measurements. The proposed method can therefore quickly

localize any emerging target. A similar idea of adaptive

target birth intensity is used in [20].

3.3.2 Measurement model

The measurement or observation model describes the re-

lationship between the target state and the measurement.

From sections 3.1 and 3.2, we know the relationship be-

tween a single observed mono-modal feature and its associ-

ated single-target state. However, for cross-modal multi-

person tracking, we need g(Zk|Xk), where both the bi-

modal feature Zk and the multiple-target state Xk are set-

valued variables. From empirical study, we notice the az-

imuth estimates based on depth data alone has far fewer

outliers as compared to the audio stream. As a result, a

depth-dominant fusion scheme is proposed.

We assume there are up-to-two people in the searching

field. As a result, the hidden target state Xk can either be ∅,

{xk,1} or {xk,1,xk,2}.

When there is no detected target, i.e. Xk = ∅,

g(Zk|∅) =
(

P a
c

2τmax

)|Za
k |0
(

Pd
c

360

)|Zd
k |0

, (7)

where P a
c and Pd

c are the expected number of false alarms

at each frame, and | · |0 computes the cardinality of a set.

When there is one detected target, i.e. Xk = {xk,1},

g(Zk|{xk,1}) = p(Zk|∅)((1− Pd) + Pdg
ad(xk,1)), (8)

25



where gad(xk,1) = max(ga(xk,1), g
d(xk,1)) with

ga(xk,1) = max
z∈Za

k

g(z|xk,1)2τmax

Pa
c

using Equation (4),

and gd(xk,1) similarly using Equation (5). Pd is the chance

a target being detected.

When there are two detected targets,

g(Zk|{xk,1,xk,2}) = p(Zk|∅)((1− Pd)
2

+Pd(1− Pd)g
ad(xk,1)

+Pd(1− Pd)g
ad(xk,2)

+P 2
d g

ad(xk,1)g
ad(xk,2)).

(9)

Computational complexity of the above full-probabilistic

model becomes much greater with an increasing number of

targets. For efficiency reasons, we therefore constrain our

implementation to track up to two moving targets. To pri-

oritize the depth stream, we make P a
c greater than Pd

c . We

also evaluate the validity of the audio stream in each frame

via straightforward energy thresholding. If the audio frame

is invalid, i.e., the speech energy is very low, our model

is dynamically pruned by keeping only the depth term in

Equations (7-9).

4. Experiments

4.1. Recording setup

Our testbed is a TV/film studio set built following pro-

fessional media production standards, with furniture and

features of a relatively large hallway whose dimensions are

very similar to those of a typical living room: 244× 396×
242 cm. As with typical TV/film production sets, its ceil-

ing and one of the walls are missing, though this set was

assembled inside a larger room. The reverberation time of

this room is about 430 ms. In the recordings for our ex-

periments, the binaural microphone (Cortex MK2) stood in

the center of the room with ear height of 165 cm. The depth

sensor was placed around the center at the height of 170 cm,

329 cm away from the depth sensor, as shown in Figure 5.

The sampling rate for audio is Fsa = 44.1 kHz. The depth-

based head tracker has a sampling rate of Fsd = 27.43 Hz.

We used hand clapping at the beginning and end of each

recording session to synchronize these two streams. The

hand claps can be detected from the audio stream via energy

thresholding, and arm pose detection using skeletal tracker

from the depth stream.

Three sequences were recorded in total about 7.5 min-

utes, involving two actors: Actor A is a male, with height

of 1.82 m and Actor B is a female, 1.58 m. In the first

sequence, Actor A started at Position 1 (labeled with a yel-

low circle in Figure 5), facing the center, walking slowly

along the gray circular trajectory anti-clock-wisely, read-

ing randomly-selected sentences from the TIMIT database.

He walked back clock-wisely along the gray circle when

reaching Position 24. Actress B repeated this process with a

higher speed, and this was recorded in the second sequence.

In the third sequence, Actor A started at Position A, walk-

ing along the path A → B → A → D → A, facing

forward. At the same time Actress B started at Position

C, walking along the path C → D → C → B → C,

facing forward. Therefore, both actors followed L-shaped

paths (symmetric to each other, relative to the room), mov-

ing independently from each other, each walking at his/her

preferred pace while reading the material mentioned earlier.

This dataset is available from [4].

4.2. Implementation details

To obtain audio measurements, 8192-point (approxi-

mately 186 ms) Hamming windowed STFT with 0.75 over-

lap is applied. The time length between two neighboring

audio frames is therefore T = 139 ms. The candidate τ is

linearly sampled in the range of -1 ms to 1 ms (τmax = 1
ms) with the resolution of 1/Fsa. At each time frame, at

most two TDOAs are extracted as audio measurements.

Figure 6 shows the extracted audio measurements from

Sequences 1 and 3. Sequence 1 has only one speaker facing

the binaural microphone, while Sequence 3 has two speak-

ers and they do not face the microphone most of the time,

In addition, Sequence 3 contains heavy background noise.

To implement RFS-particle filters, the following param-

eters are used. The target survival chance is Ps = 0.99,

and a target birth chance is Pb = 0.02. Parameters in the

Langevin model are set as β = 10, ν = 10. The target

detection probability is Pd = 0.75, and the false alarm ex-

pectations are P a
c = 0.5 and Pd

c = 0.1. The mono-modal

likelihood functions in Equations 4 and 5 have the standard

variance of δa = 1/16 ms and δd = 5◦.

4.3. Results and analysis

4.3.1 Single person, audio-only features

Firstly, we tested the proposed algorithm on the first two se-

quences, using only audio features. In Sequences 1 and 2,

only less than 10 seconds occlusions is observed. In addi-

tion, when there is no occlusion, very accurate depth-based

tracking results are obtained except for only a few frames of

outlier. As a result, we manually corrected these outlier and

labeled the misdetected frames from the depth images when

occlusions happened to obtain the ground-truth, which was

down-sampled to the be synchronized with the audio mea-

surements on a frame basis.

Note that, the TDOA audio cues cannot distinguish a sig-

nal from front or back. For instance, the signal from 45◦

and 135◦ yields the same TDOA features. To address this

ambiguity, an audio range assumption of [−90◦, 90◦] was

imposed. In other words, we assumed the signal comes in
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Figure 5. Setup for data recordings. The 24 highlighted dots in a circle labels the positions used to model the relationship between different

input angles and the exhibited audio features.

front of the dummy head. The tracking results for Sequence

1 are shown in Figure. 7.

We then quantitatively evaluated the proposed method

for single speakers using only audio cues. Sequence 1 has

1282 audio frames in total, and the proposed method results

show that 1273 frames have one speaker, and 9 frames have

no speaker, caused by periods of silence. The standard de-

viation from the ground truth angle is 7.8◦. Sequence 2 has

599 frames in total, and the proposed method detected one

speaker in 573 frames and no speaker in 26 frames. In 109

frames out of 573, the angle estimation error was greater

than 30◦. These frames occurred in the beginning and end

of the recording session, when the target person was not

silent, and an interfering speaker outside the recording field

was talking. The standard deviation from the ground truth

angle in the remaining 464 frames is 10.6◦.

4.3.2 Single person, audio and depth features

Secondly, we tested the proposed algorithm on the first two

sequences, using both audio and depth features. The results

for Sequence 1 are shown in Figure 8. It can be observed

that the detected trajectory is of high quality as it almost

overlaps with the ground-truth.

We then did some quantitative evaluations. In Sequence

1, in all of the 1282 frames, one person was successfully

detected, with the deviation of 2.4◦. In Sequence 2, in all

but 2 frames one person was detected, with the deviation of

3.8◦. This can be observed in the sub-rectangle in Figure 8,

where we zoomed in a short segment of tracking results.

The converged results are very close to the ground-truth,

which proves the robustness of our proposed audio-depth

fusion scheme. Compared with the results using audio-

only features, the combination of audio and depth greatly

reduced the error.

4.3.3 Two people, audio and depth features

Finally, we tested our algorithm on the two people scenario.

Using audio-only features, the proposed method did not

converge since the audio measurements are too noisy. Us-

ing depth-only features, the outliers were removed, but oc-

clusions caused tracking loss. Using both audio and depth

features, we successfully tracked both speakers, as shown

for Sequence 3 in Figure 9. However, note that the iden-

tity of the speakers got swapped occasionally. This problem

can be solved by applying a simple filter in space-time, e.g.

by calculating the distance between detected person in two

consecutive frames. Our depth-audio results on Sequence 2

were also consistent with the walking trajectory described

earlier, demonstrating success with the fusion of depth and

audio cues.

5. Conclusions

We presented a method for multimodal tracking using

audio and depth features. TDOA features are extracted

from binaural recording (Cortex MK2); 3D positions from

a depth sensor (Kinect2) are mapped into 1D azimuth rel-

ative to Cortex MK2 as the depth features. The measure-

ments from both modalities are fused in a particle filtering

framework that enables birth and death of multiple tracks
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Figure 6. PHAT-GCC results and detected TDOAs from Se-

quence 1 and Sequence 3. The red-starred points denote the first

peak-related TDOA while the blue circles represent the second

one. The peaks in Sequence 1 are very smooth, which clearly ex-

hibits the speaker’s trajectory. However, despite some peaks being

related to the real positions in Sequence 3, many more false alarms

are obtained.
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Figure 7. Azimuth angles relative to the dummy head estimated

by the proposed method for Sequence 1, using only the audio fea-

tures. Since the audio features have the front and back confusion,

we imposed the input angle range of [−90, 90]. The blue dots

represent the ground-truth input angle. We symmetrically mapped

the angles at the back of the dummy head, i.e. [−180,−90) and

(90, 180], to the front. The mapped ground-truth is the gray curve.

The tracking results are represented via the red circles. Com-

parison between the tracked results and the mapped ground-truth

demonstrates the practicability of the proposed method, and the

adequacy of the previously-set parameters.
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Figure 8. Application of the proposed method to Sequence 1 us-

ing both the audio and depth features. The gray dots represent the

ground-truth input angle. The tracking results are represented via

the red circles. We noticed the tracking results almost overlapped

with the ground-truth. We have zoomed in a short segment high-

lighted in the rectangle.

using Random Finite Sets (RFS). These two modalities are

obviously very different and have very different levels of

confidence. We showed how to take that into account and

how they can complement each other. Our results show that

this combination clearly outperforms individual modalities,

particularly when there are multiple people talking simulta-
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Figure 9. Application of the proposed method to Sequence 3 us-

ing both the audio and depth features. The blue crosses represent

Actor B, and the red circles represent Actress A.

neously and when there is a significant amount of occlusion.

As future work, we plan to perform experiments on more

datasets, aiming to highlight the method’s potential to han-

dle birth and death of targets. We also intend to compare

our results against other tracking and fusion methods. The

RFS tracking framework is a principled way to simultane-

ously track a varying number of targets, but its complexity

grows as the number of targets increase. We suggest that

depth-based tracking results, including the detected targets

identities, should help us to design a modified version of

RFS, with lower complexity w.r.t. the number of targets.

We also plan to use the most confident modality to provide

strong priors on the birth and death of tracking targets.
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