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Abstract

Although 3D reconstruction from a monocular video has

been an active area of research for a long time, and the

resulting models offer great realism and accuracy, strong

conditions must be typically met when capturing the video

to make this possible. This prevents general reconstruction

of moving objects in dynamic, uncontrolled scenes. In this

paper, we address this issue. We present a novel algorithm

for modelling 3D shapes from unstructured, unconstrained

discontinuous footage. The technique is robust against dis-

tractors in the scene, background clutter and even shot cuts.

We show reconstructed models of objects, which could not

be modelled by conventional Structure from Motion meth-

ods without additional input. Finally, we present results

of our reconstruction in the presence of shot cuts, show-

ing the strength of our technique at modelling from existing

footage.

1. Introduction

In this paper we address the task of reconstructing a 3D

model of an a priori unknown object from unconstrained,

unstructured and discontinuous video such as broadcast

footage. With such generic input, this is a challenging

task, since the target usually occupies only a small portion

of the video frame and presents issues with both low res-

olution of the object and challenges with the background

(distractors in the scene and other, possibly similar, ob-

jects). This problem has been extensively studied by the

visual tracking community. We exploit recent advances in

tracking literature to handle this issue. Our dual-model ap-

proach allows us to coarsely model the object shape online

for target/background segmentation (following the track-

ing paradigm) and at the same time provide a high-quality

model (reconstruction) with super-resolution texture as the

output for subsequent applications.

The last decade has brought a previously unimaginable

boom in the applications of custom 3D models. To name

just a few, we confine ourselves to the examples of video

games and 3D printing. Recently, video games have ap-

Figure 1. The HILLCLIMB sequence, a broadcast video divided

into many sub-sequences by shot cuts. We provide an automatic

modelling algorithm working through these sub-sequences.

peared offering scanned, reality-based locations and assets

instead of manually modelled ones (such as ReRoll [2] or

The Vanishing of Ethan Carter [3]). Thus far, the creation

of the models has largely been in the hands of game devel-

opers, however this can be expected to change in the near

future. In the field of 3D printing, open-source, partially

self-replicating systems such as RepRap [15] have emerged,

making 3D printing of scanned models more accessible.

For such consumer-grade applications, there are differ-

ent scanning requirements than for a professional system.

High precision and realism are less important than accessi-

bility without specialised equipment, such as laser scanners

or camera rigs. Although software solutions exist to allow

the home user to create 3D models from consumer cam-

eras (VisualSFM, 123D Catch or Python Photogrammetry

ToolBox, to name a few), they have numerous limitations.

The scene needs to be strongly constrained: perfectly static,

with constant illumination, etc., and the object of interest

must be the dominant feature of the scene. While these re-

quirements can be met in cases of hand-held capture, they

are unrealistic to expect from existing footage or casual ev-

eryday settings. An example might be the reconstruction of

objects from broadcast footage, archive footage or online-

sourced videos.

As any camera is a line-of-sight device, a common arte-

fact in reconstruction are holes in the model where observa-

tions are absent and therefore no reconstruction is possible.

For hand-held capture the user can rescan these areas to get
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a watertight (i.e. closed surface with no holes) model with-

out the need to start the capture from scratch. However,

this is not possible for pre-recorded or broadcast footage;

as an alternative multiple shots could be combined, leading

to possibilities such as post-capture fusion and/or guided

model refinement. Figure 1 shows a broadcast video of a

rally race, where one car is followed through 18 shots (sub-

sequences). Furthermore, the car is very rarely the major

element of the scene as it typically covers only between 1

and 10 % of the frame. We show how our dual-model ap-

proach allows for successful modelling of this unstructured,

unconstrained, discontinuous video-sequence.

Our contributions are as follows. Firstly, we show a

novel technique for dense modelling of moving objects

(identified by a rough bounding box in the first frame)

in an unconstrained, unstructured scene, which actively

avoids background distraction by employing a dual-model

approach (Sections 4 and 5). Secondly, we show how it is

possible to combine evidence from different parts of discon-

tinuous video, effectively overcoming shot cuts (Section 6).

Finally, we demonstrate the abilities of our technique on a

challenging video-sequence (Section 7) and make both the

sequence and the resulting model publicly available (includ-

ing partial models leading to the final output) [1].

2. Related Work

The main difference between our approach and conven-

tional Structure-from-Motion (SfM) techniques is firstly its

online nature and secondly the active background segmen-

tation. While computing the overall scene geometry, SfM

extracts the dominant motion and discards outliers. How-

ever, as we mentioned earlier, the object of interest can eas-

ily be as small as 1 % of the frame area. In such a case

it is completely ignored by SfM algorithms and the back-

ground scene is reconstructed instead. Our algorithm, how-

ever, segments the object from the background, avoiding

such distraction. The same problem occurs in many recent

methods for monocular visual SLAM (Simultaneous Local-

isation And Mapping). SLAM relies on a static scene and

reconstructs its geometry and camera motion, while our ob-

jective is to reconstruct a 3D object as it moves between

multiple uncalibrated cameras. Furthermore, SLAM sys-

tems usually do not provide dense reconstruction of the

scene. See the rest of this section for particular relevant

techniques in recent literature.

As mentioned previously, one of the main differences

between our technique and conventional SfM is its on-

line nature. There have been several exploratory works

investigating online SfM, mostly aiming to provide feed-

back to a human operator, performing the scanning proce-

dure. While ProFORMA by Pan et al. [26] builds a par-

tial coarse 3D model by tetrahedration of a cloud of sparse

features to reveal unseen parts of a scanned object/scene,

the work of Hoppe et al. [13] goes further and provides

the operator with a redundancy map of the reconstructed

area. There have been numerous works using depth sen-

sors [18, 19, 25] and also commercial scanning software

such as Skanect [31], however these are out of scope of this

paper, as they cannot be applied to archive/broadcast data

and they limit portability.

Another related work is Dense Tracking And Modelling

(DTAM [24]), standing between SfM and SLAM. It offers a

real-time reconstruction of a static scene based on a monoc-

ular video stream, using a variational approach. As previ-

ously mentioned, all of these assume the modelled object

covers the majority of the scene and the distractors can be

avoided by a simple outlier rejection. As explained in the

previous section, this is not the case for a large portion of

video footage, which could be used for 3D reconstruction.

Modern approaches to monocular visual SLAM [23, 30]

try to remove this assumption. However, while increasingly

focusing on dynamic scenes, the main aim of SLAM is in-

creased robustness against occlusions. Although recent ap-

proaches such as ORB-SLAM [23] offer excellent perfor-

mance in cases of strong occlusion, the requirement that the

modelled target is the only part of the scene being preserved

in time is restrictive.

In the area of visual object tracking, 3D based ap-

proaches offer extraction of 3D shape and trajectory even of

objects represented only by a minority of the video frame.

Kundu et al. [20] use motion segmentation to track and re-

construct moving bodies in their SLAM pipeline. Feng et

al. [8] introduced the idea of 3D monocular tracking with

no offline modelling or training, using a colour-based seg-

mentation. To avoid the assumption of a distinctive colour

of the target object, TMAGIC by Lebeda et al. [21] used

machine learning techniques to model the 3D surface shape,

providing the segmentation. This also removes the need for

initialisation, making a bounding box in the first frame the

only user input. Our approach is partially inspired by these,

however two major differences exist. Instead of keeping

a cloud of features for the purpose of tracking, we aim to

extract as much spatial information as possible, to obtain

detailed models of the reconstructed object. Furthermore,

processing discontinuous sequences breaks the assumption

of small inter-frame motion, required by these techniques.

3. Algorithm Overview

The requirements of a 3D modelling algorithm are rel-

atively straightforward – maximal realism in reconstructed

shape and texture. To distinguish between the foreground

and the background, we build a partial model online dur-

ing processing of the video-sequence. This model, known

as the object model in tracking, has however a completely

different set of priorities. While we need only a coarse ap-

proximation of the shape, it is beneficial to have a confi-
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Figure 2. Flow of the proposed algorithm. See section 3 for description.

Figure 3. Sparse and dense model in our dual-model approach.

dence measure in every point of the model. Furthermore,

we need this model to smoothly extrapolate across unseen

areas, to create a compact, watertight surface at all times.

For this reason we employ a dual-model approach, building

a coarse, probabilistic model online during processing and a

fine, topological one, as an output from each (sub)sequence.

On the coarse level, we model the object shape as a Gaus-

sian Process (GP) in spherical coordinates. For the final

topological model, we have chosen a traditional triangular

mesh. See Figure 3 for a comparison of the two models.

The coarse model has much lower level of detail, no texture

and no explicit discrete vertices (the vertices for visualisa-

tion were sampled regularly in the angular space).

As visualised in Figure 2, the proposed algorithm con-

sists of three nested loops. The first, tracking loop, is per-

formed on a frame-to-frame basis and consist of tracking

of sparse and dense feature clouds and of estimation of

the camera pose based on these. The second, reconstruc-

tion loop, is performed only after some camera motion is

observed to achieve “keyframes” with equidistant camera

poses in the 3D space. This loop includes global joint op-

timisation of 3D feature clouds and camera poses (Bundle

Adjustment, BA), and an update of the coarse model. In

cases of continuous videos, this is followed by an extrac-

tion of the final model and its texture. In cases where the

video consists of several discontinuous shots, the model is

aligned with the first frame of the new sub-sequence and

used to initialise processing of this sequence in the outer-

most, re-initialisation loop. As the scene may contain many

different objects, the one of interest is marked by the user

by a bounding box in the first frame.

4. Online Dense Modelling

In this section, we explain the two inner loops. Firstly

the tracking loop with the features used and camera trajec-

tory estimation and secondly the reconstruction loop, where

the bundle adjustment is executed and the coarse model is

trained.

4.1. Tracking Keypoints and Camera

The standard approach in 3D reconstruction is to com-

pute the scene geometry based on sparse feature corre-

spondences and then triangulate a dense cloud as a post-

processing step. Alternatively, sparse features can be den-

sified by iterating expand and filter steps [10]. However,

in our approach we aim for online processing, returning to

earlier frames only for the purpose of texturing the obtained

model (see Section 5). Therefore, we take inspiration from

non-rigid SfM approaches (such as [9, 11]), which often

uses dense trajectories as a basic building block. Therefore,

in addition to long-living sparse features (keypoints), robust

to drift and providing long-term global geometric consis-

tency (including loop closures), we also use dense trajecto-

ries with a very limited life span. These features provide

mainly input data for modelling and they offer better cov-

erage and higher level of details in the reconstruction. The

idea of integrating multiple feature types has been explored

e.g. in [21, 29].

Figure 4 illustrates the life cycle of sparse features, with

transitions S1–S4. These are extracted from the image as

SIFT features (S1) and tracked from frame to frame using

the pyramidal Lucas-Kanade tracker. The currently esti-

mated coarse model is used for object/background segmen-

tation to filter the features. When the LK tracker cannot

converge, the feature is assumed to be invisible (e.g. oc-

cluded, S2). The same transition from the active to the in-

visible state happens when self-occlusion is detected. This

is indicated by local surface normals pointing away from

the camera when the currently estimated object model lies

between the camera and the features in the 3D space.

Similarly, if the surface normal indicates that an invis-

ible feature lies on a side of the object which is currently
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visible, a local redetection (S3) is attempted. An image

patch (extracted and stored from the frame when the key-

point is created) is warped to account for viewpoint change

and searched for in the current frame. This is done in the

neighbourhood of the expected (projected) position and size

again by Lucas-Kanade tracking (hence local; we discuss

global redetection in Section 6). There are also occasions,

when a feature can be invalidated and thus stop being used

(S4). This is when it becomes inconsistent with the remain-

der of the cloud in either its 2D motion or 3D location. The

2D motion is verified by the epipolar geometry computed

from all active features. The 3D location is verified by the

global 3D shape model. This is vital for the algorithm, as it

allows the rejection of background features without limiting

adaptation of the model.

Figure 5 illustrates the life cycle of dense features, with

transitions D1–D3. These are sampled from the image on

a regular grid (D1). The grid size is based on the image

resolution and required density of the model. There is a

trade-off between resulting quality and processing time, so

the sampling density can be used as a user-defined param-

eter. The dense trajectories are estimated on a frame-to-

frame basis from a CNN based dense optical flow (Fast-

DeepFlow [32]). This is prone to drift, thus we keep the

dense trajectories short (20 frames were used in out experi-

ments). For this reason there is no invisible state. Dense fea-

tures are either successfully tracked during their life span,

after which they are transferred (D2) into the archived state

or discarded as outliers (epipolar constraint, D3). Features

in the archived state are used for 3D modelling, but not

tracked any more.

The 3D trajectory and shape is reconstructed as follows.

From the 2D trajectories and respective 3D positions of the

features, the 3D trajectory of the camera is recovered using

an optimisation approach (conditional gradient method),

minimising the sum of robust squares of projection error.

In frame t, the camera Ct is obtained as

Ct = argmin
∑

q∈{S,D}

∑

Xi∈Xq

wqρ
(

||Ct(Xi)− x
t
i||

2
)

,

(1)

where ρ is a robust cost function and the flag q distinguishes

between sparse (S) and dense (D) features to choose the

appropriate weight (see below). Feature x
t
i has in the 3D

feature cloud Xq = {Xi} its correspondence Xi, which is

projected by the t-th camera as Ct(Xi). In order to achieve

online modelling, the whole system is regularly optimised

via bundle adjustment (BA), using solver [4]. If we denote

the set of all cameras as C = {Ct}, it can be formalised as:

C,X =argmin
∑

Ct∈C

∑

q∈{S,D}

∑

Xi∈Xq

wqρ
(

||Ct(Xi)− x
t
i||

2
)

,

(2)

The bundle adjustment is executed on keyframes of the tra-

jectory, equidistant in terms of 3D camera location.

There is a significant imbalance between the numbers

and importance of sparse and dense features. For this rea-

son, one might want to give them different weights (wS and

wD) during the process – in camera tracking, bundle ad-

justment, model creation, etc. In all these cases, we have

downweighed the dense features by a factor 0.01 in our ex-

periments. This reflects their numbers (usually 1–2 orders

of magnitude more than that of sparse features) and the no-

tion of dense features being omnipresent but less reliable.

4.2. Coarse Online Modelling

For online target/background segmentation, we train a

Gaussian Process (GP) as our coarse, probabilistic model.

The representation was chosen such that every point on the

surface is represented in spherical coordinates (θ, ϕ) rela-

tive to the object centre γ:

X = γ + r · (sin θ cosϕ, sin θ sinϕ, cos θ)
⊤

(3)

(for more details on the choice of γ see below). For any pair

of angles, the radius is modelled:

r = GP(θ, ϕ|κ) , (4)

where κ is the kernel of the GP. This means the object shape

is modelled by an implicit non-parametric function. While

one can query the surface in any direction, there is no dis-

crete “set of vertices” marking the shape. Instead, for vi-

sualisation we query the model at regularly sampled posi-

tions (see Figure 3, left). This, however, is not an obstacle

for its use in our framework. As training data, the 3D fea-

tures (sparse in both active and invisible states and dense in

archived state) are used.
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Figure 6. Star domain example in 2D. Left: Every region of the car

shape can be reached from the centre without crossing the bound-

ary, i.e. its shape is a star domain. Right: Since there are regions

unreachable by a straight line, it is not a star domain.

As mentioned previously, the Gaussian Process shape

model is fully probabilistic. That means that we have not

only a shape estimate, but a whole distribution of shapes

(radius functions). From this distribution we use the mean

(i.e. the most probable) shape as the estimate and the vari-

ance as the uncertainty at any given point of the object sur-

face. Other beneficial properties of Gaussian Process mod-

elling are high robustness to overfitting, smooth interpola-

tion and extrapolation in regions without training inputs. Its

non-parametric nature also makes it possible to model wide

range of object shapes and resolutions without the need for

reparameterisation. To specify rigorously what class of ob-

jects we are able to model, one needs to consider the proper-

ties of the spherical representation. Since the radius for any

given set of direction angles must be unique, there must ex-

ist a point inside the object, the shape centre, such that the

line segments connecting it to all the points on the shape

surface lie inside the object. This class of objects is known

in computational geometry as star shapes or star domains

(of a Euclidean space). See Figure 6 for 2D examples of ob-

jects which are and are not a star domain. While this choice

of parameterisation might seem overly limiting, in practice

most “compact” objects (without deep concavities or long,

extended parts) are of approximately star shape. Further-

more, it is not necessarily harmful for the final (polygonal)

model when the online model smooths over minor regions

which break this assumption.

Attention must be paid to the selection of the shape cen-

tre γ. While using simply the centre of mass is a viable

solution for many shapes, sometimes it lies too close to the

object surface, which leads to unwanted artefacts (see the

blue samples in Figure 7). Therefore we employ a data-

driven shape centre as follows. We use the centre of mass

of the training points only as an initialisation and then shift

the centre towards the midpoint between this and the cen-

tre of mass of the sampled points (trained with the previous

centre):

γnew = α
X+M

2
+ (1− α)γ , (5)

where α is a learning factor (set to 0.5 in our experiments)

Figure 7. Iterative search for the shape centre. Black: training data.

Coloured: shape centre (◦) and sampled points (×), iterating from

the centre of mass X (blue) to convergence (green).

and Mi is a point sampled on the surface model (visualised

as ×). See Figure 7 for a 2D illustration of the convergence.

It is necessary to repeat this search for the shape centre ev-

ery time the training data changes (after every bundle ad-

justment). However, it is not necessary to repeat all steps to

full convergence. Instead, we perform one step after each

bundle adjustment, which converges eventually as the (rel-

ative) magnitude of updates of the training data decreases.

One of the most important choices while designing a

technique using a GP is the choice of kernel (or combination

of kernels). The kernel choice represents our prior knowl-

edge about properties of the modelled function (in our case

surface shape), especially smoothness and differentiability.

One of the most commonly used is the RBF (Radial Basis

Function, also called Gaussian) kernel, which is infinitely

differentiable and therefore induces smooth shape contours.

This, however, causes artefacts in the shape, as the overly

smooth gradient exaggerates rapid radius changes. The

same holds for the Matérn kernel (of both common orders

3/2 and 5/2). For this reason, we employ the exponential

kernel, which allows fast changes in both the radius and its

gradient (which can even be discontinuous) and thus mod-

els sharp edges. This kernel is (additively) combined with a

bias kernel to avoid the assumption of zero-centred data and

with a white-noise kernel to gain robustness against outliers:

κ = κExp + κB + κW . (6)

Besides this choice of kernel, there are no other parameters

in the GP modelling.

As mentioned, we retrain the coarse model every time

the feature cloud changes, i.e. after every bundle adjust-

ment. This is then used in several different ways. The model

segments the video frame into the region occupied by the

target and the background. To test if an image location lies

inside the occupied region, we back-project this location’s

coordinates as a ray in the 3D space and intersect it with

the model. If such an intersection exists, the pixel location

would be inside of the projected image of the shape model

and we assume the point (e.g. a newly generated feature)
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C

Figure 8. Model intersection search example. The intersection

points (+) are initial 3D locations of the newly generated features.

C marks the camera centre.

is a part of the object. When the ray does not intersect the

model, it is assumed to belong to a background location in

the image.

Besides the object/background segmentation, we use the

intersections as an initialisation of the 3D locations of newly

generated features. These locations are later refined in bun-

dle adjustment. See Figure 8 for an intuitive example. Ad-

ditionally, the model gives us an estimate of surface nor-

mals, which is necessary for later reconstruction of the final

model. This is done by sampling several points in close

proximity to the location of interest (i.e. several orders of

magnitude below the object dimensions) and locally fitting

a tangent plane. Finally, this model, which is learned online

as the video-sequence is processed, can be shown to the user

as immediate feedback (analogous to [13, 26] with hand-

held or remote-controlled aerial recording) on how success-

ful the modelling has been thus far.

5. Model Extraction

The final model is the output of our approach, together

with the object trajectory (both in 2D and 3D). The model

needs to be explicit, i.e. consisting of particular samples

(vertices) and their relationships (edges). As with the coarse

model, we use sparse features in both active and invisible

states and dense features in the archived state for modelling.

When modelling an object from a continuous video, this is

the final stage of our technique. However, when a shot cut

is reached (which may be detected automatically [6]) while

processing the input sequence, we need to re-detect the ob-

ject, as part of the outer loop of our algorithm. This is where

the final, polygonal model extracted from the first sequence,

is used.

There are numerous approaches to reconstruct a sur-

face model from a set of scattered points, such as march-

ing cubes [22], ball pivoting [5] or methods based on Mov-

ing Least Squares [28]. For an extensive study we recom-

mend [33], evaluating a broad range of techniques and sum-

marising their properties. In this work we use the Poisson

reconstruction [16, 17], in its screened variant. Input points

and their normals are interpreted as samples of the indicator

function χ (resolving the inside/outside problem) and a vec-

tor function ~v, respectively. The implicit indicator function

χ is found as a solution of the Poisson equation, such that

its gradient ∇χ approximates the sampled normals ~v:

∆χ = ∇ · ∇χ ≈ ∇ · ~v . (7)

Poisson reconstruction provides a global solution to this ap-

proximation and hence to the reconstruction problem and

therefore smoothly fills even large gaps in the surface. This

is the main reason why it is used in this work, as we require

a watertight surface. The set of all the points on the model

(χ0-isosurface) is referred to as

M = {X|χ(X) = χ0} , (8)

where χ0 is chosen as the mean χ of the training points.

Once the shape model has been obtained from the 3D

feature clouds, its texture is extracted. To achieve this we

need to process the input sequence once more, project the

final model into every frame and interpolate the colour in-

formation from the video. For each pixel of the texture

we compute the colour as the median of the observations

from all frames (cameras V(X)) where the particular poly-

gon was visible:

T(X) = Median
Ct∈V(X)

(

I
t(Ct(X))

)

∀X ∈ M , (9)

V(X) = {C ∈ C |v(X|C)} , (10)

where v(X|C) is a function indicating the visibility of point

X by camera C. To avoid extracting unreliable informa-

tion, e.g. near the edges of the object, we require the angle

between the surface normal and the ray from the camera

centre to be below a given threshold (85◦ in our implemen-

tation). The texture is extracted at a resolution specified by

the user. With precise camera tracking and a high-detail

shape model, it is possible to sample points at resolutions

exceeding the original video, leading ultimately to a 3D

super-resolution model.

6. Modelling Across Video Discontinuities

Modelling thus far was limited to a single sequence

where small motions can be tracked at the feature level via

Lucas-Kanade. However, to build a compound model from

multiple sequences or over shot cuts in broadcast video we

need to combine information from discontinuous shots.

There are two basic approaches to this problem. Firstly,

the sub-sequences (shots) can be each processed indepen-

dently and the final models merged as a post-processing

step. While this has the advantage of not needing the

re-alignment of the partial model with every new sub-

sequence, there is the challenge of aligning the partial

meshes, which may have only a small overlap (as the parts

of the object visible in one shot may be mostly unseen in

others). Furthermore, the evidence in a single shot may not

24



be sufficient for even a partial reconstruction (e.g. due to

insufficient camera motion). Finally, this approach needs a

user-given initialisation for every sub-sequence. Another

possible approach is to re-detect the object at the begin-

ning of a new sub-sequence and continue processing from

that point, using the information gathered from the previ-

ous parts of the footage. This alleviates problems with in-

sufficient information present in any particular shot (except

the very first one) and no matching and alignment of par-

tial models is needed. However, the problem of aligning the

model gathered thus far with the new sub-sequence needs

to be resolved.

Since our aim is to provide an automated approach with

minimal user input, we employ the latter. Having a good

initial model also allows us to process sub-sequences which

otherwise would be intractable due to occlusions or camera

motion with too small baseline across the shot.

To achieve this, we first obtain a rough alignment of the

model with the first frame of the next sub-sequence (i.e. the

camera pose in that frame considering a fixed model), us-

ing our sparse feature cloud and keypoints independently

detected in the frame. On these 2D-to-3D matches, P3P-

RANSAC is executed. The inliers (consistent matches) to

the camera pose are taken as visible sparse features after the

reinitialisation.

Since we have the textured model, we can refine the pose

using every model point and not just a sparse subset. This is

done (using a conditional gradient method) as follows. We

define the brightness constancy constraint as:

T(X) = I
t
(

Ct(X|β∗)
)

∀X ∈
{

Xi ∈ M
∣

∣v(Xi|C
t)
}

,

(11)

i.e. for each visible 3D point X, its colour in the texture

T must be the same as the colour in the image I where X

is projected using camera C parameterised by the true (un-

known) β∗. We approximate the brightness constancy by a

first-order Taylor expansion. This gives us a simple equa-

tion:

T(X) ≈ I
t
(

Ct(X|β)
)

+∇I
t
JC∆β , (12)

which is similar to the optical flow constraint [14], includ-

ing the projection function and its Jacobian JC. We solve

via linear least squares for an unknown step in the camera

parameters ∆β. Since the formulation is in terms of inten-

sity and we typically work with coloured (RGB) images, the

total number of equations is 3 times the number of sampled

pixels. We initialise this optimisation with the solution of

the P3P-RANSAC and iterate until convergence, optimis-

ing the alignment of the textured model with the first frame

of the new sub-sequence. A multi-scale approach is taken,

solving on a blurred image in the early steps.

The new sequence is processed using this initialisation,

without the need for human intervention. The first step af-

ter the global re-detection is a local re-detection, to max-

imise the number of visible existing-model features used

and therefore the accuracy of camera pose estimation in the

first frames. After it has been processed, the new feature

cloud is integrated into the original one and a new, more

detailed and complete polygonal model is created.

7. Results

To evaluate performance of our algorithm, we first show

it in the short-term scenario, i.e. one continuous video

where the target is fully visible in all the frames. See

Figure 9 for example frames and our results on several

video-sequences used in recent publications. Model re-

gions, which were unseen in the original sequence and are

therefore untextured, are marked by bright green colour.

For comparison, we show reconstructions made by the

CMP SfM WebService [12] in Fig. 10. In the first column,

the reconstruction from the raw video can be seen, with only

a fraction of the car partially reconstructed. When sup-

plied with GT bounding boxes at every frame to segment

out the background and focal length estimates (provided in

C from our BA), it yields the model shown in the second

column. Our approach (last column) returns significantly

cleaner results automatically without such extensive user in-

teraction. We show the textured variant of our sparse GP

model (roughly equivalent to [21]) in the third column. An

example of an untextured resulting model is shown in Fig-

ure 3 and further in the supplementary video D (including

the sparse models).

To test the ability of the proposed algorithm to model

the geometry of long sequences including shot cuts, we

show the modelling results on multiple sub-sequences of

the HILLCLIMB sequence. As new shots are added to the re-

construction, the model becomes slowly more detailed and

complete. See Figure 11 for the results. The first sequences

Figure 9. Resulting models on sequences from literature with

varying resolution. From top to bottom: DOG1 (90 px [7]),

SYLVESTER (50 px [27]) and RALLY-VW (410 px [21]).
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Figure 10. Results on the RALLY-VW sequence. Top and bottom rows show the top and side views of models from the same method (the

bottom row is manually cropped for CMP results). Left to right: CMP SfM WebService [12] (raw video input); CMP SfM WebService [12]

with added information (top: whole scene, bottom: manually cropped); textured sparse GP model; full final model (proposed).

Figure 11. Progressive growth of the model after processing par-

ticular shots from HILLCLIMB. The first two models and the final

model are shown.

track the car mostly from the front, i.e. the rear parts are

missing information. However, the later addition of sub-

sequences covering the rear of the car incorporates these

missing regions.

One region which remains unmodelled after all the se-

quences are processed is the bottom of the model, which

is completely unseen. This is, however, an inherent prop-

erty of this dataset and cannot be addressed without human

intervention.

A natural way of processing the sequence is in temporal

order, i.e. the first shot first and then the rest as they follow.

However, changing the ordering can be beneficial. We used

one such heuristic for the ordering of the sub-sequences.

After breaking the original sequence into shots, we start

with the longest one, as it can be expected to yield the most

complete model. Subsequent sequences are then chosen in

the order of decreasing quality of alignment, i.e. we run

the P3P-RANSAC on all the sequences and choose the one

with the highest number of inliers (successfully matched

features).

In the supplementary material, additional results are

available in the form of videos. Furthermore, the original

data of the HILLCLIMB sequence will be published on the

authors’ website [1].

8. Conclusions

We have presented an algorithm for automated recon-

struction of 3D models from unconstrained, unstructured,

discontinuous videos. It provides a detailed, textured model

of an a priori unknown object with the only user input being

a single bounding-box initialisation of the object to be re-

constructed – even from videos consisting of several shots.

It actively avoids modelling the scene background, remov-

ing the assumption that the object of interest covers most of

the frame.

The modelling approach, as presented, has several limi-

tations. One of the major assumptions of this work is that

the target object is rigid. Extension to an unconstrained non-

rigid reconstruction is a planned subject of our future work.

Resolution of the video-sequence is another limiting factor.

While it is possible to obtain a 3D camera trajectory and a

coarse model of objects at resolutions as low as 320×240 px

(e.g. Sylvester in the eponymous sequence is approximately

50 px in size – see Figure 9), the resulting models are blob-

like with low levels of detail; therefore higher resolution is

recommended. Most of the examples shown in this paper

come from videos with the resolution 1280×720 px.

Finally, the reconstruction is thus far limited to star do-

main shapes (technically only in the case of the sparse

model, however the final model is influenced by this as

well). This may be addressed in the future work, for in-

stance using an intermediate reparameterisation layer.

In our future work, we would like to extend and gener-

alise our approach in several different ways. As already

mentioned, dense non-rigid reconstruction is one of our

long-term goals. Current approaches to non-rigid SfM usu-

ally use videos taken under very constrained conditions (e.g.

only one side of the object covered). Our aim is to allow re-

construction in any setting, with an unconstrained camera.
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