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Abstract

We present a novel approach to recovering the qualita-

tive 3-D part structure from a single 2-D image. We do

not assume any knowledge of the objects contained in the

scene, but rather assume that they’re composed from a user-

defined vocabulary of qualitative 3-D volumetric part cate-

gories input to the system. Given a set of 2-D part hypothe-

ses recovered from an image, representing projections of the

surfaces of the 3-D part categories, our method simultane-

ously perceptually groups subsets of the 2-D part hypothe-

ses into 3-D part “views”, from which the shape and pose

parameters of the volumetric parts are recovered. The re-

sulting 3-D parts and their relations offer the potential for

a domain-independent, viewpoint-invariant shape indexing

mechanism that can help manage the complexity of recog-

nizing an object from a large database.

1. Introduction

In the past 10 years, object recognition has been com-

monly formulated as object detection, whereby a strong

object prior “tests” whether a given configuration of im-

age features satisfies a particular model. However, as the

task of object detection gives way to the classical problem

of categorizing an unknown object from a large database

(with tens of thousands of models), a linear search through

the detectors (priors) is intractable. Instead, configurations

of causally related features must be formed in a domain-

independent manner – the problem of perceptual grouping.

When such groups carry enough information, they can be

used to query (i.e., index) a large database to yield a small

number of promising candidates that might account for the

groups. Only then should object priors, corresponding to

these candidates, be applied as detectors.

Domain-independent perceptual grouping is necessary

but not sufficient for indexing into an object category, for

the groups must be abstracted before they can be used as

effective indices into a space of generic models. Our pre-

vious work [22] recognized the need for a process that

abstracts 2-D contour features, bridging the gap between

noisy, exemplar-specific contours appearing in an image

and salient, categorical contours defining a model. We in-

troduced an image abstraction process that used a collection

of abstract 2-D part models (closed contours) to drive both

perceptual grouping and shape abstraction, yielding a cov-

ering of an image with a set of 2-D abstract part models.

The framework could be seen as a controlled shape “hal-

lucination” process, whereby the coarse shape of a noisy cy-

cle of contours was compared to a given part model. While

such abstraction is critical to bridging the gap between ac-

tual image features and true categorical features, such hal-

lucination can be highly ambiguous, for the more you’re

allowed to hallucinate, the more models you can “imagine”

from your data. As a result, [22] exhibited good recall but

offered poor precision. What was missing was an under-

standing of the interactions among the shapes, for they are

clearly not independent.

In this paper, we extend our previous framework [22]

in two very important ways. First, we exploit the interac-

tions of the 2-D shapes to yield a powerful set of constraints

that significantly improves precision. By thinking about the

problem in 3-D, we instead define the 2-D shapes as the

projections of the surfaces of a vocabulary of 3-D quali-

tative volumetric parts. Moreover, the surface adjacencies

of covisible sets of surfaces define aspects1 over these 2-D

shapes [8]. Figure 1(a) illustrates a simple example of a

set of three 3-D volumetric part categories, their space of

topologically distinct aspects, and the component faces of

the aspects. From an input image (Figure 1(b)), we use

the 2-D shape vocabulary to generate (using [22]) a low-

precision set of face hypotheses, as shown in Figure 1(c).

By exploiting the structure of the aspects, we gain a power-

ful set of constraints with which to select and group the hy-

potheses, yielding the maximum likelihood solution shown

in Figure 1(d).

In our second major contribution, we introduce a novel

aspect representation that allows us to learn a mapping from

1A 2-D aspect corresponds to a family of topologically equivalent

views of an object.
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(a) (b) (c) (d) (e)
Figure 1. Overview of the problem: (a) a user-defined vocabulary of 3-D volumetric part categories; by analyzing all possible views over

a large set of within-class deformations of the volumetric part categories, we learn a set of projected aspects along with their component

faces and relations; (b) original image; (c) using the framework of [22] trained on the component faces of the aspects, a “controlled

hallucination” process yields a set of abstract face hypotheses with low precision but high recall; (d) the topological relations (context)

between the component faces learned from the aspects provide a set of powerful constraints that are exploited in a probabilistic framework

that yields a maximum likelihood “covering” of the image in terms of the faces and aspects derived from the vocabulary, dramatically

improving precision; (e) we introduce a new aspect representation that allows us to recover the 3-D shape and pose of a volumetric part

from its recovered aspect.

the relative distortions of the 2-D parts (or faces) in a given

aspect to the actual 3-D shape and pose of the volumet-

ric part “behind” the aspect, as shown in Figure 1(e). In

effect, we extend [22] from a 2-D framework, whereby a

vocabulary of 2-D parts is used to drive a 2-D image ab-

straction process, to a 3-D framework, whereby a vocabu-

lary of 3-D parts (and their 2-D projections) is used to drive

a 3-D image abstraction process. The advantage of a 3-D

abstraction process is clear. If we can recover a configu-

ration of causally related 3-D parts, including their shapes

and poses, then whatever indices we compute over the con-

figuration are viewpoint invariant, supporting a database of

object-centered 3-D models, and offering the potential for

dramatic space and search complexity savings over view-

based object representations.

2. Related Work

The problem of 3-D volumetric part recovery from 2-D

and 3-D images has a rich history in computer vision in the

1970’s, 1980’s, and 1990’s, and includes such volumetric

abstractions as generalized cylinders [1, 4, 17, 14, 5, 20,

16, 26, 32], superquadrics [24, 18, 25, 10, 6, 12, 7], and

geons [8, 3, 21, 2, 19, 27]. For those approaches applied

to range data, the problem was well-posed. If one could

correctly segment, i.e., partition, the 3-D points into groups

representing parts, the fitting of a reduced 3-D model to the

points was typically heavily overconstrained, and some suc-

cess was achieved. However, for the 3-D from 2-D prob-

lem, success was typically limited to very simple (some-

times “toy”) scenes. The limiting assumption made by this

early generation of approaches was that there was a one-to-

one correspondence between extracted contours (or regions)

in the image and contours (or surfaces) on an abstract part

model. To assume that the projected contours and surfaces

of an abstract volume explicitly appear in the image con-

strained scenes to look more like collections of idealized

parts rather than real objects. The goal of recovering 3-D

volumetric shape from an image was an important one, but

the restriction of the early state-of-the-art to simple scenes

made it difficult to compete with the emerging appearance-

based recognition techniques (in the early 1990’s), which

could be applied to more ambitious scenes.

There’s been an important revival in interest in recover-

ing abstract volumetric parts from a single 2-D image, in

support of object recognition, scene understanding, or pose

estimation, e.g., [11, 23, 31, 9]. The good news is that un-

like their predecessors who worked on simple scenes, these

new approaches can deal with much more realistic scenes.

Unfortunately, this progress comes at the cost of restricting

the space of volumetric deformations (e.g., cuboids/blocks

without bending or tapering deformations), restricting pose

(e.g., upright cuboids/blocks), or assuming that key fea-

tures, e.g., corners or occluding boundaries, of the vol-

umes can be locally detected. While this new generation

of systems has definitely pushed well past their predeces-

sors, they’re still somewhat limited by the same assumption

limiting their predecessors: local features, learned or other-

wise, are in one-to-one correspondence with abstract model

features. In this paper, we present a novel framework that

tries to relax some of these assumptions and introduce some

new representational ideas that we hope can help the com-

munity return to this important problem.

3. Problem Formulation

Our approach begins by hypothesizing (or detecting) a

set of abstract 2-D faces representing the projections of 3-D

surfaces making up the volumetric parts in the vocabulary.

We adopt the abstract face detection approach of [22] which

consists of two steps: (1) from a training set of deformed

and noise-perturbed instances of faces sampled from a vo-

cabulary of 2-D part models, learn a set of contour classi-

fiers that can be used to efficiently search the oversegmented

region boundaries of the image’s region adjacency graph for

cycles whose coarse shape is similar to one of the model
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Figure 2. Problem Formulation: (a) input image; (b) output of abstract face detector learned from the projected surfaces of the volumes in

the vocabulary shown in (c); note that only a small subset of the detected faces is shown to ease visualization; (d) the face relational graph

over the detected faces: black nodes are face nodes, green nodes are relational nodes, solid edges are relational edges, and dashed edges

are selection edges; a relational edge between a face node and a relational node represents a pair of proximal faces that might represent

adjacent surfaces on a volume, a relational edge between two relational nodes represents a triple of proximal faces that might map to a

triple of adjacent surfaces on a volume, and a selection edge spans two nodes that account for the same image evidence, i.e., competing

face hypotheses; (e) we seek the maximum likelihood (ML) labeling of the nodes in the graph drawn from the face and relational labels in

(c); (f) from the ML labeling, we recover the 3-D shape and pose parameters of the volumes using a novel aspect representation.

parts; and (2) using an active shape model (ASM) trained

on the same vocabulary, regularize, i.e., abstract, the shapes

of the cycles to yield a set of abstract 2-D part hypotheses.

However, unlike [22], which trains their face detectors on a

vocabulary of deformed and noise-perturbed 2-D faces, we

train our face detectors on the projected surfaces of a vo-

cabulary of deformed and noise-perturbed 3-D volumetric

parts viewed from all possible viewpoints. A simple, illus-

trative example is shown in Figure 2. From an input image

(Figure 2(a)), a set of face hypotheses are detected using the

method of [22] (only a small subset of the face hypotheses

are shown to ease visualization), as shown in Figure 2(b).

The face detectors are trained on the projected surfaces of

the deformed and noise-perturbed instances of the volumes

shown in Figure 2(c), viewed from all possible viewpoints.

The face hypotheses and their relations are captured in a

face relational graph containing two types of nodes. A face

node represents a single face hypothesis (potentially) cor-

responding to the projection of an abstract volumetric part

surface, while a relational node represents the grouping of

two proximal face hypotheses (potentially) corresponding

to the projections of two adjacent surfaces of an abstract

volumetric part. Similarly, there are two types of edges in

the face relational graph. A relational edge connects a pair

of nodes (i.e., two relational nodes or a relational node and a

face node) that share a common face hypothesis, and is used

to enforce the local consistency of the labels of the common

face hypothesis across the two nodes that share it. A selec-

tion edge connects a pair of face nodes whose correspond-

ing face hypotheses have high area and contour overlap, and

is used to ensure that competing hypotheses are not simulta-

neously selected by an interpretation. Returning to our illus-

trative example, Figure 2(d) depicts the face relational graph

derived from the detected face hypotheses in Figure 2(b).

Black dots represent face nodes, green squares represent re-

lational nodes, solid lines correspond to relational edges,

and dashed lines correspond to selection edges.

Our challenge is to select, from among the low-precision

set of face hypotheses in the face relational graph, a set of

faces that represents the projected surfaces of volumetric

abstractions of the actual 3-D parts that make up the objects

in the image. We formulate this as a graph labeling problem

in which nodes are labelled according to the set of possible

face and relational labels derived from the volumetric part
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vocabulary (Figure 2(c)). A node’s label specifies a 3-D

interpretation of the 2-D part hypotheses represented by the

(face or relational) node. Let V be the set of all volumes

in the input 3-D part vocabulary, let A be the set of aspects

for all volumes in V , and let F be the set of faces for all

aspects in A. A label is represented as a 3-tuple (v, a, F ) ∈
V ×A×F indicating a particular volume v from the input

3-D part vocabulary, a specific aspect a of the volume, and a

list F of the particular faces in aspect a to be matched to the

part hypotheses. In the case of a face node label, |F | = 1,

and in the case of a relational label, F contains two adjacent

faces in the aspect.

Figure 2(c) shows some of the face labels (red) and re-

lational node labels (red-blue) derived from the simple 3-

part vocabulary; the labels for the single-face aspects of

the cuboid and cylinder and for the two-face aspect of the

cuboid are not shown. Note that there is a special face node

label ⊥, which indicates that the node’s face hypothesis is

not selected by the interpretation, i.e., it is deemed to not

correspond to the projected surface of a volume. Similarly,

there is a special relational node label ≁, which indicates

that the node’s face hypotheses are accidentally related, i.e.,

they do not correspond to the projections of adjacent, co-

visible surfaces in a volumetric part. Finally, because a re-

lational label defines two component face labels, we need a

mapping from a relational node label to the two face nodes

to which it is attached, as shown by the small red and blue

dots on the relational (green) nodes in Figure 2(d).

We use a conditional random field (CRF) model to com-

pute the consistent labeling of the graph that yields the 3-D

interpretation of the image that best explains the set of 2-D

face hypotheses given that they’re projections of surfaces

of volumetric parts drawn from the vocabulary. We define

a probability distribution over clique labels conditioned on

the shape and image data of their associated face hypothe-

ses, and we aggregate these conditional clique label proba-

bilities into a global probability model for the entire graph

label field. The graph labeling that maximizes this condi-

tional probability over the possible labelings yields a face

hypothesis selection (i.e., all surviving face nodes with a

label different from ⊥), a 3-D interpretation for them (indi-

cated by their labels), as well as a surface adjacency inter-

pretation (all surviving relational nodes with a label differ-

ent from ≁). Returning to our example, Figure 2(e) shows

the maximum likelihood labeling of the graph that corre-

sponds to the correct interpretation of the scene.

Finally, in order to efficiently recover the actual pose and

parameterization of each volume selected in a labeling, we

introduce a novel aspect representation and shape index-

ing mechanism that learns a mapping between a topological

collection of faces (and their shapes) and the surfaces on

a particular volume (and its orientation). We are therefore

able to infer, from a set of face hypotheses interpreted as a

particular aspect, the identity, parameterization, and orien-

tation of the volume whose surfaces project to the faces in

the group, as illustrated in Figure 2(f).

4. A Novel Aspect Representation

The aspect of a volumetric part in our vocabulary plays

a critical role in our framework. It specifies the relative

geometries of the faces making up the aspect, providing

a model against which a collection of proximal face hy-

potheses (extracted form the image) can be compared, i.e.,

a model which can be used to estimate the conditional prob-

ability of a graph clique’s label given the face hypotheses.

But how do we compare a configuration of face hypothe-

ses extracted from the image, i.e., an image aspect, with the

configuration of faces that make up a model aspect?

We seek a vector representation of an aspect which

would not only allow us to model the similarity of two as-

pects as inversely proportional to the distance between their

respective vector representations, but allow us to search a

large database of model aspects for the nearest neighbor as-

pect to the query aspect. Our vector representation must be

invariant to translation, planar rotation, and scale. More-

over, the mapping between the faces in an aspect and the

vector representation should be distance-preserving in that

similar aspects yield similar vectors and vice versa, and

continuous in that small perturbations to the relative ori-

entation, translation, and scale between the projected faces

in an aspect yield small perturbations in the vector. Finally,

we want the mapping to be flexible so that it can be applied

to any arbitrary vocabulary of 3-D parts and their aspects.

To meet these representational needs, we introduce a

novel aspect representation, called the aspect signature vec-

tor (ASV), as illustrated for a two-face aspect in Figure 3.

Formally, let F = f1, . . . , fK be the list of faces for which

an ASV is to be generated (K ≤ 3). Let d be a direc-

tion of face contour traversal (i.e., clockwise or counter-

clockwise) fixed a priori. Let Ck be an ordered list of T

equidistantly sampled points along the 2-D contour of face

fk (in the order resulting from traversing the contour in di-

rection d) and let C = C1, . . . , CK . The number T of sam-

pled contour points is fixed a priori and remains the same

for all faces and ASVs. (T = 12 in the example of Figure

3; in our experiments, we used T = 64.) This determines

a constant distance δk between adjacent sampled contour

points within each face fk. An ASV consists of the rasteri-

zation of (a cyclical rotation of) the coordinates of points in

C1, . . . , CK (in that order) expressed in a canonical 2-D co-

ordinate system determined by the same set of points. The

bottom-right of Figure 3 illustrates the rasterization of one

two-face aspect from among its many instantiations shown

immediately above.

The origin and orientation of the coordinate system used

to compute the ASV is computed from averages of contour
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Figure 3. Construction of an ASV space.

point coordinates, providing robustness to noise. The ori-

gin o of the coordinate system is set to the average center

of mass of all faces in F , and the coordinate system is ori-

ented such that its x-axis extends from o towards the cen-

ter of mass of face f1. The sampled points in each list Ck

are cyclically rotated such that the first point in each list

in the signature is the one that has the non-negative polar

angle (from the face’s center of mass in direction ~x) clos-

est to zero. (In case of ties, the point closest to the face’s

center of mass is selected.) Finally, the dimensionality of

the ASVs is reduced using PCA, as more than 99% of the

total variance of the ASV spaces generated in our imple-

mentation is explained by the top ten or fewer components;

in more than half of the spaces, three or fewer components

were enough. Figure 3 illustrates how the rasterization of an

aspect’s boundaries leads to an ASV, whose dimensionality

is then reduced.

In order to generate the ASV spaces, we discretely sweep

the space of parameters and viewpoints of each volume in

the vocabulary. Specifically, for each volume in the vocabu-

lary, for each of its parameterizations, for each of its possi-

ble aspects, and for each k-face subset of the faces compris-

ing the aspect, (with k ∈ {1, 2, 3}), we compute an ASV

for each possible 3-D volume orientation that yields the as-

pect. The ASVs for each distinct face subset are stored in

a geometric database, which can be efficiently queried to

yield nearest neighbors. Figure 3 shows how, for all possi-

ble viewpoints of a cube, the ASVs computed for the 2-face

subsets with the label “(cube, aspect with three visible faces,

front and side faces)” are stored in a geometric database.

We thus end up with a collection of ASV spaces, each rep-

resenting a different labeling, i.e., 3-D interpretation, of a

graph’s clique.

We refer to the set of abstract face hypotheses associated

ASV Space for

ASV(          )

(1)

(2)

(3)

( )                                 -
       

=d

Figure 4. Recovering the 3-D shape and pose of the volume given

the aspect label and the ASV of its component faces.

to a clique as the clique’s face configuration. Given a face

configuration Q and a clique’s label L involving as many

faces as |Q|, the distance between the ASV of Q and its

nearest-neighbor in the ASV space L is called the interpre-

tation distance of Q under L and is denoted dL(Q). The set

of distances between corresponding contour points on the

unrasterization of the ASV of Q and the unrasterization of

its nearest-neighbor in the ASV space L is called the inter-

pretation distance set of Q under L and is denoted DL(Q).
The interpretation distance sets of a clique’s face configura-

tion under all possible clique labelings are used as features

in the determination of the conditional clique’s label proba-

bility.

By associating each ASV in a label’s ASV space to the

shape and pose parameters of the volume used to generate

it, we are able to retrieve the closest 3-D model projecting to

a given face configuration when that label is assumed as the

correct interpretation of the face configuration, as illustrated

in Figure 4.

5. Grouping Faces into Aspects

We formulate the problem of grouping face hypotheses

into volumetric part aspects as a graph labeling problem in

which labels are assigned to the face and relational nodes

in the face relational graph. Finding the best volume-aspect

interpretation of the image is equivalent to finding the most

probable labeling of the graph conditioned on the image ev-

idence (in the form of a collection H of generated 2-D face

hypotheses and their associated image data) and the set S

of 3-D shape priors induced by the 3-D input vocabulary.

We model the graph labeling problem using a conditional

random field (CRF), and seek to maximize the conditional

probability p(L|S,H; Λ) over the label field L.

To keep inference and parameter learning tractable, we

consider only cliques of size at most two. There are five

possible types of such cliques in the face relational graph,

i.e., cliques formed by a single face node, by two face

nodes, by a single relational node, by a face node adjacent

to a relational node, and by two adjacent relational nodes.
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We note these types of cliques as f , ff , r, fr, and rr, re-

spectively. We set clique parameters Λ to depend only on

the type of clique and feature function, and so they are the

same for all cliques of the same type.
Our probability model thus becomes p(L|S,H; Λ) ∝

exp
[

E(L)
]

, where

E(L) =
∑

h∈Cf

[

λf φf (Lh) + λf φf (h, Lh)
]

+
∑

h∈Cr

λr φr(h, Lh)

+
∑

h∈Crr

[

λrr φrr(h, Lh) + ψrr(h, Lh)
]

+
∑

h∈Cff

ξff (Lh)

+
∑

h∈Cfr

ψfr(h, Lh), (1)

Cx is the set of face hypothesis configurations of cliques

of type x, Lh is the labeling of face hypothesis config-

uration h as defined by L, and the model parameters are

Λ =
{

λf , λ
f
, λr, λrr

}

.

We employ four types of feature functions in our model,

namely φ, φ, ξ, and ψ. The most important feature func-

tions are φ(L, S,H), defined over cliques of type f , r, and

rr, that score the quality of each clique’s label based on how

well the image evidence (configuration of 1, 2, or 3 face hy-

potheses) matches the model aspect specified by the label

(recall that a label is a 3-tuple (v, a, F ) ∈ V × A × F)).

Consider, for example, the top three nodes in the graph in

Figure 2(e), namely the face nodes corresponding to the red

and lime green faces and the relational node spanning them.

Now consider the relational node (clique of type r) and its

(correctly shown) label which represents two adjacent sur-

faces on the cuboid volume. The probability of this label

is inversely proportional to the distance between the aspect

signature vector of the abstract part hypotheses correspond-

ing to the two face nodes adjacent to the relational node and

the aspect signature vector of its closest matching model

aspect (from the ASV space of front-and-top-faces in the

three-visible-faces aspect of the cuboid model). Figure 4 il-

lustrates how this distance is computed (for a very similar

example).

Functions φwere implemented as conditional label prob-

abilities via AdaBoost classification, trained on image- and

shape-based features from a set of 159 manually annotated

images. The features used by these classifiers include: in-

terpretation distance sets (based on the ASVs of the 2-D

part hypotheses), which capture the agreement in shape be-

tween the part hypotheses and label 3-D interpretations, the

generalized boundary measure of Leordeanu et al. [13] as

a measure of contour saliency, and features assessing the

boundary complexity based on variations in curvature along

the contours. In the case of relational cliques, the employed

features asses the goodness of the contour alignment be-

tween the parts, including the distance between closest con-

tour points and the angle between normals at corresponding

points.

Features φ(L), defined as binary indicators of type f

clique’s labels being different from ⊥, are used to penal-

ize the selection of a large number of hypotheses in a graph

interpretation. The roles of the other feature functions are

to maintain label consistency. Features ξ(L1, L2), defined

over type ff cliques (i.e., two face nodes connected by a

selection edge), prohibit interpretations selecting more than

one face hypothesis competing to explain the same image

data, by having a value of minus infinity in that case, and

zero otherwise. Features ψ(L, S,H) enforce the local label

consistency of cliques of types fr and rr by having a value

of zero in cases of consistent labelings, and minus infinity

otherwise. A labeling of a type fr clique is consistent if ei-

ther the relational node is labeled ≁ or if the face node label

and relational node label assign the same volume, aspect,

and face interpretation to the nodes’ common face hypoth-

esis. A labeling of a type rr clique is consistent if either

at least one of the two relational node labels is ≁ or if the

face hypothesis common to both nodes is assigned the same

volume, aspect, and face interpretation by both relational

node labels and the two face hypotheses non-common to

both nodes are interpreted as different volume faces.

The generated graphs for the images in our training and

test datasets are rather small. The total number of consis-

tent labelings of a graph is highly constrained by its small

size, the modest number of relevant interpretations for each

node, the large number of constraints yielded by selection

edges, and the consistency requirements between adjacent

edge labels. Since the resulting number of consistent graph

labelings is small, we exhaustively generate all of them via a

dynamic programming approach. Perfect inference is thus

possible by computing the unnormalized probability (i.e.,

ignoring the partition function) of each graph labeling and

picking the one maximizing it. The small number of graph

labelings also makes parameter learning via maximum like-

lihood estimation simple, since it is possible to compute the

partition function in every case.

6. Evaluation

We now demonstrate to what extent our 3-D shape ab-

straction approach is able to recover the qualitative 3-D

shape of an object. Such an evaluation requires a 2-D image

dataset in which 3-D objects have been annotated with their

compositional abstract volumetric parts, drawn from a vo-

cabulary of qualitative 3-D shape models. To the best of our

knowledge, no existing dataset includes ground truth labels,

sizes, and poses of the qualitative volumes composing the

objects in the scene. Datasets with CAD annotations (e.g.,

[28], [15]) are inappropriate as they do not decompose ob-

jects into abstract 3-D parts.2 Moreover, we are not aware

2Note that we are not attempting to recover (or match to) CAD models

of entire objects. Rather, our aspects describe a finite vocabulary of ab-
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Figure 5. Left: original image; Middle: recovered volumetric

part; Right: ground truth.

stract parts that can be combined (in the spirit of Biederman’s RBC theory

[3]) to form an infinite number of objects.

of any competing 3-D shape abstraction from 2-D approach

that has been evaluated on any image dataset.

In the absence of an appropriate dataset, we created an

image dataset (which we will make publicly available) con-

taining 100 images of real objects extracted from Caltech

101 and Caltech 256, as well as the Internet.3 Each image

typically contains a non-degenerate view of a single object

appearing against a simple background and with no occlu-

sion; a number of objects have some texture and structural

detail. The prototypical shape of each selected object can

generally be described with a single abstract part. Some of

the images in the dataset can be seen in Figures 5 and 7.

The images in the dataset were annotated with ground truth

abstract volumetric parts (from a given part vocabulary) cor-

responding to the objects (or object parts) in the scene. The

3-D part vocabulary, used both in our experiments and to

annotate the dataset images, consists of cuboids, cylinders,

tapered cylinders, ellipsoids and bent ellipsoids.

Qualitative results from our approach are shown in Fig-

ure 5. The left column shows the original image. The mid-

dle column shows the final output of our system, i.e., the

set of 3-D volumes corresponding to the optimal labeling

of the face relational graph induced by the set of 2-D part

hypotheses generated from each image. Note that the con-

sistent cycles whose abstractions induced the visible faces

of the recovered volumes are displayed by dashed lines. The

right column shows the annotated ground truth volumetric

abstraction(s) for the image.

Notice the ability of our approach to recover volumet-

ric abstractions that do not overlap well with corresponding

image contours, e.g., rows 1, 2, 4, 8, 9 in Figure 5. Even

in cases where the object’s shape is close to that of an ideal

volume in the vocabulary, due to image region underseg-

mentation or noise, the actual detected consistent cycles,

which our approach ultimately uses, do not follow well the

volume’s contours, e.g., rows 3, 7, 10 in Figure 5. In some

cases, due to foreshortening or because adjacent object sur-

faces are not orthogonal, the resulting spatial layout of the

face hypotheses does not match well the projected faces

of the abstracted volume, e.g., rows 1, 4, in Figure 5. A

quantitative evaluation of the proposed approach on the test

dataset is displayed in Figure 6, showing the substantial im-

provement in precision and recall that our method achieves

over [22]. (The performance of our approach appears as a

single point due to the absence of a natural free parameter

in our model that could be varied in order to control the

trade-off between precision and recall.)

7. Limitations

There are a number of limitations of our abstraction

framework. To begin with, the process of perceptually

3Available at http://www.cs.toronto.edu/˜psala/

datasets.html.
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Figure 6. Quantitative Evaluation.

grouping abstract 2-D face hypotheses into aspects (from

which volumes are inferred) is limited by the quality of the

input set of face hypotheses. For each volumetric part in

the scene, we require at least one of its visible 3-D surfaces

to be unoccluded and to have a corresponding unoccluded

2-D face hypothesis in the input set.4 The block in Figure 2

illustrates an example in which only two of the three visi-

ble unoccluded surfaces have corresponding face hypothe-

ses (nodes) in the face graph, and the correct volume is still

recovered. Our 2-D part hypotheses are generated using the

method of [22], which provides a parameter (abstraction

tolerance) that controls the degree of “hallucination”; set-

ting it to a high value increases face recall at the expense

of lowering precision. Their method, in turn, relies on

an effective region oversegmentation, with undersegmen-

tation leading to false negatives. Background clutter and

rich texture are also problematic for their approach which is

based on simple color homogeneity-based region segmen-

tation methods that can yield unwanted oversegmentation

which, in turn, significantly increases the complexity of our

face relational graph and the resulting labeling problem.

Figure 7 exemplifies some of the limitations of our ap-

proach. Input images are shown in the first row, the sec-

ond row contains the image region segmentations passed

as input to [22], the volumetric abstractions generated by

our approach are displayed in the third row, and the fourth

row shows the ground-truth volumetric abstractions. In (a),

a typical error from a false negative 2-D part detection is

shown. The recovered volume is incorrect in this case;

namely, the elliptical face is interpreted as the projection

of an ellipsoid instead of the top face of a cylinder due to

the lack of contextual constraints from an undetected adja-

cent face. In (b), the detection of two false positive vol-

umes results from false positive 2-D parts, while the correct

4Unlike the object detection-based approach to aspect layout estimation

of Xiang et al. [29, 30], where knowledge of object categories is leveraged,

data-driven occlusion reasoning becomes a difficult problem in the absence

of categorical conditional feature distributions.

(a) (b) (c)

Figure 7. Limitations (see text for discussion).

2-D parts were not recovered due to region undersegmenta-

tion. The shape of the cycle representing the union of re-

gions corresponding to the “side” face of the pan, involving

the thin and long curved “arms” surrounding its opening on

both sides, was not sufficiently similar to one of the model

parts. Finally, in (c), we see an oversegmented volumetric

abstraction resulting from an oversegmentation of the top

face of the printer, in which a rectangularly-shaped consis-

tent cycle (dashed red) is grouped with the consistent cycle

(dashed blue) representing the printer’s front face.

8. Conclusions

Our probabilistic formulation of the abstract face hy-

pothesis selection and grouping problem (guided by the face

topology encoded in a set of model aspects), our introduc-

tion of a new aspect representation that can match a dis-

torted face configuration to a model one, and the resulting

shape and pose recovery of the volume “behind” the aspect

represent the major contributions of this paper. Our prelimi-

nary results indicate that there remains much work on many

fronts to overcome the many limitations of the approach.

But we strongly believe that as the community returns to

the classical problem of recognizing 3-D object categories

from a single 2-D image and the classical problem of recov-

ering blocks world-like 3-D parts from a 2-D image, it must

rely more on coarse shape and topology, for which we offer

a possible path for further exploration.
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