
Reconstruction of Articulated Objects from a Moving Camera

Kaan Yücer1,2 Oliver Wang2 Alexander Sorkine-Hornung2 Olga Sorkine-Hornung1

1ETH Zurich 2Disney Research

Abstract

Many scenes that we would like to reconstruct contain

articulated objects, and are often captured by only a single,

non-fixed camera. Existing techniques for reconstructing

articulated objects either require templates, which can be

challenging to acquire, or have difficulties with perspective

effects and missing data. In this paper, we present a novel

reconstruction pipeline that first treats each feature point

tracked on the object independently and incrementally im-

poses constraints. We make use of the idea that the unknown

3D trajectory of a point tracked in 2D should lie on a mani-

fold that is described by the camera rays going through the

tracked 2D positions. We compute an initial reconstruction

by solving for latent 3D trajectories that maximize tempo-

ral smoothness on these manifolds. We then leverage these

3D estimates to automatically segment an object into piece-

wise rigid parts, and compute a refined shape and motion

using sparse bundle adjustment. Finally, we apply kine-

matic constraints on automatically computed joint positions

to enforce connectivity between different rigid parts, which

further reduces ambiguous motion and increases reconstruc-

tion accuracy. Each step of our pipeline enforces temporal

smoothness, and together results in a high quality articu-

lated object reconstruction. We show the usefulness of our

approach in both synthetic and real datasets and compare

against other non-rigid reconstruction techniques.

1. Introduction

Reconstructing a static 3D scene from image sequences

has been an important research question for several decades.

In particular, structure from motion (SfM) [17] techniques

have been successfully used in a wide area of different ap-

plications such as localization, navigation, and image based

modeling, up to reconstructing entire cities from unstruc-

tured image collections [2].

Deforming object reconstruction, on the other hand, is a

widely studied, but still unsolved problem. Many deforming

objects, such as humans, animals and most human-made

machines, move in an articulated way, i.e. they can be ap-

proximated by a set of piecewise rigid parts connected by

Figure 1. Our technique automatically segments an articulated

object into its piecewise rigid parts (top), which are used to infer a

3D articulated model and its motion at each frame (bottom).

joints. This has spawned a lot of interest in the task of

articulated structure from motion (A-SfM).

One general solution to A-SfM is to use shape templates

and deform them to match the observed images [15]. How-

ever, these methods require detailed template and motion

models and cannot be easily generalized. A more generic ap-

proach is to track 2D points over a video, segment them into

articulated parts and apply factorization methods [14,38]. In

order to segment the input trajectories, such methods gener-

ally minimize an energy function, usually exploiting point

connectivity in 2D and modeling the object shape in 2.5D or

3D. Estimating shape models using 2D track connectivity is

cumbersome due to inherent ambiguities, and if good mod-

els cannot be estimated from point tracks, the result quality

degrades. Moreover, projective cameras cannot be modeled

easily, and partial point tracks require special attention.

Most proposed techniques assume that the cameras are

not calibrated and optimize directly for the objects shape and

motion. However, most real world scenes contain enough

static rigid components in the background to calibrate the

cameras using SfM techniques [1]. In this work, we make

use of calibrated cameras and propose a pipeline that initially

treats every 2D point track independently and incrementally

imposes rigidity and articulation constraints. Camera cal-

ibrations help us formulate the problem using perspective

cameras whereas previous work uses orthographic cameras.

1 28

In the first step, we show how 2D point tracks can be

directly used to infer 3D information by a trajectory smooth-

ness assumption without the need for a dual 2D-3D repre-

sentation. By transforming the problem domain, we can

model both object shape and point connectivity in a unified

3D framework. In a second step, we automatically segment

the 3D trajectories into piecewise rigid components using

a metric that depends on their relative positions along the

3D trajectories. After segmentation, shapes and motions of

these piecewise rigid components can be computed using

nonlinear optimization. We then automatically estimate a

skeleton for the object and the corresponding joint positions

between the segments, and finally constrain the optimization

using joint positions to ensure that connected components

remain connected after reconstruction (See Figure 1). This

incremental technique has the advantage of gradually adding

reliable information to approach the actual solution. This

way, we can avoid computing a fully unconstrained optimiza-

tion of all parameters, which is prone to local minima.

As input, our system takes a video of a dynamic articu-

lated object. We require the object to have enough texture

for computing point correspondences between frames. We

assume that the background contains enough static parts for

SfM to compute camera calibrations, which enables work-

ing with perspective camera models. Also, we require the

camera to move at a speed that is similar in magnitude to

object motion to compute its 3D shape and motion over time.

These requirements will be explained in Section 3.

Our specific contributions over previous works are (i) a

3D trajectory estimation from 2D tracks based on a smooth

manifold assumption that does not restrict motion to more

limited subspaces, (ii) an automatic segmentation of the tra-

jectories into piecewise rigid components without the need

for ambiguous 3D motion models, and (iii) a new nonlinear

optimization of kinematic constraints that connects the piece-

wise rigid components into a single articulated model which

is consistent with the observations in the input images.

2. Related Work

Template-based reconstruction. If a shape template of the

non-rigid object is available a priori, a full 3D reconstruction

can be computed by deforming the template using motion pri-

ors to match the current observation. This has been demon-

strated to work for estimating shapes of faces [7], sheet-like

inextensible surfaces [27] and poses of human bodies [6,15].

In our approach, we address the reconstruction of generic

articulated objects without the requirement of shape priors.

Non-rigid structure from motion (NRSfM). A more

generic approach is to directly reconstruct objects using

tracked points over a video or a photo collection. The main

idea is that the object motion is limited to a low dimensional

subspace. Factorization techniques have been used to re-

cover the shape and motion of a single rigid object [33], and

of deformable non-rigid objects [8, 9] by assuming that the

object shape is a linear combination of some basis shapes.

This factorization problem is under-constrained and the

non-rigid shape bases and coefficients cannot be recovered

uniquely. Different approaches have been proposed to re-

solve this ambiguity, e.g., using semi-definite programming

without the need for priors [12], using basis constraints [37],

3D shape prior models followed by iterative non-linear opti-

mization [10,11], or Gaussian priors on the object shape [34].

Hartley and Vidal [18] show that the NRSfM problem has a

closed form solution for perspective cameras. However, all

these methods use global shape models and quickly become

unstable in unconstrained, real-world acquisition scenarios.

We do not use 2D point tracks to compute the final shape

directly, but make use of calibrated cameras to lift the prob-

lem into 3D and solve it in this higher dimensional space.

Hence, we do not require any object shape or motion priors.

Other techniques [13,29,36] do not use global shape mod-

els and assume that the object consists of piecewise local

3D patches. However, they only reconstruct sheet-like de-

formable shapes and do not consider articulation constraints.

Articulated object reconstruction. Techniques that specif-

ically reconstruct articulated objects usually first segment

the object into its piecewise rigid components and then apply

factorization to compute the actual 3D shape. In order to seg-

ment the object, 3D motion models are computed from the

2D point tracks and the tracks are assigned to these models.

Seminal works in that area [35, 39] couple articulated

parts via joints and apply hierarchical factorization on this

structure with articulation constraints. Segmentation is done

via a RANSAC approach [35]. Paladini et al. [22] improve

these methods by applying iterative factorization. Yan and

Pollefeys [38] first compute a set of linear motion subspaces

from 2D tracks locally and apply spectral clustering using

an affinity matrix, which describes how well a track fits

into a model. However, this method is sensitive to noise in

the point tracks. Fayad et al. [14] segment the point tracks

into “overlapping models”, where a point track can belong

to multiple models, to understand the boundaries between

articulated parts better. This work has been extended with

additional energy functionals [30] to make the segmenta-

tion process more robust. Since the neighborhoods of point

tracks are estimated in 2D, computing good 3D shape mod-

els is difficult and often leads to misclassifications during

segmentation. These methods also require long point tracks.

In contrast, we first lift the problem to 3D and compute 3D

trajectories from 2D point tracks using a trajectory smooth-

ness assumption. These 3D trajectories can then be seg-

mented easily by simple distance metrics, which helps us

avoid the difficulty of computing good prior models from 2D

point tracks locally. Moreover, we do not require long point

tracks and do not need to deal with missing data explicitly.

29

Trajectory triangulation. Trajectory triangulation is a com-

mon method for reconstructing 3D trajectories from 2D

tracking data. First works in this area computed 3D tra-

jectories assuming the points moved on lines and cones [5],

on planes [31] and on polynomial 3D curves [20]. However,

these methods do not generalize to arbitrary object motions.

Akther et al. [4] assume that the point trajectories are a lin-

ear combination of discrete cosine transform bases, but they

require full visibility of point tracks over all frames. The

same bases were then used to describe point trajectories inde-

pendently [25], however this method required very fast and

random camera motions. This work was later extended [24]

for reconstructing smooth trajectories for articulated object

parts. However, an articulated trajectory can be computed

only if the 3D trajectory of the part it is connected is known

a priori. Also, manual labeling of point tracks is needed.

In our work, we do not constrain the point trajectories to

lie in a specific, and hence limited, motion subspace. Instead,

we directly optimize for a smooth 3D trajectory that explains

the 2D observations. These trajectories are then used to

compute the full articulated shape and motion.

3. Method

Our approach consists of the following steps. As input,

we require an image sequence of a moving, piecewise rigid

articulated object, with sufficiently many static components

in the background for calibration. We first compute camera

calibrations for each input view based on the static back-

ground elements using [1], and standard 2D point tracks on

the image sequence [32]. We then lift the 2D tracks to 3D

using a ray-space optimization, resulting in an animated 3D

point cloud with trajectories lying on smooth manifolds of

camera rays (Section 3.1). The 3D point clouds are then

automatically segmented into piecewise rigid components

using a weighted graph clustering approach based on dis-

tance variations between the 3D trajectories, and the shapes

and motions of these rigid components are computed using

non-linear energy minimization (Section 3.2). Lastly, we

introduce articulation constraints, connecting all rigid parts

via virtual joints computed from the data, and apply bundle

adjustment to the full articulated object (Section 3.3).

More formally, given a video stream represented by a

set of images I = {I1, ..., IF } and corresponding calibra-

tion matrices Pf , we compute a set of 2D feature points

W =
⋃

W t
f tracked over If with f ∈ {1, ..., F} and

t ∈ {1, ..., T}, where T is the number of point tracks. The

3D point cloud representing the articulated object over all

frames is denoted as S =
⋃

St
f , with each 3D point St

f

corresponding to a 2D feature W t
f . We incorporate visibility

information using the indicator variable V t
f , which equals

1 if a track t is visible on frame f and 0 otherwise. Hence,

we only consider W t
f with V t

f = 1 and recover only the 3D

points in frames where their 2D tracks are visible.

Figure 2. Illustration of our ray space optimization.

3.1. Ray­Space Optimization

The 3D trajectory of a point tracked in 2D is located on

the respective camera rays in 3D (see Figure 2). Formally,

given a point W t
f and the camera center Cf of view f , the

3D point St
f lies on the following line parametrized by µt

f :

St
f = Cf + µt

fD
t
f , (1)

where Dt
f is the direction vector that goes from Cf through

W t
f . All St

f ∈ S
t for a point track W

t lie on the manifold

described by these rays. There are multiple valid 3D paths

that project to the same point track, rendering the problem

highly under-constrained. However, since real world objects

usually move on smooth trajectories, we make use a temporal

coherence assumption between the 3D tracked positions in

neighboring frames and optimize the following energy:

Ers(S
t) =

F−1
∑

f=1

‖St
f − St

f+1‖
2. (2)

Plugging in Eq. (1) into the above energy results in the

following function, which only depends on µ
t =

⋃F

f=1
µt
f :

Ers(µ
t) =

F−1
∑

f=1

‖(Cf + µt
fD

t
f)− (Cf+1 + µt

f+1D
t
f+1)‖

2

(3)

As described in above, for each track W
t, we optimize the

above energy only for f where V t
f = 1, i.e. only for the

frames where the track is visible.

If a point is static, this energy function corresponds to

standard triangulation. However, if a point is moving faster

than the camera, this energy results in point trajectories

which are close to camera centers. In order to alleviate

this, we introduce weights ωt
f that approximate the amount

of motion for each tracked point. As the point and camera

motion are intertwined, we use the distance from the epipolar

line as a means to approximate the point motion. To that end,

we compute the epipolar line corresponding to W t
f in If+1

and measure the distance dtf between this line and W t
f+1

.

These distances are normalized between 0.1 and 1, and ωt
f is

computed as the reciprocal of dtf . Thus, our energy becomes:

30

Figure 3. Left: An input image from the Robot sequence. Right:

Renderings of the computed point cloud (in blue) and the ground

truth data (in red) from two different view points. Note that the

reprojection error is 0 due to the ray space optimization.

Ers(µ
t) =

F−1
∑

f=1

ωt
f‖(Cf+µt

fD
t
f)−(Cf+1+µt

f+1D
t
f+1)‖

2,

(4)

which now applies more weight to static parts of the point

tracks, thereby keeping the dynamic trajectories in the prox-

imity of the static points. This estimate cannot detect move-

ment along the epipolar axis, in which case it simplifies

to Eq. (3). However, we found that due to the soft nature

of the weighting scheme, it improves the accuracy of our

reconstructions in most practical scenarios.

The energy function above has some nice properties: First

of all, it is linear, and each point track is independent, making

it very efficient to minimize. Moreover, it does not force

the point tracks to lie on any motion subspace, and hence

can describe a diverse set of possible movements. By using

this optimization framework, we can get very efficient and

robust models of 3D shape and motion of the objects, as can

be seen in Figure 3 and the supplemental video.

3.2. Piecewise Rigidity Constraints

The ray space optimization results in a valid represen-

tation of the actual 3D object. However, point tracks and

camera calibrations can be imprecise, causing inaccurate

reconstructions, and excessive object motion can lead to dis-

tortions (see Section 4). Moreover, at this point we do not

have any higher-level information about the articulated struc-

ture of the object, but only have individually reconstructed

3D trajectories. To fix these issues, we introduce piecewise

rigidity constraints, which improve the results by enforcing

that the 3D trajectories belong to a piecewise rigid object.

The challenge in computing piecewise rigid reconstructions

is often in how to identify the parts that are rigid. Fortunately,

our initial reconstruction provides strong cues to segment

individual 3D trajectories into rigid components.

Segmentation. We first define a distance metric between

3D trajectories. The underlying intuition is that two points

belonging to the same rigid component move similarly, and

should be close to each other. For each pair of 3D trajectories,

Figure 4. Our 3D trajectories are used to automatically segment

the object into its piecewise rigid parts. 6 different segments are

identified in the above example.

we compute their average distance d(t, t′) over the frames

where they are both visible, as well as the variance v(t, t′)
of this distance. Our final distance metric is then a weighted

sum: e(t, t′) = d(t, t′) + αv(t, t′).

Using this metric, we build a graph structure where nodes

represent trajectories and the edge weights are the affinities

between trajectories. Affinities are computed from e(t, t′)
using a simple normal distribution function N(0, σ) where

σ is set to half the standard deviation of all distances. We

add edges for the 10 closest neighbors of each node in order

to maintain a sparse graph for computational efficiency. We

then apply recursive two-way spectral clustering on this

graph [38], repeatedly subdividing all clusters into two parts

until two criteria are reached: 1) all clusters have a lower

number of trajectories than T/k (where T is the number

of tracks and k is the number of expected clusters) and 2)

all clusters have a max(e(t, t′)) lower than a threshold. k
is an input, but does not have to be exact. It needs to be

close to the actual cluster number for a reliable segmentation.

Finally, too small clusters (i.e. T/100) are attached to the

closest clusters. See Figure 4 for segmentation results.

Piecewise rigid reconstruction. The segmentation step re-

sults in N objects whose motion can be defined by a rigid

transformation. This means that for each piecewise rigid

object, we can compute its shape Ω
n and a transformation

at each frame f , consisting of a rotation Rn
f and a transla-

tion Tn
f . We describe the point cloud Sf at each frame as a

combination of the objects:

Sf =
N
⋃

n=1

Rn
fΩ

n + Tn
f . (5)

We are interested in the 3D shape of the objects Ωn and their

transformations (Rn
f |T

n
f), such that when the 3D points

Sf are projected back to the images If , the reprojection

error is minimized. This way, we can find the best set of

articulated objects that describes the motion of the point

tracks observed in the frames. For the point tracks W t
f and

their corresponding 3D position St
f , we seek to minimize

the following reprojection error:

31

Figure 5. Results of the piecewise rigid reconstruction for the same

frame as in Figure 3. The overall reconstruction matches the ground

truth more closely, but errors in the chest and arm are still visible.

min
S

T
∑

t=1

F
∑

f=1

‖W t
f −Pf (S

t
f)‖

2. (6)

Combining this with Eq. (5) yields:

min
Ω,R,T

F
∑

f=1

N
∑

n=1

‖Wn
f −Pf (R

n
fΩ

n + Tn
f)‖

2, (7)

where W
n
f is the set of the feature points corresponding to

the 3D points in Ω
n, or, more formally, Wn

f =
⋃T

t=1
W t

f

such that St
f ∈ Ω

n.

This results in a non-linear optimization problem, which

we minimize using the CERES framework [3]. Similar to

prior steps, this energy is only optimized for (t, f) with

V t
f = 1. This step enforces spatial constraints on the point

tracks and results in partial objects that move rigidly between

different frames (see Figure 5 and the result video), provid-

ing robustness to trajectories starting and ending at arbitrary

frames. We additionally include a temporal smoothness con-

straint to force the object parts to have coherent trajectories:

min
Ω,R,T

F
∑

f=1

N
∑

n=1

‖Wn
f −Pf (R

n
fΩ

n + Tn
f)‖

2

+λ
F−1
∑

f=1

N
∑

n=1

‖(Rn
fΩ

n + Tn
f)− (Rn

f+1Ω
n + Tn

f+1)‖
2,

(8)

where λ is the temporal smoothness parameter. At each

iteration, points with high reprojection errors are marked as

outliers and filtered out, similar to standard SfM techniques.

3.3. Kinematic Constraints

The piecewise rigidity constraints generate object parts

that move rigidly between frames while adhering to the origi-

nal point tracks projected back to the input images. However,

there is no guarantee yet that parts connected via joints are

actually behaving as a kinematic chain in the reconstruc-

tion. In order to alleviate this, we introduce articulation

Figure 6. The final results for the same frame as in Figure 3. The

errors visible in the preceding steps have been decreased, and the

remaining error is more evenly distributed.

constraints. First, we compute a connectivity graph to esti-

mate the underlying skeleton structure, and then optimize the

individual components’ rigid motions by estimating virtual

joints that constrain the motion of connected components.

Skeleton estimation. We compute a graph where the nodes

represent the piecewise rigid components Ωn and the edges

describe a distance metric D. Intuitively, we expect the

distance between two connected components Ωn and Ω
m

to be low in general. Therefore we use the mean of the

minimum distances between them:

D(n,m) =
1

|F|

∑

f∈F

min ‖Sn
f − Sm

f ‖2, (9)

where Sn
f and Sm

f are the 3D points belonging to Ω
n and

Ω
m, respectively. The skeleton can then be estimated as the

minimum spanning tree of that graph.

Virtual joint estimation. A joint J can move arbitrarily in

3D space, but remains fixed in the local coordinate systems

of two rigid components Ω
n and Ω

m that are linked via

that joint. Additionally, when transforming the respective

local joint coordinates Jn and Jm to world coordinates they

should coincide:

Rn
fJ

n + Tn
f = Rm

f Jm + Tm
f . ∀f ∈ F

′. (10)

We can solve for Jn and Jm using linear least squares [19].

In case the two object motions are very similar, the least

squares solution will not be robust. We alleviate this problem

by constraining Jn and Jm to lie inside the bounding box of

Ω
n and Ω

m scaled by a factor of 1.5. We solve this using a

standard constrained linear least squares solver.

Joint aware parametrization. The joints can now be used

to restrict the motion of the piecewise-rigid parts. Since we

assume no prior knowledge about the object, we treat all

estimated virtual joints as universal joints, i.e., the position

of one rigid part is constrained with respect to the other,

but their rotations are independent. We express the world

positions of the objects Ωn in a hierarchical manner:

32

w(n, f,Ωn) =

{

Rn
fΩ

n + Tn
f if n is root

Rn
fΩ

n + w(p(n), f, Jn) otherwise

(11)

where p(n) is the parent of Ωn in the minimum spanning

tree. We plug this function into Eq. (7):

min
Ω,R,T

F
∑

f=1

N
∑

n=1

‖Wn
f −Pf (w(n, f,Ω

n))‖2, (12)

and solve it again using CERES. Eq. (12) combines rigid-

ity and kinematics. We also apply temporal smoothness

constraints similar to Eq. (8), leading to a global bundle ad-

justment with all constraints. Outlier rejection is applied as

in Section 3.2. Our final result can be seen in Figure 6.

4. Results and Experiments

In the following section we evaluate our method quantita-

tively on one ground truth synthetic dataset and on several

motion capture sequences. We also add qualitative evalua-

tion on several real-world datasets, with various comparisons

to state-of-the-art approaches. The result of running the three

steps of our algorithm on different datasets are shown in Fig-

ure 7. Please also refer to the supplemental video for a more

detailed demonstration of the moving 3D trajectories.

Parameters. Our algorithm requires three parameters. The

weight α for the segmentation distance metric is set to 0.1,

giving more weight to proximal points. The expected number

of segments k is chosen close to the actual values: 6 for Body

and Person datasets, 4 for Lamp and 14 for the Robot and

Skin data sets. The temporal smoothness weight λ is set to 5.

See our supplemental material for experiments with λ.

Comparisons. We compared our method against the fol-

lowing non-rigid reconstruction methods: trajectory space

(TRS) [4], metric projection (MP) [23] and column space

fitting (CSF) [16] on a synthetic ground truth dataset (See

Figure 6). We used the normalized reconstruction error [14]

defined as:

ER = ‖S− S
∗‖F /‖S

∗‖F , (13)

where S is the reconstructed 3D point cloud, S∗ is the ground

truth, and ‖S‖F corresponds to the Frobenius norm. The

results are shown in Table 1.

The above approaches are based on factorization and

make use of a low-rank assumption, and not all of them

support occluded points. For this reason, we compare only

using point tracks that are fully visible in the first 100 frames.

TRS MP CSF RayS Rigid Final

ER 0.1302 0.0654 0.0712 0.0389 0.0184 0.0092

Table 1. Comparison of the reconstruction error (ER) to three state-

of-the-art methods using the full tracks in the first 100 frames (i.e.,

occlusion-free tracks) for the synthetic Robot dataset.

As factorization based methods do not exploit calibrated

cameras but estimate them in their optimizations, we aligned

their reconstructions to the ground truth using procrustes

analysis independently at each frame, and chose parameters

that resulted in the lowest reconstruction error.

These results indicate that perspective effects and articu-

lated motion are challenging for these approaches, since their

assumptions about an underlying low-dimensional shape sub-

space are violated. It should be noted that, unlike previous

methods, our approach requires camera calibration matrices.

However, this requirement is often satisfied in real-world

capture scenarios with static background content, so that

off-the-shelf-tools can compute sufficiently accurate calibra-

tions. Exploiting this data enables more robust and accurate

results, especially using projective cameras. An additional

visual comparison to the method using trajectory-based pa-

rameterization [4] is shown in Figure 8.

We also perform a quantitative comparison of our method

to two articulated SfM techniques [14, 38]. We use the ’skin’

dataset from [26], a motion capture dataset with ground-

truth 3D positions, which was also used in [14] to compare

to [38]. We rotate a virtual perspective camera (using 5o per-

frame separation, similar to [28]) around the object, project

the 3D vertex positions into the virtual cameras, and then

use our method to recover the 3D coordinates. It is worth

noting that, our method works directly on perspective images,

while prior works [14,38] employ a simpler and less realistic

orthographic camera model for the reconstruction.

The dataset contains both full tracks, visible in all frames,

and partial tracks, which are visible only for a subset of

the frames. Since our method can handle both full and

partial tracks, we run our algorithm using all available tracks.

Qualitative results can be seen in Figure 9. We again use

Eq. (13) to compute the error. Our mean reconstruction error

is 5.51% over all 467 tracks, compared to 7.13% for [14]

over the same set of tracks. Since [38] can only handle full

tracks, only these were used in the reconstruction, and the

final error computed over 219 full tracks was 6.15% [14].

Note that for [38], each segment was aligned with the ground

truth independently (implying prior knowledge of the object

structure), which results in an unrealistically low error value.

Our method exhibits a lower reconstruction error and also

reconstructs 3D positions for both partial and full tracks.

In order to evaluate the first step (RayS) of our algorithm,

we made qualitative and quantitative comparisons with ex-

isting non-rigid reconstruction methods. First, we used the

point tracks and camera calibrations from [24] and recon-

structed 3D point trajectories. As shown in Figure 10, our

method yields more visually pleasing results, with faithful

reconstructions of the limbs. Moreover, we performed quan-

titative comparisons using the mocap data of [4], in which

objects undergo non-rigid, but non-articulated motions. We

used the humanoid objects for our comparison, and again

33

Ray space Piecewise Rigidity KinematicsInput
B

o
d
y

Pe
rs

o
n

R
o
b
o
t

L
am

p

Figure 7. Results of our algorithm on one synthetic and three real datasets. For each dataset, we show reconstructions from two different

viewing angles and at two points in time. Note that the amount of noise is reduced and the articulated motion becomes more realistic as we

proceed through our pipeline. Kinematic constraints make it possible to keep piecewise rigid pieces together, such that the resulting 3D

reconstructions are physically plausible. We show the results of the last step with and without the skeletons for a better visualization.

rotated a perspective camera around the object to project

the 3D vertex positions. We varied the per-frame camera

separation for our algorithm between 3o and 8o, simulating

different camera speeds. In Table 2 we compare our error

to three state-of-the-art techniques for NRSfM: CSF [16],

SPM [12] and EM-PND [21]. In order to be consistent with

the comparisons, we changed the Frobenius norm in Eq. (13)

to the L2-norm, as is used in [21]. It can be seen that our

errors decrease steadily as the per-camera separation and the

camera speed increase, which leads to more robust triangu-

lation of trajectories. Eventually, our results surpass other

methods. Due to the low number of points in these datasets,

we only applied our RayS step. Given more points, the result

quality could be further improved using articulation con-

straints. Since our method does not rely on specific camera

paths, any camera motion could be used for this comparison.

We chose rotating cameras since they enable easy simulation

of different camera speeds with similar viewing angles.

Timing. Most steps of our method are efficient, with the

nonlinear optimization of rigid components being the most

computationally expensive. The time required by our algo-

rithm depends on the number of frames and point tracks.

We present timings on a desktop with 3.2 GHz Intel proces-

sor and 32 GB RAM in Table 3. Note that our Matlab and

CERES implementations use only a single core. All steps

can be greatly optimized using CPU & GPU parallelization.

Limitations and Future Work. The quality of our initial

ray-space optimization depends on the relative speed of the

point tracks vs. the camera motion. It requires the majority

of observed motion to be camera translation as opposed to

object motion. In the extreme case of a static camera, all rays

will converge at the center, yielding a trivial solution. This

situation is unavoidable, as 3D pose is ambiguous without

prior information. Despite this, we found that our RayS step

computes accurate trajectories for initialization.

34

Akhter et al Ours

Figure 8. Comparison of our result to prior work [4] on our synthetic

dataset. Our algorithm reconstructs the shape more faithfully due

to the articulation constraints and perspective camera models.

Ours vs GT Segmentations

Figure 9. Our results on the ’skin’ dataset from [26]. On the left,

we show our reconstructed point cloud (blue) vs the ground truth

point cloud (red) for a frame from two different viewpoints. On the

right, we show how our segmentations from the same viewpoints.

See the accompanying video for additional visualizations.

When dealing with real-world data, the availability of

point tracks is very important, and on untextured objects, we

cannot create 3D reconstructions. However, our RayS step

can work with a low number of tracks, as it treats them indi-

vidually. Furthermore, lost point tracks due to occlusions are

a common issue with free camera movement. Our approach

is robust to new tracks and occlusions, but considers only

contiguous tracks. Re-detecting and connecting tracks after

occlusions is an interesting future work.

Compared to most existing techniques, our method re-

quires camera poses to be computed a priori, which can

be computed in many cases from static backgrounds using

SfM. Excessive motion in the background can degrade SfMs

performance. However, these poses can be used to gener-

ate better reconstructions using realistic perspective camera

models. Extending our technique to be used without camera

poses is an interesting area for future work.

5. Conclusion

In this work, we have presented an automatic method for

3D reconstruction of articulated motion from video taken by

a single moving camera. Our approach consists of three main

stages; a novel, efficient ray-space optimization, piecewise

rigid reconstruction, and finally a fully articulated recon-

struction. Our ray-space optimization both serves as a robust

Park et al OursInput

Figure 10. Comparison to [24], with two viewpoints on 3D points

for both frames. There is less distortion on the arms in our result.

CSF SPM EM-PND RayS - 3o RayS - 5o RayS - 8o

walking 0.0708 0.0861 0.0465 0.1038 0.0636 0.0363

yoga 0.0226 0.0224 0.014 0.0378 0.0167 0.0115

stretch 0.0219 0.0288 0.0156 0.0335 0.0221 0.0117

pickup 0.0607 0.0356 0.0372 0.0333 0.0248 0.0141

drink 0.0123 0.0216 0.0037 0.0063 0.0037 0.0020

dance 0.1349 0.1454 0.1834 0.1697 0.1020 0.0693

Table 2. Comparison of the reconstruction error of RayS versus

other non-rigid reconstruction techniques for different per-frame

separations. The error values for the other methods are taken

from [21]. Green cells are marked as the ones with the lowest

error, and blue cells with the second lowest error. The effect

of the camera speed can be seen in these examples by comparing

our approach with different per-frame separation. Ours is the only

approach using a perspective projection of the ground truth points.

Method Time

Ray-space optimization (Section 3.1) 10 sec

Segmentation (Section 3.2) 3 min

Piecewise Reconstruction (CERES) (Section 3.2) 35 min

Joint Computation (Section 3.3) 30 sec

Articulated Reconstruction (CERES) (Section 3.3) 75 min

Table 3. Runtimes of our different steps for the Person dataset with

300 frames, 6 articulated parts and 5000 point tracks.

initial solution for the object shape and helps with automati-

cally segmenting the object into respective rigid components.

By consecutively adding articulation constraints, we can re-

construct the full shape and motion of the 3D object. Our

technique is able to deal with large camera motions, perspec-

tive cameras, sparse point tracks and self-occlusions. We

hope that the ideas presented in this paper provide a new per-

spective on the problem of articulated object reconstruction.

Acknowledgements

We are grateful to Joël Bohnes for helping with the imple-

mentation and Maurizio Nitti for generating the Robot data

set. We thank Ijaz Akhter, Lourdes Agapito, João Fayad,

Yuchao Dai and Jingyu Yan for sharing their code and data

with us. Lastly, we thank the authors of [4,16,23,24,26] for

making their code and data sets available online.

35

References

[1] VisualSFM : A Visual Structure from Motion System. http:

//ccwu.me/vsfm/. [Online; accessed 09-Nov-2014].

[2] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless,

S. M. Seitz, and R. Szeliski. Building rome in a day. Commun.

ACM, 54(10):105–112, 2011.

[3] S. Agarwal, K. Mierle, and Others. Ceres solver. http:

//ceres-solver.org.

[4] I. Akhter, Y. Sheikh, S. Khan, and T. Kanade. Nonrigid

structure from motion in trajectory space. In NIPS, pages

41–48, 2008.

[5] S. Avidan and A. Shashua. Trajectory triangulation: 3d recon-

struction of moving points from a monocular image sequence.

IEEE PAMI, 22(4):348–357, 2000.

[6] A. O. Balan and M. J. Black. An adaptive appearance model

approach for model-based articulated object tracking. In

CVPR, 2006.

[7] V. Blanz and T. Vetter. A morphable model for the synthesis

of 3d faces. In SIGGRAPH, pages 187–194, 1999.

[8] M. Brand. Morphable 3d models from video. In CVPR, 2001.

[9] C. Bregler, A. Hertzmann, and H. Biermann. Recovering

non-rigid 3d shape from image streams. In CVPR, 2000.

[10] A. D. Bue. A factorization approach to structure from motion

with shape priors. In CVPR, 2008.

[11] A. D. Bue, F. Smeraldi, and L. de Agapito. Non-rigid struc-

ture from motion using ranklet-based tracking and non-linear

optimization. Image Vision Comput., 25(3):297–310, 2007.

[12] Y. Dai, H. Li, and M. He. A simple prior-free method for non-

rigid structure-from-motion factorization. In CVPR, 2012.

[13] J. Fayad, L. de Agapito, and A. Del Bue. Piecewise quadratic

reconstruction of non-rigid surfaces from monocular se-

quences. In ECCV, pages 297–310, 2010.

[14] J. Fayad, C. Russell, and L. de Agapito. Automated articu-

lated structure and 3d shape recovery from point correspon-

dences. In ICCV, pages 431–438, 2011.

[15] A. Fossati, M. Dimitrijevic, V. Lepetit, and P. Fua. From

canonical poses to 3d motion capture using a single camera.

IEEE PAMI, 32(7):1165–1181, 2010.

[16] P. F. U. Gotardo and A. M. Martı́nez. Computing smooth

time trajectories for camera and deformable shape in structure

from motion with occlusion. IEEE PAMI, 2011.

[17] A. Hartley and A. Zisserman. Multiple view geometry in

computer vision (2. ed.). Cambridge University Press, 2006.

[18] R. Hartley and R. Vidal. Perspective nonrigid shape and

motion recovery. In ECCV, 2008.

[19] A. Hornung, S. Sar-Dessai, and L. Kobbelt. Self-calibrating

optical motion tracking for articulated bodies. In VR, 2005.

[20] J. Y. Kaminski and M. Teicher. A general framework for

trajectory triangulation. Journal of Mathematical Imaging

and Vision, 21(1-2):27–41, 2004.

[21] M. Lee, J. Cho, C. Choi, and S. Oh. Procrustean normal

distribution for non-rigid structure from motion. In CVPR,

pages 1280–1287, 2013.

[22] M. Paladini, A. D. Bue, M. Stosic, M. Dodig, J. M. F. Xavier,

and L. de Agapito. Factorization for non-rigid and articulated

structure using metric projections. In CVPR, 2009.

[23] M. Paladini, A. D. Bue, J. M. F. Xavier, L. de Agapito,

M. Stosic, and M. Dodig. Optimal metric projections for de-

formable and articulated structure-from-motion. IJCV, 2012.

[24] H. S. Park and Y. Sheikh. 3d reconstruction of a smooth

articulated trajectory from a monocular image sequence. In

ICCV, 2011.

[25] H. S. Park, T. Shiratori, I. Matthews, and Y. Sheikh. 3d recon-

struction of a moving point from a series of 2d projections.

In ECCV, pages 158–171, 2010.

[26] S. I. Park and J. K. Hodgins. Capturing and animating skin de-

formation in human motion. ACM Trans. Graph., 25(3):881–

889, 2006.

[27] M. Perriollat, R. I. Hartley, and A. Bartoli. Monocular

template-based reconstruction of inextensible surfaces. IJCV,

95(2):124–137, 2011.

[28] A. Rehan, A. Zaheer, I. Akhter, A. Saeed, M. H. Usmani,

B. Mahmood, and S. Khan. Nrsfm using local rigidity. In

WACV, pages 69–74, 2014.

[29] C. Russell, J. Fayad, and L. de Agapito. Energy based mul-

tiple model fitting for non-rigid structure from motion. In

CVPR, pages 3009–3016, 2011.

[30] C. Russell, R. Yu, and L. de Agapito. Video pop-up: Monoc-

ular 3d reconstruction of dynamic scenes. In ECCV, pages

583–598, 2014.

[31] A. Shashua and L. Wolf. Homography tensors: On algebraic

entities that represent three views of static or moving planar

points. In ECCV, 2000.

[32] J. Shi and C. Tomasi. Good features to track. In CVPR, pages

593–600, 1994.

[33] C. Tomasi and T. Kanade. Shape and motion from image

streams under orthography: a factorization method. IJCV,

9(2):137–154, 1992.

[34] L. Torresani, A. Hertzmann, and C. Bregler. Nonrigid

structure-from-motion: Estimating shape and motion with

hierarchical priors. IEEE PAMI, 30(5):878–892, 2008.

[35] P. A. Tresadern and I. D. Reid. Articulated structure from

motion by factorization. In CVPR, 2005.

[36] A. Varol, M. Salzmann, E. Tola, and P. Fua. Template-free

monocular reconstruction of deformable surfaces. In ICCV,

pages 1811–1818, 2009.

[37] J. Xiao, J. Chai, and T. Kanade. A closed-form solution to

non-rigid shape and motion recovery. IJCV, 67(2):233–246,

2006.

[38] J. Yan and M. Pollefeys. A factorization-based approach

for articulated nonrigid shape, motion and kinematic chain

recovery from video. IEEE PAMI, 30(5):865–877, 2008.

[39] H. Zhou and T. S. Huang. Recovering articulated motion with

a hierarchical factorization method. In Gesture Workshop,

pages 140–151, 2003.

36

http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ceres-solver.org
http://ceres-solver.org

