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Abstract

We present a novel method to recover images of faces,

particularly when large spatial regions of the face are un-

available due to data losses or occlusions. In contrast with

previous work, we do not make assumptions on the data

neither during training nor testing (such as assuming that

the person was seen before or that all faces are perfectly

aligned and have identical head pose, expression, etc.). In-

stead, we propose to tackle the problem in a purely unsuper-

vised way, leveraging a large face dataset. During training,

first we cluster faces based on their landmark’s positions

(obtained by an automatic face landmark estimator). Then,

we model the face appearance for each group using sparse

coding with learned dictionaries, with one dictionary per

cluster. At test time, given a face to recover, we find its be-

longing cluster and occluded area and restore missing pix-

els by applying the group-specific sparse appearance repre-

sentation learned during training. We show results on two

“in the wild” datasets. Our method shows promising re-

sults on challenging faces and our sparse coding approach

outperforms prior subspace learning techniques.

1. Introduction

Human faces captured in real conditions often are par-

tially hidden by occlusions due to a subject’s interaction

with the environment or factors such as wearing sunglasses,

hats, long hair, etc. Furthermore, data transfer or storage

errors can cause large areas of the image to be unavail-

able. Our proposed approach is able to recover the face

occluded/unavailable regions in a seaming-less manner, re-

sulting in images where the face is fully visible, Fig. 1.

The proposed approach has a wide range of applica-

tions. Examples include image forensics (recovering lost

data), video-conferencing (recovering a person’s smile even

if the mouth is hidden) or image editing, to name just a few.

This method can also be useful as a pre-processing to fa-

cial recognition tasks which are hindered by heavy occlu-

sions (face alignment [5], expression detection [28], iden-

tity recognition [15], face retrieval [32], etc.).

Prior work [12, 21, 31, 41, 13, 25, 7, 19, 24, 26] fo-
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Figure 1: Example results. Our method is able to reconstruct a face

presenting missing data or occlusions. In contrast to prior work, it

can do so for a variety of head poses, identities and expressions,

and does not require the person to have been seen before. More-

over, the reconstruction is able to preserve closely the person’s

original expression exploiting spatial correlations between differ-

ent parts of the face during human display of emotion.

cuses on performing face recovery in a pose and expression-

neutral scenario, very often using several pictures of the

same person for training and assuming all faces are per-

fectly aligned. In real-world conditions, however, faces can

show a wide variety of head poses and expressions, and

one cannot assume that the subject was seen before nor that

faces are all perfectly aligned and scaled.

In this paper we propose a method able to recover faces

regardless of its head poses, expressions or identities while

avoiding any prior assumption on the data and dealing with

the faces directly in an unsupervised fashion. We also

specifically design our approach to preserve the original

subject’s expression. This is important since it is well

known that facial spatial dependencies are highly correlated

to face expressions [14].

In order to achieve our goal, we propose to leverage a

large existing “in the wild” face database containing > 70K
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images of 530 celebrities, called FaceScrub [32]. The pro-

posed approach is as follows: 1) cluster the training faces

based on their normalized landmark’s positions (result of

an automatic face landmarking method [5]) and 2) model

facial appearance inside each cluster using sparse coding.

The landmark-based clustering ensures that faces are

grouped according to their similarity in terms of head pose

and the overall shape of facial parts (expressions). Then, the

cluster-specific modeling of appearance will exploit subtle

spatial dependencies to achieve in-painting of missing face

pixels in a seaming-less manner.

The contributions of this paper are several:

1. A novel method to recover lost pixels from a face im-

age. Unlike prior work, our method does not need

identity, pose nor expression to be known a priori nei-

ther during training nor testing. Moreover, as far as

we know, this is the first method that performs an

expression-based recovery, leveraging the well known

fact that some natural human expressions are mani-

fested in all parts of the face (e.g. both the eyes and

the mouth take a particular form when one smiles).

2. A hybrid clustering / sparse coding method wherein

a dictionary is learned from the images corresponding

to each landmark cluster. The fact that images inside

each cluster are very similar means that the implicit

dimensionality of the underlying data is low, and we

successfully exploit this by using dictionaries that are

highly undercomplete (e.g., 80 atoms for a signal space

with several thousand dimensions), making it further

possible to use signal vectors with supports covering

the whole face region.

3. Coupling of our approach with modern face landmark-

ing approaches [5, 17] able to detect occlusions, so that

the region to be recovered can be estimated on-line.

4. Close to real-time performance. Our method runs at

speeds close to 10 f ps on a standard PC using unopti-

mized Python code.

2. Prior work

Faces have been since the beginning a popular object on

which to benchmark novel subspace learning techniques,

aimed at improving representation power and robust-

ness compared to classical techniques such as PCA [33].

Some examples are Robust-PCA [12], Aproximated Prin-

cipal Gradient (APG) [25], Singular Value Thresholding

(SVT) [7] or Euler-PCA [26]. In these works, the training

and test subjects are usually the same.

Hwang et al. [21] were among the first to tackle the prob-

lem of recovering partially occluded faces in a realistic sce-

nario where training and test faces are different and a mor-

phable model is used to remove face shape variations. They

proposed to prototype faces as a PCA-based projection of

both shapes and textures, much like in the original AAM

formulation [9]. Similarly, [31, 41, 19] proposed to com-

bine morphable models with modern dimensionality reduc-

tion techniques such as the ones mentioned above. Finally,

[13] proposed a Bayesian framework that also allows the

automatic detection of face occlusions.

The most crucial difference between these approaches

and ours is the assumptions made on the data. They gen-

erally use controlled-scenario datasets such as FERET [34]

and AR [29] and assume that head pose is constant, that

faces were either previously aligned or that ground-truth fa-

cial landmarks are known, that all faces have a neutral ex-

pression and often even train on each test subject.

Instead, we use images taken “in the wild” and make

no prior assumptions whatsoever. We use a face landmark-

ing method to estimate landmarks automatically and rely on

an unsupervised clustering to group similar faces together

before learning each group’s appearance. Furthermore, we

separate subjects into two clearly separated train/test sets,

never training on the subject whose face needs to be recov-

ered at test time. We further contribute by adapting sparse

coding techniques to the task, see Section 3.2. Finally,

we propose to couple our approach with modern face land-

marking methods able to estimate occlusion to build on-line

the face recovery mask.

For completeness, we also discuss some of the prior

work on other different areas of computer vision where one

can find some common ground with the techniques dis-

cussed in this paper. However, since they do not fully over-

lap with this work, we address them briefly due to space

constraints.

Inpainting This work is somewhat related to prior work

on image editing by example-based inpainting [11], where

an image region is replaced in a seaming-less manner by

stitching together fragments from the same scene. These

methods, however, struggle with very large regions, espe-

cially in presence of highly semantic content, which is typi-

cally the situation met for face recovery. In [18], these lim-

itations of example-based inpainting are circumvented by

relying on an external database: large scene occlusions are

completed using images from similar scenes. While this ap-

proach bears some connection to our work, it lacks appear-

ance modeling that is required to operate on very structured

semantic visual content like faces.

Face expression transfer Another example is facial ex-

pression transfer [38, 20]. However, these approaches deal

with fully unoccluded faces and the goal is usually that of

transferring expressions across individuals, or from a video

stream into a 3D animated model by estimating 3D facial

landmarks. Instead, our approach allows us to recover the
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original expression in large occluded regions of the face,

based on what remains visible in the face.

Sparse coding applied to faces Sparse coding has been

used to address a variety of face-related tasks. The work

of [40] addresses the related face super-resolution problem

(known as face hallucination) using a hybrid whole-face

NMF factorization (without geometrical normalization) fol-

lowed by block-by-block sparse coding using a dictionary

consisting of examples. The work of [39] uses a whole-

face dictionary of examples but to address the face recog-

nition problem. In [22], the authors address the same ap-

plication but instead use a learned dictionary constrained

to have spatially-localized atoms. The work of [4] uses a

piece-wise affine physiognomy normalization for the task of

expression-neutral face compression, yet the authors again

use 8×8 blocks as signal vectors with dictionaries learned

for each spatial position.

The vast majority of algorithms employing sparse cod-

ing on images operate on small image blocks (e.g. 8× 8).

Besides the complexity issues related to larger dimension-

ality [36, 43], the reason for this is that spatial redundancy

decreases when using larger block sizes, making it diffi-

cult to use dictionaries of practical sizes. Yet images of

faces, particularly when the faces are geometrically normal-

ized using piece-wise affine warping, enjoy high spatial de-

pendency, making it possible to operate on the entire im-

age. Indeed [39] exploits this advantage to carry out sparse-

coding-based face recognition, and [4] employs a related

redundancy-enhancing approach for face compression.

Face landmark estimation The first step to our method

is based on face landmark estimation. Early work on

the topic includes Active Contours Models [23], Template

Matching [42], Active Shape Models (ASM) [10] and Ac-

tive Appearance Models (AAM) [9]. Popular modern ap-

proaches involve first detecting the object parts indepen-

dently and then estimating shape through flexible parts

models [16, 17]. Another family of approaches is that which

tackles shape estimation as a regression problem, learning

regressors that directly predict the object shape or the lo-

cation of its parts, starting from a raw estimate of its posi-

tion [8, 5, 35]. These methods are fast and precise, being

able to deal with large amounts of occlusion. We use the

approach in [5] due to its speed, capability of detecting oc-

clusion and availability of code on-line.

3. Proposed approach

Fig. 2 shows the outline of the proposed approach. Our

method relies heavily on the automatic estimation of face

landmarks, for which we use Robust Cascaded Pose Regres-

sion (RCPR) [5] re-trained using the exhaustive 300 faces-

in-the-wild challenge dataset [37].

Once face landmarks are detected, we normalize all faces

to be the same size and cluster faces based on their land-

mark distance, see Sec. 3.1. Then, we learn a separate ap-

pearance model for each cluster using sparse coding, see

Sec. 3.2. At test time, given a previously unseen occluded

image, we detect the occlusion mask in real-time from the

output of RCPR and recover the occluded pixels by apply-

ing the learned appearance model, see Sec. 3.3.

3.1. Face clustering

For face recovery to work, the key is to be able to recon-

struct the missing pixels using an appearance model (a.k.a.

texture model) learned on faces that closely resemble the

test face. Prior work supposes that all images are aligned (or

ground-truth landmarks are available), that faces show neu-

tral expressions and that the face to be recovered has been

seen during training. Under those conditions, one can apply

subspace learning techniques to learn a person-specific tex-

ture model, maximizing the chances that it will be able to

recover the missing pixels when occluded.

When all the above suppositions about the data are re-

moved, however, the task becomes daunting. Learning a

rich and at the same time generalizable global texture model

from any set of faces is practically unfeasible. This is a well

known fact, which is precisely the reason behind AAM’s

poor generalization performance compared to methods us-

ing more localized texture models such as ASM’s [30].

To avoid this issue, we propose to previously cluster

faces based on their similarity and then learn a separate ap-

pearance model for each group (explained in Section 3.2).

Interestingly, face landmarks are a natural way of encod-

ing both the head pose and expressions [8, 6]. Therefore,

performing an unsupervised clustering using the distance

between (position and scale normalized) landmarks can lead

to groups with similar overall appearance.

Given P 2-D landmark locations (typically around chin,

eyes, mouth, and nose) that implicitly encode the shape of

the face as S = [a,b] where a,b ∈ R
P we derive a scale-

normalized version Ŝ = [â, b̂], with

â =
a−min(a)

max(a)
, b̂ =

b−min(b)

max(b)
. (1)

Here min(.) and max(.) are the minimum and maximum

values of a vector and we abuse notation of the subtract and

division operations to represent element-wise operation.

Once landmarks are normalized, we apply k-means al-

gorithm to all N training landmarks Ŝi, i ∈ {1 · · ·N}. Instead

of setting the parameter K (number of clusters), we prefer

to fix it to a large number (e.g. 103) and enforce a minimum

cluster size SZ. Note that while both parameters have the

same role (higher SZ will cause fewer clusters to be found,

identical to setting a lower K), SZ is much more intuitive
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Figure 2: Method outline. During training our method clusters all faces based on their normalized landmark’s positions and models facial

appearance inside each cluster using sparse coding. During testing the belonging cluster is found and the group-specific learned model is

applied to recover occluded pixels, estimated on-line.

Figure 3: Randomly-selected faces corresponding to some exam-

ple clusters (row-wise), using minimum cluster size SZ = 10.

since it will control the amount of training images we will

be using to build our appearance model.

Fig. 3 shows an example of some of the clusters found

by kmeans using SZ = 10 1. As it can be seen, faces inside

a cluster are correctly aligned and show similar head pose

and expression, exactly as needed for the next step.

3.2. Sparse encoding of face appearance

Once training faces are clustered, we learn for each

group an appearance model that we will later apply to re-

cover missing pixels from testing faces. Cluster-specific

model relies on first normalizing training faces in the clus-

ter, both geometrically (using an invertible piecewise-affine

warp toward average shape) and photometrically (via pixel-

wise centering of intensities). Resulting aligned face tex-

tures are then sparsely encoded based on a learned dictio-

nary. We describe these steps in the present section.

1We manually separate men and women during training and testing

Figure 4: Visualization of the delaunay triangulation from face

landmarks

Cluster-dependent face alignment: The first step of

our modeling is to apply a geometrical normalization, warp-

ing all images belonging to the same cluster to show an

aligned face shape. We first define a standard face shape

S̄ by averaging the scale-normalized shape of the N train-

ing faces in the cluster:

S̄ =

[

1

N

N

∑
n=1

ân,
1

N

N

∑
n=1

b̂n

]

. (2)

A standard Delaunay triangulation DT (S̄) =
{(ki, li,mi) ∈ J1,PK3}i is then computed from the P

landmark locations in the average shape S̄ . Each landmark

triplet (ki, li,mi) defines a triangle in the standard image S̄

or in an arbitrary input image S , see Fig. 4. The piecewise

affine warping normalization then consists of warping

the pixels in each triangle from the input image to the

corresponding triangle in the standard image using the

affine transform uniquely defined from the three pairs of

matching vertices.

Sparse appearance modeling: The normalized face im-

ages described previously are rasterized to form signal vec-

tors z ∈ R
d , with d the number of pixels. We will de-

compose the mean-removed signal vectors y = z− z̄ using
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sparse coding. The mean vector z̄ is taken to be the average

of all z vectors extracted form training images in the cluster

of interest. In practice we will extract vectors z only from

those positions F in the image that are expected to depict

the face and not the background, see Fig. 6.

Using whole-image rasterization to produce signal vec-

tors results in uncommonly large vector dimensions (e.g.

d = 104 for 100x100 images), and hence we will need to

use an undercomplete dictionary matrix and learn it using

stochastic gradient descent [3].

Sparse coding: Given a dictionary D, we use a standard

formulation of sparse coding

x◦(y,D) = min
x

|y−Dx|22 +λ|x|1 (3)

relying on an ℓ1 penalization |x|1 = ∑i |xi| [1]. Given the

decomposition x◦ of the vector y, an approximation ŷ of y

can be obtained using ŷ = Dx◦.

Dictionary learning: In order to represent recurring spa-

tial patterns, we will learn the dictionary matrix D required

in (3) from the set of N training vectors {yn ∈R
d}N

n=1 using

the following objective:

argminD,{xn}

N

∑
n=1

|yn −Dxn|
2
2 +λ |xn|1, |dk|2 ≤ 1,∀k. (4)

Given the uncommonly large dimensionality of the signal

space addressed by our face-inpainting approach, we use a

learning method [27] based on per-atom block-coordinate

descent using stochastic updates. At iteration n < N, the

approach incorporates a randomly selected sample yn into

the solution for each column dk of D by setting the gradient

of (4) with respect to dk to zero.

3.3. Face recovery

Once training has been performed off-line, we can re-

cover missing/occluded pixels from any previously unseen

face image. First, as before, we apply RCPR to estimate the

face landmarks.

Note that RCPR is also capable of estimating whether

landmarks are or not occluded (albeit with a low recall) if

trained on a dataset containing occlusion ground-truth infor-

mation, such as COFW [5]. When this is the case, RCPR

will output the “degree of occlusion” of each landmark,

adding a third component o to the shape parametrization:

S = [a,b,o] where a,b,o ∈ R
P and o ∈ [0,1].

From this rough occlusion estimation, we can build an

occlusion probability mask by performing Delaunay trian-

gulation on the landmarks and setting each triangle’s occlu-

sion to the average of its anchor landmarks 2. Fig. 5 shows

example RCPR’s results and the occlusion masks built for

some occluded faces (from COFW test set).

2In fact we can re-use the triangulation computed for the face cluster-

specific image warping, without further computation

Figure 5: Example RCPR success cases. Top: landmark estima-

tion results (landmarks with o > .5 are plotted in red to signal

occlusion). Bottom: occlusion masks computed from landmarks

(>intensity=>occlusion).

Figure 6: Examples of cluster-specific synthetic masks used in

Figures 7, 8 and 9 .

Recovery using sparse coding Once the occlusion mask

computed as described before, we conduct inpainting based

on sparse coding as follows: sparse code of input image is

computed using visible pixels only, and used to produce a

complete reconstruction, including of occluded pixels. Let

A represent the indices of the available pixels of y. Letting

yA (respectively DA ) denote the subvector (sub-matrix) ob-

tained by retaining the coefficients (rows) at positions A , an

approximation of the whole vector y can be obtained from

Dx◦(yA ,DA). (5)

In Fig. 6 we depict four example configurations of F

(in white and gray), background (black), available pixels

(white) and missing pixels (gray).

4. Evaluation

4.1. Datasets

FaceScrub The FaceScrub dataset [32] consists of more

than 100K images of 530 different actors and actresses,

along with face bounding boxes. The dataset is provided

as image urls, and currently only about 75% of the urls

(76,800 images) are still valid and point to the correct data.

We split these available images into training and testing

sets by holding out, as a testing set, all available images of

50 actors and 50 actresses.

This results in a training set composed of 29K/32K im-

ages of actresses/actors, respectively, and a testing set of
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7K/5K images. Of all these, for computational issues we

use a random subset (roughly 8K/8K images for training

and 2K/2K for testing). We further leave out some of the

male actor’s images as a validation set to tune parameters

of our system and all other subspace learning techniques

benchmarked.

In order to show some quantitative results (impossible on

naturally occluded images), we use the test set together with

synthetic occlusion masks (upper/lower part of the face) de-

rived from the landmark detection associated to each clus-

ter, see Fig. 6.

In Section 4.2 we explore the impact of parameters,

while in Section 4.3 we compare our sparse coding ap-

proach against other popular techniques [12, 25, 7, 26]

COFW The Caltech Occluded Faces in the Wild (COFW )

dataset [5] consists of 2K training and 500 test images with

varied types and amounts of occlusions. Each image is

made available together with the ground-truth 29 landmarks

in the LFPW [2] format, with an extra flag that encodes

whether each landmark is occluded or not.

We keep only the images from the test set, and use them

to show-case results when coupling our method with a real-

time occlusion detection system (provided by RCPR), see

Sec.4.4. Please note that for these images we can only show

qualitative results, since the occlusions are fully natural and

therefore the “true” unoccluded face is unknown. Note also

that when carrying out tests on COFW, we use clusters and

dictionaries learned on the FaceScrub dataset, using COFW

strictly as a testing set.

4.2. Parameter selection

We use the FaceScrub training set to build a set of clus-

ters using a K-means algorithm in landmark space. Rather

than specifying the number of clusters directly, we spec-

ify the minimum cluster size SZ, since the learning re-

quires a minimum number of training examples. Since we

use a hybrid approach that mixes clustering together with

piecewise-affine warping, the canonical face landmark lay-

out is computed on a per-cluster basis to be the mean land-

mark layout for all training faces in the cluster.

In Fig. 7, we evaluate the impact on our sparse coding

approach of (i) the minimum cluster size SZ, (ii) the number

of dictionary atoms N, and (iii) the testing and (iv) training

sparsity levels. We plot Peak Signal to Noise Ratio (PSNR)

log10(
2552

MSE
), where the Mean Square Error (MSE) is com-

puted over the pixels in the occluded region. The resulting

PSNR value is computed over all clusters, and the average

value is plotted along with the resulting standard deviation

(as error bars).

Given that the face pose varies between landmark clus-

ters, in these experiments we carry out parameter selec-

tion using cluster-dependent masks generated automatically

101 102 103

17

18

19

Minimum cluster size SZ

O
cc

lu
si

o
n

P
S

N
R

20 40 60 80 100
18.2

18.4

18.6

18.8

19

Num. of atoms N

O
cc

lu
si

o
n

P
S

N
R

2 4 6 8 10 12

17

18

19

Validation sparsity

O
cc

lu
si

o
n

P
S

N
R

0 2 4 6 8 10 12

18.6

18.8

19

Training sparsity

O
cc

lu
si

o
n

P
S

N
R

Figure 7: Occlusion PSNR over the validation set (male faces

only) versus various system parameters.

from the mean landmark layout for the cluster so that the en-

tire face is used as the signal vector support, and the top or

bottom half of this support is used as an occluded region.

We learn one dictionary in image space per landmark clus-

ter using the FaceScrub training dataset, and cross validate

against the FaceScrub validation set.

The parameter with most impact on performance is the

cluster size SZ. The optimal value SZ = 100 reaches a com-

promise between having as many training faces as possible

but without them being too different among themselves (the

higher SZ the fewer clusters are found and therefore there

is a higher intra-cluster variance). The clear drop in per-

formance for high values of SZ justifies the need for the

proposed face clustering.

4.3. Synthetic occlusion/missing data

We compare our sparse coding recovery method against

several other popular techniques: (PCA [33], Robust-
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(a) Upper mask, SZ = 100 (b) Lower mask, SZ = 100

(c) Upper mask, SZ = 10 (d) Lower mask, SZ = 10

Figure 8: Quantitative result comparison between our sparse coding approach and other techniques for different values of SZ and different

occlusion masks. Each plot depicts the cumulative probability distribution of the PSNR between original and recovered face.

PCA [12], Aproximated Principal Gradient (APG) [25],

Singular Value Thresholding (SVT) [7] and Euler-

PCA [26]). All these techniques are applied within the con-

text of our clustering-based framework, using strictly the

same training/test faces than those used by our method. For

fairness of comparison, we also used the validation set to

tune the parameters of each one of these techniques, see

Supp. Material for more info.

Fig. 8 shows the results for both SZ = 10 and SZ = 100

on both the upper and lower occlusion masks shown in Fig.

6. We compute occlusion PSNR values over all clusters and

plot the probability distribution of each. Fig. 9 shows sub-

jective comparisons for a selection of images from different

clusters. Our approach outperforms all other techniques by

0.7 dB on average. It is also worth noting that the lower part

of the face seems to be always easier to reconstruct than the

upper part. Classic PCA seems to be the least competitive

approach of all those benchmarked.

4.4. Real occlusions

We now show results of our method on COFW images

displaying real face occlusions such as glasses, headwear,

and hair. We apply RCPR to predict both the landmark’s

positions and occlusion, and from this information we de-

rive an associated occlusion mask by weighing the compo-

nents of a Delaunay triangulation of the landmarks based

on the number of occluded vertices, as explained in Sec-

tion 3.3. Since the resulting masks varies on a per-image

basis, we train a new dictionary for each associated mask

using the FaceScrub training examples of the associated

cluster. We show some example results for faces where oc-

clusion was correctly detected by RCPR in Fig. 10 (more

available in Supp. Material).

Our method can output very realistic reconstructions

even in these challenging conditions, under a variety of head

poses, expressions and occlusions. Thanks to our proposed

cluster-specific texture learning the reconstructions are re-

alistic, leveraging the well known fact that natural human

expressions are manifested in all parts of the face (e.g. the

eyes take a particular form when one smiles).

5. Conclusion

We propose a novel method to recover lost pixels from a

face image. Our method does not need identity, head pose

or expression to be known a priori neither during training

nor testing. During training, first we cluster faces based on
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ORIGINAL OURS PCA RPCA E-PCA SVT APG

Figure 9: Reconstruction examples with SZ = 100 varying the reconstruction technique used after clustering. From left to right: original

image with occluded region, Our Sparse coding approach, PCA, Robust-PCA [12], Euler-PCA [26], SVT [7] and APG [25].

Figure 10: Original image (left) and reconstruction using our proposed method (right) when using automatically detected occlusion masks.

their landmark’s positions (obtained by an automatic face

landmark estimator). Then, we model the face appearance

for each group using sparse coding with cluster-specific dic-

tionaries. At test time, given a face to recover, we find its be-

longing cluster and occluded area and restore missing pixels

by applying the group-specific sparse appearance represen-

tation learned during training.

Systems that carry out automatic occlusion detection and

reconstruction have important applications, for example, in

augmented reality settings, as well as a visual aid for peo-

ple with conditions, such as prosopagnosia, preventing them

from easily recognizing faces (conditions exacerbated by

the presence of occlusions). The results illustrated in Fig.

10 suggest that building such a system is indeed possible.
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with multilinear models. In TOG, volume 24(3), pages 426–

433. ACM, 2005. 2

[39] S. J. Wright, R. D. Nowak, S. Member, and M. A. T.

Figueiredo. Sparse reconstruction by separable approxima-

tion. IP, 57(7):2479–2493, 2009. 3

[40] J. Yang, H. Tang, Y. Ma, and T. Huang. Face hallucination

via sparse coding. In ICIP, 2008. 3

[41] D. Yu and S. T. Using targeted statistics for face regenera-

tion. In FG, 2008. 1, 2

[42] A. L. Yuille, P. Hallinan, and D. S. Cohen. Feature extraction

from faces using deformable templates. IJCV, 8(2):99–111,

1992. 3

[43] J. Zepeda, C. Guillemot, and E. Kijak. Image compression

using the iteration-tuned and aligned dictionary. In ICASSP,

2011. 3

45


