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Abstract

Background subtraction process plays a very essential

role for various computer vision tasks. The process be-

comes more critical when the input scene contains varia-

tion of pixels such as swaying trees, rippling of water, il-

lumination variations, etc. Recent methods of matrix de-

composition into low-rank (e.g., corresponds to the back-

ground) and sparse (e.g., constitutes the moving objects)

components such as Robust Principal Component Analy-

sis (RPCA), have been shown to be very efficient frame-

work for background subtraction. However, when the size

of the input data grows and due to the lack of sparsity-

constraints, these methods cannot cope with the real-time

challenges and always show a weak performance due to

the erroneous foreground regions. In order to address the

above mentioned issues, this paper presents a superpixel-

based matrix decomposition method together with maxi-

mum norm (max-norm) regularizations and structured spar-

sity constraints. The low-rank component estimated from

each homogeneous region is more perfect, reliable, and ef-

ficient, since each superpixel provides different characteris-

tics with a reduced value of rank. Online max-norm based

matrix decomposition is employed on each segmented su-

perpixel to separate the low rank and initial outliers sup-

port. And then, the structured sparsity constraints such as

the generalized fussed lasso (GFL) are adopted for exploit-

ing structural information continuously as the foreground

pixels are both spatially connected and sparse. We propose

an online single unified optimization framework for detect-

ing foreground and learning the background model simulta-

neously. Rigorous experimental evaluations on challenging

datasets demonstrate the superior performance of the pro-

posed scheme in terms of both accuracy and computational

time.

1. Introduction

Accurate and perfect segmentation of objects from

videos is a complex task for many image processing and

computer vision applications such as video surveillance,

segmentation, compression, and scene understanding [11].

The most popular approach to accomplish this task is back-

ground subtraction (also called foreground detection). This

approach requires the estimation of an accurate background

model but it is challenging to design such a robust back-

ground subtraction method due to the presence of undesir-

able variations in pixel values, such as swaying trees, water

surface, abruptly changing lighting conditions, etc. Conse-

quently, the system always shows a weak performance in

real-time scenarios.

Indeed, many methods have been devised to cope with

the problems of background/foreground segmentation [1,

20]. Among them, the study of subspace learning models

such as RPCA [3] have been attracted a lot of attention.

RPCA decomposes the original data matrix X into low-rank

L and sparse S components. The background sequence is

then modeled by low-dimensional subspace having intrinsic

structure called L and moving objects belong to the S com-

ponent. But, RPCA currently suffers from some prominent

issues [9]. First, these methods consider the entire video

sequence as a vectorized data matrix for batch optimization

processing. That is, the observation data must be stored in

memory for the computation of Singular Value Decomposi-

tion (SVD) and hence arises the memory and computational

challenges. Second, as the foreground pixels e.g S have

small area in comparison with the background scene. Thus,

without considering any structural contiguous constraints,

the results of foreground detection always contain holes as

well as the outliers noise.

To overcome the aforementioned limitations of RPCA,

this paper presents a superpixel-based background sub-

traction algorithm with online matrix decomposition using

max-norm constraints and efficient GFL to quest for intact

structured foregrounds. We briefly summarize our method-

ology here. First, the superpixels are obtained from video

frames and then, the static/dynamic homogeneous regions

are classified. Second, iterative matrix decomposition is ap-

plied on each superpixel, to get more accurate estimation
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of L with reduced value of rank from each homogeneous

region. We then use the max-norm constraints on the L

component to prune majority of the outliers from estimated

L. After that, the residual error is computed using the pre-

computed L. To model the homogeneous perturbations of L

and structural contiguities of S, the efficient GFL is finally

exploited for continuous structural information. The GFL is

a stable flexible structure prior for modeling the foreground

objects (as it strengthens the fusion among the adjacent pix-

els) in a background subtraction problem. We propose an

online formulation within a unified optimization framework

to estimate L and detect the foreground objects at the same

time.

The remainder of this paper is organized as follows. Sec-

tion 2 summarizes the related work on RPCA-based matrix

decomposition methods. Section 3 describes the proposed

unified optimization framework for both online learning of

L and S. Experimental analysis is presented in detail in sec-

tion 4, and finally section 5 concludes our work.

2. Related Work

Background subtraction using matrix decomposition

boasts of an extensive literature. Oliver et al. [16] presented

one of the first proposal to model the background using

Principal Component Analysis (PCA). The background se-

quence is then modeled by projecting the eigen-values when

a new frame arrives. However, this model is not robust when

an increasing number of outliers appear in a new subspace.

Cande’s et al. [3] extended the PCA model by defining

a more robust framework called RPCA via Principal Com-

ponent Pursuit (PCP). Under some mild conditions, PCP

perfectly recovers the L and S components. An excellent

survey for background subtraction using RPCA-based ma-

trix decomposition is summarized in [2].

However, the methods presented in [2] always show

some noise since no additional contiguous constraints are

considered on the residual error. There are several earlier

works for video background subtraction based on unified

matrix decomposition with additional constraints in S. For

example, Zhou et al. [27] designed the Detecting Contigu-

ous Outliers in the Low Rank Representation (DECOLOR)

method to learn the background and then apply the Markov

Random Field (MRF) model on the S matrix. But, due to

the batch processing it is not desirable to process a large

number of video frames.

In order to overcome this limitation, Feng et al. [5] pro-

posed stochastic RPCA, and Javed et al. [9] adopted this

method to model the L component and applied MRF to im-

prove the foreground segments. However, this model is not

performed within a single optimization framework. Thus,

the reported performance is not competitive as compared

to the other improved methods. For instance, Shakeri et

al. [18] designed Contiguous Outliers Representation via

Online Low-rank Approximation (COROLA) to improve

the method presented in [9] using a unified optimization

technique. The performance is encouraging only in case of

dynamic background subtraction but the Gaussian Mixture

Model (GMM) [20] is used to improve the S segments and

then MRF constraints are applied.

Learning the S constraints has attracted a lot of attention

as it improves the sparse structural priors [4, 22, 23, 24].

For example, Xin et al. [23] recently proposed a very in-

teresting methodology using efficient GFL [22]. A su-

perior performance is reported as compared to others [4,

9, 18, 24, 27]. However, an Augmented Lagrange Mul-

tiplier (ALM) batch optimization method is used for ma-

trix decomposition. Moreover, two different algorithms are

adopted. For example, Singular Value Thresholding (SVT)

is applied for Unsupervised Model Learning (UML) when

background/foreground coexist in each frame. A Fast It-

erative Soft Thresholding Algorithm (FISTA) is applied for

Supervised Model Learning (SML) case when pure back-

ground frames are available. Furthermore, the method is

computationally expensive since it is based on batch strat-

egy which hardly process more than 400 frames with image

resolution of [240× 320× 3].
In contrast to the aforementioned techniques above, our

proposed superpixels based background/foreground seg-

mentation is more efficient, effective, and online as com-

pared to previous methods [4, 23]. We propose an on-

line formulation to learn the L and structural S components

in a single optimization scheme. We use only one algo-

rithm called max-norm based online matrix decomposition

scheme that processes each homogeneous region from one

frame per time instance to separate the L and S components

for UML and SML case and then the sparsity structure is

learnt using an adaptive version of efficient GFL [22] with

a fast parametric flow method [6].

3. Proposed Methodology

In this section, we present our proposed algorithm in de-

tail for background subtraction. The proposed scheme con-

sists of several stages which are described in the following

sections.

3.1. Superpixel Segmentation

Contrary to [23, 25], where the entire video sequence is

decomposed into L and S components and thus the com-

putational issues arise. We start our designed scheme with

superpixel segmentation to separate L and S from each ho-

mogeneous region. Each L and S components are likely

to be homogeneous hence the estimated L (i.e., the back-

ground model) is to be more reliable and accurate given a

limited number of pixels. In this paper, the Entropy Rate Su-

perpixel Segmentation (ERS) [13] method is considered due

to its efficiency, simplicity, and good performance. In ERS,
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the superpixel segmentation is considered as a graph parti-

tioning problem. Given a graph G=(V, E) and the number

of superpixels k, the goal is to find out the subset of edges,

e.g., A⊆E such that the resulting graph Ĝ=(V, A) contains

k connected subgraphs. V is the vertex (e.g., corresponds

to the pixels in image) and E is the edges typically con-

structed by the 4-neighborhood system. In addition, when

an edge is not included in A then its weight is computed

by the similarity between the features observed at the con-

nected vertices. The objective function to solve the graph

partitioning problem is then given by

A
maxH(A) + λB(A)

such that A ⊆ E and NA ≥ k,
(1)

whereH(·) andB(·) denote the entropy rate of random walk

and balancing term, respectively, and NA is the number of

connected components in G. H(·) makes compact and ho-

mogeneous regions more stable, whereas the B(·) segments

the superpixels with similar sizes. The exact optimization

of the graph is difficult to maximize, however, this problem

can be solved via an efficient greedy algorithm designed

in [13] that provides almost 0.5 approximation bound. In-

terested readers may further explore the details about ERS

in [13].

Within the context of the background scene, the super-

pixels may consist of static (i.e., no variations in pixel value)

and dynamic (i.e., swaying trees and water rippling) re-

gions. In this paper, we separately deal with the static and

dynamic superpixels for online matrix decomposition to re-

duce the computational load. As the value of rank is differ-

ent for these regions therefore we first identify these regions

by considering a fixed window size of N, in which Xt and

Xt+1 be the sets of superpixels computed, respectively, at

frame t and t+1. Then, the difference is computed between

each consecutive superpixels, e.g., xtk∈Xt and xt+1
k ∈Xt+1,

where xk is the kth superpixel of X. If the difference is

above a threshold ǫ, we mark this homogeneous region as

dynamic superpixel. The threshold ǫ is adaptively computed

as the average of the difference between all the superpixels

in frame t+1. Fig. 1 (c)-(d) show the segmentation of super-

pixels of Water Surface sequence taken from the Perception

Test Images Sequences (PTIS) dataset [10].

3.2. Background/Foreground Model

In this section, we present our online background with

structural foreground modeling scheme in detail.

Let say that Xt be a set of input superpixels (computed in

the previous section) at a time t, which is corrupted by out-

liers say S, then X can be reconstructed by the summation

of background model L and foreground S, e.g., X=L+S. If

we consider the L structure of background and structured

sparisty of S, then this optimization problem can be written

as

L,S
min

1

2
||L||max+β ||S||1+γ||Φ(S)||1

︸ ︷︷ ︸

GFL

such that X = L + S.

(2)

When X, L, or S is considered, it means that each super-

pixel is being processed in X, L, or S at a time t. As com-

pared to its batch counterpart [23], we use the max-norm

constraints such as ||L||max in Eq. 2 to promote the low

rank structure in each superpixel, as it is more superior than

the nuclear norm as described in [8, 19] when most of the

entries are corrupted in observation data. β and γ are con-

stant paramters which are estimated online during S com-

ponent optimization. ||S||1 is the observed data in Eq. 2

which imposes the sparsity constraints on the foreground,

such that the foreground pixels should be small. The third

term ||Φ(S)||1 in Eqn. 2 represents the difference between

the adjacent pixels, which is computed as

||Φ(S)||1=
∑

(i,j)∈N

wt
ij |sti − stj |, (3)

where N is a neighborhood system on pixels. ||Φ(S)||1
measures the cost of assigning the labels si and sj to the

neighboring pixles i and j, respectively. The wij in Eq. 3

is the adaptive weighting factor between the pixels, and it

makes the fusion more stable between the neighboring pix-

els as

wt
ij = exp

||yti − ytj ||22
2σ2

, (4)

where y is the pixel intensity and σ is a tunning parame-

ter which will be discussed later. In [23], wt
ij is computed

for only test sequence, whereas in this study it is computed

for each homogeneous region of every frame to adapt the

changes in a background intensity. Basically, the GFL [22]

finds the continuous and small varaitions of outliers to rep-

resent the foreground mask due to the l1-norm or penalty

on each adjacent pixels. Eq. 2 is the main equation of our

model which is non-convex and needs to be solved via on-

line manners for real-time systems. Earlier approaches such

as [23, 24, 27] solved the problem under batch processing

umbrella, where the entire data is processed for the com-

putation of SVD. Here, we solve this equation using online

estimation of L from each superpixel in X, and then impose

the structural constraints. Each superpixel of one frame is

processed per time instance. We solve the above equation

in the following steps.

3.2.1 Estimation of Low-rank Component

Although Eq. 2 completely fits to model the proposed

method, but optimization is the major challenge spe-

cially when it contains two different norms and the data
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size grows. We use the iterative matrix decomposition

method [19] using the max-norm presented in [8] to sep-

arate the L given the initial approximation of S, Eq. 2 can

be re-written as

L
min

1

2
||X− L− S||2F+λ1||L||2max. (5)

Since all the samples are tightly coupled in ||L||max, there-

fore these samples are accessed during optimization at each

iteration which prevents them from processing big data. In

constrast, an equivalent form of max-norm designed in [19]

is used in this work, whose rank is upper bounded by d as

||L||max= min
U∈Rp×d,V∈Rn×d

1

2
(||U||2,∞·||V||2,∞)

such that L = UVT ,

(6)

where p denotes the dimension of each superpixel for each

sample. For instance, xk is the kth superpixel in a set X

and its dimension is p, i.e., xk ∈ R
p, n is the number of

samples and d is a rank. ||Ui||2,∞ and ||Vi||2,∞ are the

maximum l2 row norms of basis and coefficients. But, the

coefficients must be positive and therefore ||V||22,∞= 1 as

proved in [19].

Eq. 6 shows that each homogeneous region in L matrix

can be an explicit product of each low-dimensional sub-

space basis U ∈ R
p×d and its coefficient V ∈ R

n×d and this

re-formulated max-norm is shown in recent works [8, 19].

In other words, it seems that the background model L is rep-

resented by the linear combination of a small number of the

columns of U. Hence, Eq. 5 is re-formulated by substituting

Eq. 6 for objective function minimization as

min
U,V

1

2
||X− UVT − S||2F+

λ1

2
||U||22,∞, (7)

where λ1 is a regularization parameter for L component pat-

terns. Eq. 7 is the main equation for online matrix decom-

position of all video frames, which is not completely convex

with respect to U and V. More specifically, since we process

each superpixel (static or dynamic) of one video sample per

time instance t, then Eq. 7 can be reduced into more com-

pact form in case for each superpixel per sample as

min
U,v

1

2

n∑

t=1

||xt
k − Utvtk − stk||22+

λ1

2
||U||22,∞. (8)

In this case, xtk is the kth superpixel at a time t, Ut is its

basis matrix, and vt
k is a coefficients vector. Alg. 1 summa-

rizes the proposed online decomposition by processing one

frame per time instance. We briefly explain the main notion

of each step of Alg. 1. The coefficient v and basis U for

each superpixel are optimized in an iterative way.

Solving Coefficients v

First, the coefficients vector v is estimated with fixed ran-

dom basis U (in case of SML/UML only a small number of

frames are required) by projecting one frame at a time t. In

Alg. 1, the step 3 requires the convex optimization problem

for computing v as

vt = (UT U + αI)−1UT
{

x
j
k − sj−1

}

, (9)

where α is the positive dual variable. In the next iteration,

if ||v||2≤ 1, then v will remain same, otherwise it will be

updated as

v = argmax
α,α>0,v

min
||v||2=1

1

2
||xk − Uvk − sk||22+

α

2
(||r||22−1).

(10)

Basically, Eq. 9 is the closed form solution of v of Eq. 10.

More details can be found in [8, 19].

Solving Basis U

The basis Ut for each superpixel per frame is estimated at

step 5 of Alg. 1 through minimizing the previously com-

puted coefficients v. These basis Ut for low-dimensional

subspace learning is then updated through block coordinate

decent method by the result of previously computed U. The

basis vector U is updated column-wise as

uj ← uj −
1

P jj
(Upj − qj + λ1lj), (11)

where uj is the jth column of the basis vector U for each

homogeneous region, and p and q correspond to the accu-

mulation matrices P and Q, respectively. The lj is the jth

column of the subgradient of basis U. If the rank d is given

and basis U is estimated as above which is a fully d, then

U converges to the optimal solution asymptotically as com-

pared to its batch counterpart shown in [5]. Since the U is

updated colum-wise therefore it is independent to the num-

ber of samples and hence it solves the computational issues.

Finally, the background sequence is then learnt by L ma-

trix that is the multiple of basis and its coefficients which

changes sequentially at a time instance t as presented in

Fig. 1 (h).

First, we analyse the issues by applying the same method

on a global frame, then we describe the characteristics of

applying it on a superpixel regions. Fig. 2 shows the results

after applying the scheme on a global frame. The two types

of background scenes such as static called office from CD-

net [21] and dynamic called WaterSurface from PTIS [10]

are considered for L component estimation with different

values of d. With a higher value of rank such as d = 5, the

outliers appear on a static region which degrades the accu-

racy. In addition, the computational issues arise due to the
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(a) (c) (e) (g) (i) 

(b) (d) (f) (h) (j) 

Figure 1. Schematic example of our background subtraction scheme and overview of superpixels segmentation with rank selection. (a) and

(b) two input frames, (c) and (d) the corresponding superpixels segmentation of (a) and (b). (e) test frame, (f) identification of static/dynamic

homogeneous regions (green denotes the static whereas the red one represents the dynamic superpixels), (g) few superpixels on test image,

(h) the exact recovery of L matrix, (i) the residual error Ŝ, and (j) the result of GFL.

size of basis U increased. In contrast, the d is quite enough

for dynamic regions for subspace update to get more ac-

curate L component. Fig. 2 (b) demonstrates this problem

more clearly. On the other hand, taking a smaller value of

d = 1, the static scene provides an exact estimation of L

matrix, however, it is not quite enough for the dynamic re-

gions to update most of the scene, hence the noise occurs in

a foreground mask.

Using static/dynamic superpixel classification, each re-

gion is processed using different values of d, since the static

and dynamic regions may occur simultaneously. Fig. 1

shows the accurate recovery of L by considering d = 1
for static superpixel, and d = 5 for dynamic homogeneous

region. Using these adapted values of d on separate regions

improve the processing time as the number of columns in

U reduces. However, when the foreground is distributed

among on or more homogeneous regions, the system shows

a weak performance since the holes appear due to the lack

of compactness but it can be solved by exploiting the struc-

tural foreground constraints.

(a) (b) (c)

Figure 2. An example of different types of background scenes. (a)

input, (b) L component using d = 5, and (c) L component us-

ing d = 1. From top to bottom, Office (static) and WaterSurface

(dynamic) sequence.

3.2.2 Outliers Estimation

In this section, we describe the structural foreground con-

straints imposed on the S component. Since we computed

the background model L in the previous section by chang-

ing Eq. 2 into Eq. 5 with max-norm regularizations. For

continuous variations in S, we then re-write the Eq. 2 by

introducing the initial residual error Ŝ as

min
S

1

2
||Ŝ||2F+β||S||1+γ||Φ(S)||1=

∑

i

Ŝ2
i + β

∑

i

si + γ
∑

(i,j)∈N

wij |si − sj |,
(12)

and in case of each superpixel as

min
sk

1

2
||̂sk||2F+β||sk||1+γ||Φ(s)||1, (13)

where Ŝ is the residual error computed by Ŝ = X−L, as de-

picted in Fig. 1 (i), and L is the set of low-rank superpixels

estimated in the previous section. The first term in Eq. 12 is

constant, second and third terms correspond to the GFL for

continuous structural contiguity of the foreground objects

(since the foreground pixels are too small and connected).

The goal is to find the S, and this problem can be solved

through minimizing the energy in Eq. 12 by considering that

the graph having nodes V and edges E, where each variable

corresponds to a node on the graph.

The σ in Eq. 4 is a smoothing term, which must be

tunned carefully, otherwise the model in Eq. 2 reduces to

the traditional RPCA [3]. A fixed value in [23] is consid-

ered for each test sequence and thus cannot be adapted for

every scene. In this proposal, we update it according to the

foreground object. The σ is updated as σ + |(X−UV )2|1
2 .

The
|(X−UV )2|

2 will be higher in the presence of foreground

object but without any object in the scene its value will be

lower.

Eq. 12 is similar to the parametric graph-cut problem

and its optimization is difficult to solve. We use the more

greedy method proposed in [22] to solve this equation. This

method is fast enough as the element-wise soft threshold-

ing is applied and then, update the foreground with a fast
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Algorithm 1 Iterative Max-Norm Decomposition

Input: X (set of input superpixels), S = 0, U ∈
R

p×d(initial basis), d, P ∈ R
r×r, Q ∈ R

p×r, v ∈ R
d,

V ∈ R
n×d,Unitary Matrix I, λ1.

1: for t = 1 to n do {Access each sample}
2: for i = 1 to k do {each superpixel}
3: Compute the initial coefficients v by projecting the

new sample as

vt =
v,||v||2

2
≤1

argmin 1
2 ||xt

k − Ut−1v− st||22
4: V(t,:) ← vt. Compute the auxiliary matrices Pt

and Qt as

Pt ← Pt−1 + vvT ,Qt ← Qt−1 + (xt
k − st)vT

5: Compute Ut with Ut−1 as

Ut = argmin 1
2Tr[U

T (Pt + λ1I)U]

−Tr(UT Qt) + λ1

2 ||U ||22,∞
6: Update the basis U by Block Coordinate Descent

method.

7: Lt ← UVT (set of superpixels of low-rank)

8: Ŝ = X− L, initial error

9: Optimize S using pre-defined Ŝ as

S←
S

argminβ
∑

i si + γ||Φ(S)||1
10: end for

11: end for

Output: L, S.

parametric-flow algroithm proposed in [6] to reinforce most

of the foreground pixels and smoothness. Applying GFL on

each small homogeneous region, we achieved more good

computational time as compared to [23]. The result of GFL

is a foregorund mask as shown in Fig. 1 (j).

4. Experimental Evaluations

In this section, the detailed experiments including both

visual and numerical results are presented. First, we discuss

the implementation setup and then, the datasets with results

and computational complexity of the algorithm is described

with discussion.

4.1. Implementation Details

Our algorithm is implemented on Matlab R2013a with

3.40 GHz Intel core i5 processor with 4 GB RAM. Since,

the proposed method is based on superpixel processing,

therefore the regularization parameter such as λ1 in Eq. 7

is considered for each homogeneous region as λ1 =
0.25√

max(size(xk))
. We used the number of superpixels in Eq. 1

as k = 20 and window size of N = 100 for static/dynamic

superpixel identification. The positive value should be used

for smoothing factor σ in Eq. 4 for S component optimiza-

tion. We initially set its value as σ = 25 and then, it is

updated as mentioned earlier. Moreover, we have not used

any post-processing such median filtering to remove small

moise from binary mask.

4.2. Datasets

We have tested our designed methodology on one

small dataset called Perception Test Images Sequences

(PTIS) [10] and second a very large scale dataset called

Change Detection (CDnet 2014) [21]. The brief description

about these datasets are summarized below.

4.2.1 Perception Test Images Sequences Dataset

PTIS dataset [10] contains nine complex challenging back-

ground scenes. The 1st five SML sequences called, Cam-

pus (CAM), Fountain (FT), Water Surface (WS), Moving

Curtain (MC), and Lobby (LB), respectively, belongs to

the highly dynamic backgrounds. The remaining four se-

quences called, Shopping Mall (SM), Airport Hall (AH),

Restaurant (RT), and Escalator (ES) corresponds to the

bootstrapping case e.g., UML. The size of each sequence

is [128× 160× 3] . Fig. 3 shows the visual results of PTIS

dataset.

Due to space limitations, we have not provided the de-

tailed qualitative comparison with other approaches. How-

ever, we have only presented the comparison of one se-

quence called LB with the most recent method called Back-

ground Subtraction via Generalized Fussed Lasso Fore-

ground Modeling (BS-GFLFM) [23]. LB is a dynamic

scene, which contains slowly as well as sudden changing

lighting conditions. It also contains some training back-

ground frames for model learning e.g., SML. Since, two dif-

ferent algorithms are used for SML and UML cases in [23]

and most of the time the pure background frames are less

representative for lighting conditions. In contrast, we have

used only one algorithm for SML/UML cases and the pro-

posed updating method for basis U presented above handles

the different illumination conditions. The author’s of [23]

reported only one sequence of LB for visual evaluations.

The detailed comparison of LB scene can be depicted in

Fig. 4.

For numerical analysis, the proposed method is com-

pared with eight state-of-the-art approaches which can be

categorized into two categories. Since we have employed

the sparsity-constraints, therefore OR-PCA with MRF [9],

COROLA [18], DECOLOR [27], BS-GFLFM [23], GO-

SUS1 [24], and LR-FSO2 [25] methods are considered

first for comparison. Second, traditional RPCA [3], and

SemiSoftGoDec [26] schemes are also taken into consid-

eration. We use the well-known measure called F-measure

for evaluation. It is computed by comapring each sequence

with its available ground truth frame. Table. 1 shows that

1Grassmannian Online Subspace Updates with Structured-sparisty.
2Linear Regression model with Fused Sparsity on Outliers.
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Table 1. Qualitative results of PTIS dataset [10]: Average F-measure score of each video sequence with earlier approaches.
Method Perception Test Images Sequences dataset [10]

CAM FT WS MC LB SM AH RT ES Average

Evaluation Frames 20 20 20 20 20 20 20 20 20

OR-PCA with MRF [9] 0.7597 0.8223 0.9166 0.8920 0.8081 0.8072 0.7844 0.7150 0.6468 0.7946

COROLA [18] 0.7706 0.9175 0.9503 0.9038 0.8125 0.8298 0.7955 0.7320 0.6603 0.8191

DECOLOR [27] 0.3416 0.2075 0.9022 0.8700 0.6460 0.6822 0.8169 0.6589 0.7480 0.6525

LR-FSO [25] 0.7457 0.7760 0.8554 0.8136 0.6911 0.6844 0.6296 0.5798 0.6102 0.7095

GOSUS [24] 0.8347 0.87890 0.9236 0.8995 0.6996 0.8019 0.5616 0.7475 0.6432 0.7767

BS-GFLFM [23] 0.8126 0.9011 0.9366 0.9455 0.6456 0.8326 0.7422 0.8265 0.7613 0.8226

RPCA [3] 0.5226 0.8650 0.6082 0.9014 0.7245 0.7785 0.5879 0.8322 0.7374 0.7286

SemiSoftGoDec [26] 0.0903 0.2574 0.4473 0.4344 0.3602 0.6554 0.5713 0.3561 0.2751 0.3830

Ours 0.8574 0.9322 0.9856 0.9744 0.8840 0.8265 0.7739 0.8394 0.8029 0.8751

(a) CAM (b) FT (c) WS (d) MC (e) LB (g) AH(f) SM (h) RT (i) ES

Figure 3. Visual results on PTIS dataset. From top to bottom, input, low-rank, ground truth, and the results of proposed method.

the proposed method out-performs with earlier methods. It

should be noted that the author’s of BS-GFLFM [23] re-

ported thier performance using one test sequence. In this

proposal, we have reported the performance on all the se-

quences and then, average score is computed as shown in

Table. 1.

4.2.2 Change Detection 2014 Dataset

CDnet [21] is the large scale real-world dataset. It contains

about 55 video sequences divided into 11 different cate-

gories. The proposed algorithm is evaluated on 5 simple

as well as complex categories namely: Baseline, Dynamic

Background, Intermittent Object Motion, Thermal, and Low

Framerate. The size of each video frame is [240× 320× 3]
and the number of frames vary from 1, 000 to 6, 000.

We showed the visual results on selected sequences such

as highway, and office taken from Baseline category. The

canoe, and overpass sequences are taken from Dynamic

Background, sofa sequence is selected from Intermittent

Object Motion, library from category Thermal, whereas the

turnpike sequence is chosen from Low Framerate category.

Fig. 5 presents the visual performance of these sequences.

The proposed scheme is also evaluated for quantitative

analysis on CDnet. We compute the same F-measure score

as discussed previously. For example, the office sequence of

Baseline categroy contains 2, 050 frames and the evaluation

is required from 570 to 2, 050 number of frames. Since most

of the RPCA-based and structured-sparsity methods pro-

cess under batch strategy, and thus these methods can not

process such a large dimenisonal data. Therefore, we com-

pare our quantitative performance with the most recent real-

time methods such as SOBS-CF [15], CwisarDH [7], CP3-

Online [12], Multiscale Model [14], and Spectral-360 [17]

as reported on CDnet benchmark [21]. Table. 2 shows the

achieved performance with other methods. The (-) lines in

Table. 2 demonstrates that the method can not process a

huge data such as [240 × 320 × 500]. Moreover, accord-

ing to the results reported on CDnet [21] site, we are the

4th top performer in Baseline, and Thermal. The 3rd per-

former in Dynamic Background, and Low Framerate, and

finally 6th performer in case of Intermittent Object Motion

category. The detail quantitative performance can be found

on the benchmark site.

4.3. Computational Time

Time is also evaluated during the experiments and it is

reported in CPU time. For fair comparison with other meth-

ods [23, 24], we first make a batch of 100 frames with a

resolution of 120 × 160, e.g., [120 × 160 100] and then,
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(a) (b) (c) (d) (e) (f)

Figure 4. LB sequence of PTIS dataset. (a) two input scenes with different lighting conditions, (b) ground truth, (c) L matrix of [23], (d) L

matrix of proposed method, (e) foreground mask of [23], and (f) mask of ours.

Table 2. Qualitative results of CDnet dataset [10]: Average F-measure score of each category with previous methods.
Method Change Detection 2014 dataset

Baseline Dynamic Background Intermittent Object Motion Thermal Low Framerate Average

Number of Videos 4 6 6 5 4

SOBS-CF [15] 0.9299 0.6519 0.5810 0.7140 0.5148 0.6783

CwisarDH [7] 0.9145 0.8274 0.5753 0.7866 0.6406 0.7488

CP3-Online [12] 0.8856 0.6111 0.6177 0.7917 0.4742 0.67606

Multiscale Model [14] 0.8450 0.5953 0.4497 0.5103 0.3365 0.5473

Spectral-360 [17] 0.9330 0.7766 0.5609 0.7764 0.6437 0.7381

BS-GFLFM [23] - - - - - -

GOSUS [24] - - - - - -

Ours 0.9469 0.8519 0.6988 0.8156 0.6836 0.7993

[240×320 100]. We have tested the method using the same

configurations as discussed above. Since each superpixel of

a one frame is processed per time instance via online man-

ners therefore it is indepedent of the number of images and

thus time grows linearly as the image resolution grows. In

both cases, Table. 3 demonstrates that the proposed method

shows attractive computational time as compared to earlier

methodologies. In case of large video data, the earlier ap-

proaches such as [23, 24] fail to process as mentioned in

Table. 3. Although, the method is currently written in Mat-

lab but we believe that these all experimental evaluations

on the proposed scheme shows a very good speed/accuracy

trade-off.

5. Conclusion

In this paper, we presented an online coarse-to-fine strat-

egy for video background/foregorund segmentation. The

proposed scheme is based on the processing of one frame

per time instance. Our method provide an efficient, and

more reliable low-rank component using matrix decompo-

sition with max-norm of superpixels. Moreover, the fore-

ground labels are maintained using the sparsity-constraints.

Experimental results are the evidence that we have achieved

a superior performance as compare to its batch counter-

Table 3. Computational Time in seconds
Resolution × No. of Images GOSUS [24] BS-GFLFM [23] Ours

SML UML

[128× 160]× 100 69.77s 88.07s 340.12s 8.12s

[240× 320]× 100 - - - 19.22s

parts. Our further investigations will concern the extension

to the moving cameras case.
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