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Abstract

We consider the problem of outlier rejection in single

subspace learning. Classical approaches work directly with

a low-dimensional representation of the subspace. Our ap-

proach works with a dual representation of the subspace

and hence aims to find its orthogonal complement. We pose

this problem as an ℓ1-minimization problem on the sphere

and show that, under certain conditions on the distribution

of the data, any global minimizer of this non-convex prob-

lem gives a vector orthogonal to the subspace. Moreover,

we show that such a vector can still be found by relaxing

the non-convex problem with a sequence of linear programs.

Experiments on synthetic and real data show that the pro-

posed approach, which we call Dual Principal Component

Pursuit (DPCP), outperforms state-of-the art methods, es-

pecially in the case of high-dimensional subspaces.

1. Introduction

Principal Component Analysis (PCA) is one of the old-

est [16, 11] and most fundamental techniques in data analy-

sis, enjoying ubiquitous applications in modern science and

engineering [12]. Given a data matrix X ∈ R
D×L of L

data points of dimension D, PCA gives a closed form so-

lution to the problem of fitting, in the Euclidean sense, a

d-dimensional linear subspace to the columns of X . Even

though the optimization problem associated with PCA is

non-convex, it does admit a simple solution by means of

the Singular Value Decomposition (SVD) of X . In fact, the

d-dimensional subspace V̂ of RD that is closest to the col-

umn span of X is precisely the subspace spanned by the

first d left singular vectors of X .

Using V̂ as a model for the data is meaningful when

the data are known to have an approximately linear struc-

ture of underlying dimension d, i.e. they lie close to a d-

dimensional subspace V . In practice, the principal compo-

nents of X are known to be well-behaved under mild levels

of noise, i.e., the angle between V̂ and V is relatively small

and more importantly V̂ is optimal when the noise is Gaus-

sian [12]. However, in the presence of even a few outliers

in X , i.e., points whose angle from the underlying ground

truth subspace V is large, the angle between V and its es-

timate V̂ will in general be large. This is to be expected

since, by definition, the principal components are orthogo-

nal directions of maximal correlation with all the points of

X . This phenomenon, together with the fact that outliers

are almost always present in real datasets, has given rise to

the important problem of outlier detection in PCA.

Traditional outlier detection approaches come from ro-

bust statistics and include Influence-based Detection, Mul-

tivariate Trimming, M -Estimators, Iteratively Weighted Re-

cursive Least Squares and Random Sampling Consensus

(RANSAC) [12]. These methods are usually based on

non-convex optimization problems, admit limited theoret-

ical guarantees and have high computational complexity;

for example, in the case of RANSAC many trials are re-

quired. Recently, two attractive methods have appeared

[23, 19] with tight connections to compressed sensing [3]

and low-rank representation [14]. Both of these meth-

ods are based on convex optimization problems and admit

theoretical guarantees and efficient implementations. Re-

markably, the self-expressiveness method of [19] does not

require an upper bound on the number of outliers as the

method of [23] does. However, they are both guaranteed to

succeed only in the low-rank regime: the dimension d of

the underlying subspace V associated to the inliers should

be small compared to the ambient dimension D.

In this paper we adopt a dual approach to the problem

of robust PCA in the presence of outliers, which allows us

to transcend the low-rank regime of modern methods such

as [23, 19]. The key idea of our approach comes from the

fact that, in the absence of noise, the inliers lie inside any

hyperplane H1 = Span(b1)
⊥ that contains the underlying

linear subspace V . This suggests that, instead of attempt-

ing to fit directly a low-dimensional linear subspace to the

entire data set, as done e.g. in [23], we can search for a

hyperplane H1 that contains as many points of the dataset

as possible. When the inliers are in general position inside

the subspace, and the outliers are in general position out-

1 10



side the subspace, this hyperplane will ideally contain the

entire set of inliers together with possibly a few outliers.

After removing the points that do not lie in that hyperplane,

the robust PCA problem is reduced to one with a potentially

much smaller outlier percentage than in the original dataset.

In fact, the number of outliers in the new dataset will be at

most D − 2, an upper bound that can be used to dramat-

ically facilitate the outlier detection process using existing

methods. We think of the direction b1 of the normal to the

hyperplaneH1 as a dual principal component of X , as ide-

ally it is an element of V⊥. Naturally, one can continue by

finding a second dual principal component by searching for

a hyperplane H2 = Span(b2)
⊥, with b2 ⊥ b1, that con-

tains as many points as possible from X ∩ H1, and so on,

leading to a Dual Principal Component Analysis of X .

We pose the problem of searching for such hyperplanes

as an ℓ0 cosparsity-type problem, which we relax to a non-

convex ℓ1 problem on the sphere. We provide theoretical

guarantees under which every global solution of that prob-

lem is a dual principal component. More importantly, we re-

lax this non-convex optimization problem to a sequence of

linear programming problems, which, after a finite number

of steps, yields a dual principal component. Experiments on

synthetic data demonstrate that the proposed method is able

to handle more outliers and higher dimensional subspaces

than the state-of-the-art methods [23, 19].

2. Problem Formulation

We begin by establishing our data model in Section 2.1,

then we formulate our DPCP problem conceptually and

computationally in Sections 2.2 and 2.3, respectively.

2.1. Data Model

We employ a deterministic noise-free data model, under

which the inliers consist of N points X = [x1, . . . ,xN ] ∈
R

D×N that lie in the intersection of the unit sphere S
D−1

with an unknown proper subspace V of RD of unknown di-

mension d. Accordingly, the outliers consist of M arbitrary

points O = [o1, . . . ,oM ] ∈ R
D×M that lie on S

D−1. The

dataset, that we assume given, is X̃ = [X O]Γ ∈ R
D×L,

where L = N + M and Γ is some permutation, indicat-

ing that the partition of the columns of X̃ into X and O is

unknown. We further assume that the columns of X̃ are in

general position in the following sense: First, any d-tuple

of inliers and any D-tuple of outliers is linearly indepenent.

Second, for any
{

ξ1, . . . , ξD−1

}

⊂ X̃ , of which at most

d − 1 come from X , the hyperplane of R
D spanned by

ξ1, . . . , ξD−1 does not contain any of the remaining points.

2.2. Conceptual Formulation

Notice that in our data model we have made no assump-

tion about the dimension of V: indeed, V can be anything

from a line to a (D − 1)-dimensional hyperplane. Ideally,

we would like to be able to partition the columns of X̃ into

those that lie in V and those that don’t. But under such gen-

erality, this is not a well-posed problem since X lies inside

every subspace that contains V , which in turn may contain

some elements of O. In other words, given X̃ and without

any other a-priori knowledge, it may be impossible to cor-

rectly partition X̃ into X and O. Instead, we formulate the

following well-posed problem:

Problem 1 Partition the columns of X̃ ∈ R
D×L into two

groups, such that one of the groups is a subset of X̃ with

maximal cardinality, with respect to the property of lying

inside a (D − 1)-dimensional hyperplane of RD.

The usefulness of this formulation is that for large values of

γ := M/N , where known methods for outlier detection

in PCA fail, one of the groups, say X̃ 1 will contain the

entire X together with precisely D − d− 1 columns of O,

while the other group, say X̃ 2, will contain the remaining

M − (D−d−1) columns of O. Note that the first group is

structured in the sense that it must lie in a hyperplane and

so in general dimSpan(X̃ 1) = D−1. Having the partition

X̃ = X̃ 1 ∪ X̃ 2, we can reject the unstructured group X̃ 2

and reconsider the Robust PCA problem on the group X̃ 1.

But now the number of outliers has decreased from γ N to

D − d − 1. In fact, we can use the upper bound D − 2 on

the number of outliers to dramatically facilitate the outlier

detection process using other existing methods.

2.3. Computational Formulation

A natural approach towards solving Problem 1 is to solve

min
b
||X̃⊤

b||0 s.t. b 6= 0. (1)

The idea behind (1) is that a hyperplane H = Span(b)⊥

contains a maximal number of columns of X̃ if and only

if X̃
⊤
b is as sparse as possible. Since (1) is intractable,

consider

min
b
||X̃⊤

b||1 s.t. ‖b‖2 = 1. (2)

Notice that the objective in (2) is convex, while the con-

straint b ∈ S
D−1 is non-convex, thus leading to a non-

smooth and non-convex optimization problem.

Problem 2 When is every global solution b∗ of (2) orthog-

onal to Span(X )? How can we efficiently solve (2)?

In this paper, we propose to relax (2) by a sequence of

linear programs of the form

nk+1 := argmin
b⊤n̂k=1

∥

∥

∥
X̃

⊤
b

∥

∥

∥

1
, (3)

where n0 is some arbitrary vector and ·̂ indicates normal-

ization to unit ℓ2-norm. We naturally ask:

Problem 3 Under what conditions does the sequence of (3)

converge to a vector n̂∞ that is orthogonal to Span(X )?
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3. Related Work

In this section, we aim to familiarize the reader with the

state-of-the-art of outlier detection in modern single sub-

space learning (Section 3.1), as well as give a brief overview

(Section 3.2) of existing work, that relates technically to the

problems of interest of this paper, i.e. problems (2) and (3).

3.1. Outlier Rejection in PCA

One of the oldest and most popular outlier detec-

tion methods in PCA is Random Sampling Consensus

(RANSAC) [12]. The idea behind RANSAC is simple: alter-

nate between randomly sampling d̂ points from the dataset

and computing a subspace model for these points, until a

model is found that fits a maximal number of points in

the entire dataset within some error ε. RANSAC is usu-

ally characterized by high performance, when not both d̂
and the oultier percentage are large; otherwise it requires a

high computational time, particularly when d is unknown

and d̂ is allowed to vary, since exponentially many trials are

required in order to sample outlier-free subsets, and thus

obtain reliable models. Moreover, its performance is very

sensitive on in the input parameters d̂ and ε.

Among many other outlier detection methods (see Sec-

tion 1), in the remaining of this section we will focus on

the modern low-rank/sparse-representation theoretic meth-

ods of [23] and [19], which we will later use experimentally

to compare against our proposed method.

The first method [23], referred to as L21, is a variation

of the Robust PCA algorithm of [13, 2], which computes a

(ℓ∗ + ℓ21)-norm decomposition1 of the data matrix, instead

of the (ℓ∗ + ℓ1)-decomopsition in [2]. More specifically,

L21 solves the convex optimization problem

min
L,E: X̃=L+E

‖L‖∗ + λ ‖E‖21 . (4)

It is shown in [23] that, under certain conditions, the optimal

solution to this problem is of the form L = [X 0D×M ]Γ
and E = [0D×N O]Γ. That is, the nonzero columns of the

L matrix give the inliers and the nonzero columns of the E

matrix give the outliers. However, the theoretical conditions

require the intrinsic dimension d = dimV and the outlier

percentage to be small enough.

The second method that we consider, referred to as SE, is

based on the self-expressiveness property of the data matrix,

a notion popularized by the work of [4, 5] in the area of sub-

space clustering [22]. More specifically, if a column of X̃

is an inlier, then it can in principle be expressed as a linear

combination of d other columns of X̃ , which are inliers. If

the column is instead an outlier, then it will in principle be

1Here ℓ∗ denotes the nuclear norm of a matrix, i.e., the sum of its sin-

gular values, and ℓ21 is defined as the sum of the Euclidean norms of the

columns of a matrix.

expressible as a linear combination of not less than D other

columns. To encourage each point to express itself as a lin-

ear combination of the smallest number of other data points,

the following convex optimization problem is solved:

min
C
‖C‖1 , s.t. X̃ = X̃C, Diag(C) = 0. (5)

If d is small enough with respect to D, an element is de-

clared as an outlier if the ℓ1 norm of its coefficient vector

in C is large; see [19] for an explicit formula. SE admits

theoretical guarantees [19] and efficient ADMM implemen-

tations [5]. However, as it is clear from its description, it is

expected to succeed only when d is sufficiently small. In

contrast though to L21, SE has the remarkable property that

it can, in principle, handle an arbitrary number of outliers.

3.2. Connections with Compressed Sensing and Dic­
tionary Learning

Problems of the form

min
b
||Ωb||0 s.t. b 6= 0, (6)

and variants of its relaxations have appeared on several oc-

casions and in diverse contexts in the literature, but are

much less understood than the now classic sparse [1] and

cosparse [15] problems of the form

min
x
||x||0 s.t. Ax = b (7)

min
x
||Ωx||0 s.t. Ax = b, (8)

respectively. The main source of difficulty is that, in con-

trast to (8), obtaining tight convex relaxations of (6) is a

hard problem. One of the first instances where (6) was con-

sidered was in the context of blind source separation [24],

where it was proposed to relax it with the problem

min
b
||Ωb||1 s.t. ‖b‖2 ≥ 1. (9)

This is still a non-convex problem, and a heuristic based on

quadratic programming was proposed to solve it.

It was not until very recently, that the convex relaxation

min
b
||Ωb||1 s.t. b⊤w = 1 (10)

was proposed, with w taken to be a row or a sum of two

rows of Ω, and theorems of correctness were given in the

context of dictionary learning [20]. Notice that our pro-

posed convex relaxations (3) can be seen as a generalization

of (10). In the context of finding the sparsest vector in a sub-

space, which is intrinsically related to dictionary learning,

an alternating direction minimization scheme was proposed

in [17, 18] to solve a relaxation of the form

min
b,x: ||b||2=1

||Ωb− x||22 + λ ‖x‖1 . (11)
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Remarkably, under some mild conditions, this was shown

to converge with high probability to a global solution of

min
b
||Ωb||1 s.t. ‖b‖2 = 1. (12)

The geometry of (12) was further studied in a probabilistic

framework in the recent [21], after replacing the ℓ1-norm

with a smooth surrogate.

4. Theoretical Analysis

In this section we state and discuss our main theoretical

results2, regarding problems (2) and (3). Before doing so

though, we need to introduce additional notation and draw

some interesting connections with the field of numerical in-

tegration on the sphere (Section 4.1).

4.1. An Integration Perspective

To begin with, for a vector b ∈ S
D−1, denote by fb :

S
D−1 → R

+ the function y 7→
∣

∣

∣
b⊤y

∣

∣

∣
. Then given a set of

L points Y ⊂ S
D−1, the quantity

1

L

∥

∥

∥
Y ⊤b

∥

∥

∥

1
=

1

L

L
∑

j=1

∣

∣

∣
b⊤yj

∣

∣

∣
=

1

L

L
∑

j=1

fb(yj) (13)

is a discrete approximation of the integral

∫

y∈SD−1

fb(y)dµ =

∫

y∈SD−1

|y⊤b|dµ, (14)

where µ is the uniform measure on S
D−1 and cD is the

mean height of the unit hemisphere of RD, given in closed

form by

cD =
(D − 2)!!

(D − 1)!!
·
{

2
π

if D even

1 if D odd
, (15)

where the double factorial is defined as

k!! :=

{

k(k − 2)(k − 4) · · · 4 · 2 if k even

k(k − 2)(k − 4) · · · 3 · 1 if k odd
(16)

A useful fact is that cD is a decreasing function of D and in

fact tends to zero as D goes to infinity.

Now, observe that because of the symmetry of S
D−1,

the integral in (14) does not depend on b. However, the

integration error

∣

∣

∣

∣

∣

∣

cD −
1

L

L
∑

j=1

fb(y)

∣

∣

∣

∣

∣

∣

(17)

does depend both on the direction of b as well as the dis-

tribution of the points Y on S
D−1. It is clear though, that

2All proofs are omitted due to space limitations.

the more uniformly the points are distributed, the smaller

will be the dependence of the integration error on the di-

rection of b. We note here that the notion of uniform point

set distribution on the sphere is a non-trivial one. In a de-

terministic setting, this is an active subject of study in the

fields of combinatorial geometry and numerical integration

on the sphere [9, 8]. A widely used measure of the uni-

formity of a point set on the sphere is the so-called point

set discrepancy DS
L(Y ) of the set, which can be defined in

terms of spherical harmonics as

DS
L(Y ) := sup

m≥1

1

mD
max

i=1,...,Z(D,m)

∣

∣

∣

∣

∣

∣

1

L

L
∑

j=1

Sm,i(yj)

∣

∣

∣

∣

∣

∣

,

(18)

where Z(D,m) is the dimension of the vector space of

spherical harmonics of order m, and Sm,i is the i-th basis

element. It is then a fact that the integration error is small if

and only if DS
L(Y ) is small.

As before, for any b ∈ S
D−1 we define a vector valued

function fb : SD−1 → R
D by y

f
b7−→ Sign(b⊤y)y. Note

that the image of fb is S
D−1 ∪ 0 and that points that are

orthogonal to b are mapped to 0. Moreover,

Lemma 1
∫

y∈SD−1 Sign(b
⊤y)ydµ = cD b, ∀b ∈ S

D−1.

This result suggests that the quantity yb :=
1
L

∑L

j=1 Sign(b
⊤yj)yj can be interpreted as a dis-

crete approximation of the integral
∫

y∈SD−1 fb(y)dµ and

so the more uniformly distributed are the points Y , the

closer yb is to the quantity cD b.

The above discussion motivates defining the quantities

ǫO and ǫX , to capture the uniformity of outliers and inliers,

respectively:

ǫO := max
b∈SD−1

‖cD b− ob‖2 , (19)

ob :=
1

M

M
∑

j=1

Sign(b⊤oj)oj , (20)

ǫX := max
v∈SD−1∩V

‖cd v − χv‖2 (21)

χv :=
1

N

N
∑

j=1

Sign(v⊤xj)xj . (22)

4.2. The Non­Convex Problem

Before we consider the discrete non-convex problem (2),

it is instructive to examine its continuous counterpart

min
b⊤b=1

M

∫

o∈SD−1

∣

∣

∣
b⊤o

∣

∣

∣
dµ+

+N

∫

x∈V∩SD−1

∣

∣

∣
b⊤x

∣

∣

∣
dσ, (23)
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where σ is the uniform measure on V ∩ S
D−1. Of course

this problem is only of theoretical interest and serves in es-

tablishing a first intuition for the idea behind (2). In fact,

Theorem 1 Any global solution to problem (23) must be

orthogonal to V .

The proof of the above theorem follows easily from the

symmetry of the sphere, since the first integral appearing

in (23) does not depend on b, while the second integral de-

pends only on the angle of b from V .

Theorem 1 suggests that under sufficiently well-

distributed point sets of inliers and outliers, any global so-

lution to the discrete problem (2) should also be orthogonal

to the span of the inliers. Before stating the precise result,

we need one last piece of notation:

Definition 1 For a set Y = [y1, . . . ,yL] ⊂ S
D−1 and

integer K, define RY ,K to be the maximum circumradius

among all polytopes Conv
(

±yj1
± yj2

± · · · ± yjK

)

,

where j1, . . . , jK are distinct integers in [L], and Conv(·)
indicates the convex hull operator.

Theorem 2 Suppose that the quantity γ := M
N

satisfies

γ < min

{

cd − ǫX
2 ǫO

,
cd − ǫX − (RO,K1

+RX ,K2
) /N

ǫO

}

,

(24)

for all positive integers K1,K2 such that K1 +K2 ≤ D −
1,K2 ≤ d − 1. Then any global solution b∗ to (2) will be

orthogonal to Span(X ).

Towards interpreting this result, consider first the asymp-

totic case where we allow N and M to go to infinity, while

keeping the ratio γ constant. Under point set uniformity,

i.e. under the hypothesis that limN→∞ DS
N (X ) = 0 and

limM→∞ DS
M (O) = 0, we will have that limN→∞ ǫX = 0

and limM→∞ ǫO = 0, in which case (24) is satisfied. This

suggests the interesting fact that when the number of in-

liers is a linear function of the number of outliers, then (2)

will always give a normal to the inliers even for arbitrarily

large number of outliers and irrespectively of the subspace

dimension d. Along the same lines, for a given γ and under

the point set uniformity hypothesis, we can always increase

the number of inliers and outliers (thus decreasing ǫX and

ǫO), while keeping γ constant, until (24) is satisfed, once

again indicating that (2) is possible to yield a normal to the

space of inliers irrespectively of their intrinsic dimension.

4.3. The Sequence of Convex Relaxations

In this section we consider the sequence of convex relax-
ations (3); in particular, there are two important issues to be

addressed. First, note that relaxing the constraint b⊤b = 1
in (2) with a linear constraint b⊤n̂ = 1 as in (10), has
already been found to be of limited theoretical guarantees
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Figure 1. Experimental analysis of DPCP (see subsection 6.1). (a):

Empirical probability of (24) being true. (b): Angle from inlier

space of the vector b computed by DPCP, with n̂0 initialized with

φ0 > φ∗
0, when (24) is true. (c): Empirical probability of a random

n̂0 satisfying φ0 > φ∗
0. (d): As in (b) but with n̂0 initialized at

random. (e): As in (c) but with n̂0 initialized with SVD. (f): As in

(d) but with n̂0 initialized with SVD. (g): φ∗
0 as given by (26).

[20]. So it is natural to ask whether the idea of considering a

sequence of such relaxations b⊤n̂k = 1, k = 0, 1, . . . has
an intrinsic merit or not, irrespectively of the data distribu-
tion. For example, if the data is perfectly well distributed,
yet the sequence does not yield vectors orthogonal to the
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Figure 2. Outlier/Inlier separation for the 5 compared methods.

inlier space, then we will know that a-priori the method is
limited. Fortunately, this is not the case: when the data is
perfectly well distributed, i.e. when we restrict our attention
to the continuous analog of (3), given by

nk+1 = argmin
b⊤n̂k=1

[

M

∫

o∈SD−1

∣

∣

∣
b
⊤
o

∣

∣

∣
dµ

+ N

∫

x∈V∩SD−1

∣

∣

∣
b
⊤
x

∣

∣

∣
dσ

]

, (25)

then the sequence {nk} achieves the property of interest:

Theorem 3 Consider the sequence of vectors {nk} gener-

ated by recursion (25), where n̂0 ∈ S
D−1 is arbitrary. Let

{φk} be the corresponding sequence of angles from V . Then

limk→∞ φk = π
2 , provided that n0 6∈ V .

This result suggests that relaxing b⊤b = 1 with the se-

quence b⊤n̂k = 1, k ≥ 0 is intrinsically the right idea.

The second issue is how the distribution of the data af-

fects the ability of this sequence of relaxations to give vec-

tors orthogonal to V . The answer is given by Theorem

0 0.2 0.4 0.6 0.8

0.6

0.8

1
η=0.01, R=0.3

TP  

0 0.2 0.4 0.6 0.8

0.6

0.8

1
η=0.05, R=0.3

0 0.2 0.4 0.6 0.8

0.6

0.8

1
η=0.01, R=0.5

TP  

0 0.2 0.4 0.6 0.8

0.6

0.8

1
η=0.05, R=0.5

0 0.2 0.4 0.6 0.8

0.6

0.8

1
η=0.01, R=0.6

FP

TP  

0 0.2 0.4 0.6 0.8

0.6

0.8

1
η=0.05, R=0.6

FP

 

 

SE
L21
SVS
RANSAC
DPCP

(a) d = 15

0 0.2 0.4 0.6 0.8

0.6

0.8

1
η=0.01, R=0.3

TP  

0.2 0.4 0.6 0.8

0.6

0.8

1
η=0.05, R=0.3

0.2 0.4 0.6 0.8

0.6

0.8

1
η=0.01, R=0.5

TP  

0.2 0.4 0.6 0.8

0.6

0.8

1
η=0.05, R=0.5

0.2 0.4 0.6 0.8

0.6

0.8

1
η=0.01, R=0.6

FP

TP  

0.4 0.6 0.8

0.6

0.8

1
η=0.05, R=0.6

FP

 

 

SE
L21
SVS
RANSAC
DPCP

(b) d = 25

Figure 3. ROC curves as functions of noise percentage η, outlier

percentage R, and subspace dimension d.

4, which says that when the angle between n0 and V is

large enough and the data points are well distributed, the

sequence (3) will consist of vectors orthogonal to the inlier

space, for sufficiently large indices k.

Theorem 4 Let φ0 be the angle between n0 and V . Sup-

pose that condition (24) on the outlier ratio γ holds true

and consider the vector sequence {n̂k} generated by recur-

sion (3). Then after a finite number of terms n̂0, . . . , n̂K ,

for some K, every term of {n̂k} will be orthogonal to

Span(X ), providing that

φ0 > cos−1

(

cd − ǫX − 2 γ ǫO
cd + ǫX

)

=: φ∗
0. (26)

First note that if (24) is true, then the expression of (26)

always defines an angle between 0 and π/2. Second, The-

orem 4 can be interpreted using the same asymptotic argu-

ments as Theorem 2. In particular, notice that the lower
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(c) M = 128

Figure 4. ROC curves for different number of outliers. Inliers are

face images of a single individual and outliers are images chosen

randomly among different object categories.

bound on the angle φ0 tends to zero as M,N go to infinity

with γ constant. Note also that this result does not show

convergence of the sequence n̂k: it only shows that this se-

quence will eventually satisfy the desired property of being

orthogonal to the space of inliers; a convergence result re-

mains yet to be established.

5. Dual Principal Component Pursuit

So far we have established a mechanism of obtaining

an element b1 of V⊥, where V = Span(X ): run the se-

quence of linear programs (3) until the function

∥

∥

∥
X̃

⊤
b̂k

∥

∥

∥

1
converges within some small ǫ; then assuming no patholog-

ical point set distributions, any vector n̂k can be taken as

b1. There are two possibilities: either V is a hyperplane of

dimension D − 1 or dimV < D − 1. In the first case, b1
is the unique up to scale element of V⊥, which proves that

in this case the sequence of (3) in fact converges. In such

a case, we can identify our subspace model with the hyper-

plane defined by the normal b1. Next, if dimV < D − 1,

we can proceed to find a second element b2 of V⊥ that is

orthogonal to b1 and so on. This naturally leads to the Dual

Principal Component Pursuit shown in Algorithm 1.

A few comments are in order. In Algorithm 1, c is an

estimate for the codimension D − d of the inlier subspace

Span(X ). If c is rather large, then in the computation of

each bi, it is more efficient to reduce the coordinate rep-

Algorithm 1 Dual Principal Component Pursuit

1: procedure DPCP(X̃ , c, ǫ, Tmax)

2: B ← ∅;
3: for i = 1 : c do

4: k ← 0;∆J0 ←∞;

5: n0 ← argminn̂:‖n̂‖
2
=1, n̂⊥b1,...,bi−1

∥

∥

∥
X̃

⊤
n̂

∥

∥

∥

2
;

6: while k ≤ Tmax and ∆J0 > ǫ do

7: k ← k + 1;

8: nk ← argminn:n⊤n̂k−1=1,n⊥B

∥

∥

∥
X̃

⊤
n

∥

∥

∥

1
;

9: ∆Jk ←
∥

∥

∥
X̃

⊤
n̂k−1

∥

∥

∥

1
−
∥

∥

∥
X̃

⊤
n̂k

∥

∥

∥

1
;

10: end while

11: bi ← n̂k;

12: B ← B ∪ {bi};
13: end for

14: return B;

15: end procedure

resentation of the data by replacing X̃ with πi(X̃ ), where

πi : R
D → R

D−(i−1), i ≥ 2, is the orthogonal projection

onto Span(b1, . . . , bi−1)
⊥, and solve the linear program in

step 8 in the projected space.

Notice further how the algorithm initializes n0: This is

effectively the right singular vector of πi(X̃ )⊤, that corre-

sponds to the smallest singular value. As it will be demon-

strated in Section 6, this choice has the effect that the angle

of n0 from the inlier subspace is typically large, in partic-

ular, larger than the smallest initial angle (26) required for

the success of the principal component pursuit of (3).

6. Experiments

In this section we investigate experimentally the pro-

posed DPCP Alg. 1. Using both synthetic (subsection 6.1)

and real data (subsection 6.2), we compare DPCP to the

three methods SE, L21 and RANSAC discussed in Section

3.1 as well as to the method of eq. (11) discussed in Sec-

tion 3.2, which we will refer to as SVS (Sparsest Vector in

a Subspace). The parameters of the methods are set to fixed

values, chosen such that the methods work well across all

tested dimension and outlier configurations. In particular,

we use αSE = 100, τL21 = 100 and λL21 = 3/(7
√
M);

see [19] and [23] for details. Regarding DPCP, we fix

Tmax = 10, ǫ = 10−6, and unless otherwise noted, we set

c equal to the true codimension of the subspace.

6.1. Synthetic Data

To begin with, we evaluate the performance of DPCP

in the absence of noise, for various subspace dimensions

d = 1 : 1 : 29 and outlier percentages R := M/(M+N) =
0.1 : 0.1 : 0.9. We fix the ambient dimension D = 30, sam-

ple N = 200 inliers uniformly at random from V ∩ S
D−1
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and M outliers uniformly at random from S
D−1. We are in-

terested in examining the ability of DPCP to recover a single

normal vector (c = 1) to the subspace, by means of recur-

sion (3). The results are shown in Fig. 1 for 10 independent

trials. Fig. 1(a) shows whether the theoretical conditions

of (24) are satisfied or not. In checking these conditions,

we estimate the abstract quantities ǫO, ǫX ,RO,K1
,RX ,K2

by Monte-Carlo simulation. Whenever these conditions are

satisfied, we choose b0 in a controlled fashion, so that its

angle φ0 from the subspace is larger than the minimal angle

φ∗
0 of (26), and then we run DPCP; if the conditions are not

true, we do not run DPCP and report a 0. Fig 1(b) shows the

angle of b10 from the subspace. We see that whenever (24)

is true, DPCP returns a normal after only 10 iterations. Fig

1(c) shows that if we initialize b0 randomly, then its angle

φ0 from the subspace becomes less than the minimal angle

φ∗
0, as d increases. Even so, Fig. 1(d) shows that DPCP still

yields a numerical normal, except for the regime where both

d and R are very high. Notice that this is roughly the regime

where we have no theoretical guarantees in Fig. 1(a). Fig.

1(e) shows that if we initialize b0 as the right singular vec-

tor of X̃
⊤

corresponding to the smallest singular value, then

φ0 > φ∗
0 is true for most cases, and the corresponding per-

formance of DPCP in Fig. 1(f) improves further. Finally,

Fig. 1(g) plots φ∗
0. We see that for very low d this angle

is almost zero, i.e. DPCP does not depend on the initial-

ization, even for large R. As d increases though, so does

φ∗
0, and in the extreme case of the upper rightmost regime,

where d and R are very high, φ∗
0 is close to 90o, indicating

that DPCP will succeed only if b0 is very close to V⊥.

Next, for the same range of R and d, and still in the ab-

sence of noise, we examine the potential of each of SE, L21,

SVS, RANSAC and DPCP to perfectly distinguish outliers

from inliers. Note that each of these methods returns a sig-

nal α ∈ R
N+M
+ , which can be thresholded for the purpose

of declaring outliers and inliers. For SE, α is the ℓ1-norm

of the columns of the coefficient matrix C, while for L21 it

is the ℓ2-norm of the columns of E. Since RANSAC, SVS

and DPCP directly return subspace models, for these meth-

ods α is simply the distances of all points to the estimated

subspace model. In Fig. 2 we depict success versus failure,

where success is interpreted as the existence of a thresh-

old on α that perfectly separates outliers and inliers. As

expected, the low-rank methods SE and L21 can not cope

with large dimensions even in the presence of 10 − 20%
outliers. As expected, RANSAC is very successful irrespec-

tively of dimension, when R is small, since the probability

of sampling outlier-free subsets is high. But as soon as R
increases, its performance drops dramatically. Moving on,

SVS is the worst performing method, which we attribute to

its approximate nature. Remarkably, DPCP performs per-

fectly irrespectively of dimension for up to 50% outliers.

Note that we use the true codimension c of the subspace

as input to DPCP; this is to ascertain the true limits of the

method. Certainly, in practice only an estimate for c can be

used. As we have observed from experiments, the perfor-

mance of DPCP typically does not change much if the codi-

mension is underestimated; however performance can dete-

riorate significantly if the true c is overestimated. Moreover,

we note that while SE, L21 and SVS are extremely fast,

as they rely on ADMM implementations, DPCP is much

slower, even if we use an optimizer such as Gurobi [10].

Speeding up DPCP is the subject of current research.

Finally, in Fig. 3 we show ROC curves associated with

the thresholding of α for varying levels of noise and out-

liers. When d is small, Fig. 3(a) shows that SE, L21

and DPCP are equally robust giving perfect separation be-

tween outliers and inliers, while SVS and RANSAC per-

form poorly. Interestingly, for large d (Fig. 3(a)), DPCP

gives considerably less False Positives (FP) than all other

methods across all cases, indicating once again its unique

property of being able to handle large subspace dimensions

in the presence of many outliers.

6.2. Real Data

In this subsection we consider an outlier detection sce-

nario in PCA using real images. The inliers are taken to

be all N = 64 face images of a single individual from the

Extended Yale B dataset [7], while the M outliers are ran-

domly chosen from Caltech101 [6]. All images are cropped

to size 48 × 42 as was done in [5]. For a fair comparison,

we run SE on the raw 2016-dimensional data, while all other

methods use projected data onto dimension D = 50. Since

it is known that face images of a single individual under

different lighting conditions lie close to an approximately

9-dimensional subspace [5], we choose the codimension pa-

rameter of DPCA to be c = 41. We perform 10 independent

trials for each individual across all 38 individuals for a dif-

ferent number of outliers M = 32, 64, 128 and report the

ensemble ROC curves in Fig. 4. As is evident, DPCA is the

most robust among all methods.

7. Conclusions

We presented Dual Principal Component Pursuit

(DPCP), a novel ℓ1 outlier detection method, which is based

on solving an ℓ1 problem on the sphere by linear programs

over a sequence of tangent spaces on the sphere. DPCP

is able to handle subspaces of as low codimension as 1 in

the presence of as many outliers as 50%. Future research

will be concerned with speeding up the method as well as

extending it to multiple subspaces and other types of data

corruptions, such as missing entries and entry-wise errors.
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