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Abstract

Algebraic Subspace Clustering (ASC) is a simple and el-

egant method based on polynomial fitting and differentia-

tion for clustering noiseless data drawn from an arbitrary

union of subspaces. In practice, however, ASC is limited to

equi-dimensional subspaces because the estimation of the

subspace dimension via algebraic methods is sensitive to

noise. This paper proposes a new ASC algorithm that can

handle noisy data drawn from subspaces of arbitrary di-

mensions. The key ideas are (1) to construct, at each point,

a decreasing sequence of subspaces containing the sub-

space passing through that point; (2) to use the distances

from any other point to each subspace in the sequence to

construct a subspace clustering affinity, which is superior

to alternative affinities both in theory and in practice. Ex-

periments on the Hopkins 155 dataset demonstrate the su-

periority of the proposed method with respect to sparse and

low rank subspace clustering methods.

1. Introduction

Subspace clustering is the problem of clustering a collec-

tion of points drawn approximately from a union of linear

subspaces. This is an important problem in pattern recogni-

tion with diverse applications from computer vision [22] to

genomics [15].

Related Work. Early subspace clustering methods were

based on alternating between finding the subspaces given

the clustering and vice versa [2, 21, 17], and were very

sensitive to initialization. The need for good initialization

motivated the development of an algebraic technique called

Generalized Principal Component Analysis (GPCA) [26],

which solves the problem in closed form. The key idea

behind GPCA is that a union of n subspaces can be rep-

resented by a collection of polynomials of degree n, with

the property that their gradients at a data point give the

normals to the subspace passing through that point. This
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is exploited in [24] and [8] for clustering a known num-

ber of subspaces. The recent Abstract Algebraic Subspace

Clustering (AASC) method of [19, 20], unifies the ideas of

[8, 26], into a provably correct method for the decompo-

sition of a union of subspaces to its constituent subspaces.

However, while in theory GPCA and AASC are applicable

to subspaces of any dimensions, in practice the estimation

of the subspaces is sensitive to data corruptions.

The need for methods that can handle high-dimensional

data corrupted by noise and outliers motivated the quest for

better subspace clustering affinities. State-of-the-art meth-

ods, such as Sparse Subspace Clustering [4, 5, 6] and Low

Rank Subspace Clustering [12, 7, 23, 11], exploit the fact

that a point in a union of subspaces can always be ex-

pressed as a linear combination of other points in the sub-

spaces. Sparse and low rank representation techniques are

then used to compute the coefficients, which are then used

to build a subspace clustering affinity. These methods per-

form very well when the subspace dimensions are much

smaller than the dimension of the ambient space, the sub-

spaces are sufficiently separated and the data are well dis-

tributed inside the subspaces [6, 16]. However, these meth-

ods fail when the dimensions of the subspaces are large, e.g.

a union of hyperplanes, which is the case where GPCA, to

be henceforth called Algebraic Subspace Clustering (ASC),

performs best. In addition, sparse methods produce low

Inter-Class Connectivity, but the Intra-Class Connectivity

is also low due to sparsity, leading to over-segmentation is-

sues. Conversely, Low-Rank and ℓ2 methods produce high

Intra-Class Connectivity (since they are less sparse) but this

also leads to high Inter-Class Conectivity. Consequently,

there is a strong need for developing methods that produce

high Intra-Class and low Inter-Class connectivity.

Paper Contributions. The main contribution of this paper

is to propose a new subspace clustering algorithm that can

handle noisy data drawn from a union of subspaces of dif-

ferent dimensions. The key idea is to construct for each data

point (the reference point) a sequence of projections onto

hyperplanes that contain the reference subspace (the sub-

space associated to the reference point). The norms of the
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projected data points are used to define their affinity with

the reference point. This process leads to an affinity matrix

of high intra-class and low cross-class connectivity, upon

which spectral clustering is applied. We provide a theorem

of correctness of the proposed algorithm in the absence of

noise as well as a variation suitable for noisy data. As a sec-

ondary contribution, we propose to replace the angle-based

affinity proposed in [26] by a superior distance-based affin-

ity. This modification is motivated by the fact that the angle-

based affinity is theoretically correct only in the case of hy-

perplanes, and is not a good affinity for subspaces of vary-

ing dimensions. Our experiments demonstrate that the pro-

posed method outperforms other subspace clustering algo-

rithms on the Hopkins 155 motion segmentation database as

well as on synthetic experiments for arbitrary-dimensional

subspaces of a low-dimensional ambient space.

2. Algebraic Subspace Clustering: A Review

We begin with a brief overview of the ASC theory and

algorithms. We refer the reader to [25, 26, 3, 14] for details.

Subspace Clustering Problem. LetX = {x1, . . . ,xN} be

a set of points that lie in an unknown union of n > 1 sub-

spacesA = S1∪· · ·∪Sn, where Si a linear subspace of RD

of dimension di < D. The goal of subspace clustering is

to find the number of subspaces, a basis for each subspace,

and cluster the data points based on their subspace member-

ship, i.e., find the correct decomposition or clustering of X
as X = X1 ∪ · · · ∪ Xn, where Xi = X ∩ Si. To make the

subspace clustering problem well-defined, we need to make

certain assumptions on the geometry of both the subspaces

Si and the data X . In this work we assume that the un-

derlying union of subspaces A is transversal [14], which in

particular implies that there are no inclusions between sub-

spaces. Moreover, we assume that Xi ∩ Si′ = ∅ for i 6= i′,
i.e., each of the given points is associated to a unique sub-

space. This guarantees that the above decomposition of X
is in fact a partition, and it is unique. A final assumption that

we need is that the data X are rich enough and in general

position (see Definition 1).

Unions of Subspaces as Algebraic Varieties. A key idea

behind ASC is that a union of n subspacesA = S1∪· · ·∪Sn
of RD is the zero set of a finite set of homogeneous polyno-

mials of degree n with real coefficients in D indeterminates

(x1, . . . , xD). Such a set is called an algebraic variety [1].

For example, a union of n hyperplanesA = H1∪ · · ·∪Hn,

where the ith hyperplane Hi = {x : b⊤i x = 0} is defined

by its normal vector bi ∈ R
D, is the zero set of

p(x) = (b⊤1 x)(b
⊤
2 x) · · · (b

⊤
n x). (1)

Likewise, the union of a plane with normal b and a line

with normals b1, b2 ∈ R
3 is the zero set of the two poly-

nomials p1(x) = (b⊤x)(b⊤1 x) and p2(x) = (b⊤x)(b⊤2 x).

Observe that these vanishing polynomials are homogeneous

of degree n, where n is the number of subspaces. Moreover,

they are factorizable into linear forms, with each subspace

contributing a linear form to the product. Each such linear

form is in turn defined by a normal vector to the subspace.

Finding Vanishing Polynomials. Note that the coefficients

of the polynomials associated with a union of subspaces A
can be obtained from sufficiently many samples X ⊂ A in

general position by solving a linear system of equations.

Definition 1 We say that the data X ⊂ A is in general

position if a degree n polynomial vanishes on X if and only

if it vanishes on the underlying union of subspaces A.

For example, if A is a union of two planes in R
3 with nor-

mals bi = (bi1, bi2, bi3), i = 1, 2, then we can write p as

p(x) = (b11x1 + b12x2 + b13x3)(b21x1 + b22x2 + b23x3)

= c1x
2
1 + c2x1x2 + · · ·+ c6x

2
3 = c⊤ν2(x), (2)

where c = (c1, . . . , c6) and ν2(x) = (x2
1, x1x2, . . . , x

2
3).

Thus, we can find the vector of coefficients c by solving the

set of linear equations c⊤ν2(xj) = 0 for j = 1, . . . , N .

More generally, each polynomial of degree n can be written

as p(x) = c⊤νn(x), where νn : R
D → R

Mn(D) is the

Veronese embedding of degree n that maps a point x ∈ R
D

to all Mn(D) :=
(

n+D−1
n

)

distinct monomials of degree

n in the entries of x. Consequently, a basis for the set of

polynomials of degree n that vanishes in X can be found by

computing a basis for the right nullspace of the embedded

data matrix, i.e., by solving the linear system:

Vn(X )c = [νn(x1) νn(x2) · · · νn(xN )]⊤c = 0. (3)

However, the polynomials obtained by the above procedure

may not factorize into a product of linear forms because the

space of factorizable polynomials is not a linear space, e.g

(x1 + x2)x1 − (x1 − x2)x2 = x2
1 + x2

2 is not factorizable.

Polynomial Differentiation Algorithm. Even though an

elegant solution based on polynomial factorization exists

for the case of hyperplanes [25], it has not been generalized

for subspaces of different dimensions. However, an alter-

native solution has been achieved by observing that given

any degree n vanishing polynomial p on A, and a point x

in A, the gradient of p evaluated at x will be orthogonal

to the subspace associated with point x (see [26] and [14]

for a geometric and algebraic argument respectively). Con-

sequently, for the purpose of computing normal vectors to

the subspaces, it is enough to compute general vanishing

polynomials of degree n. The set of all such polynomials,

denoted IX ,n, is a finite-dimensional vector space and a ba-

sis can be computed as a basis of the right nullspace of the

Veronese matrix Vn(X ) := [νn(x1) νn(x2) · · · νn(xN )]⊤,

where νn : R
D → R

Mn(D) is the Veronese embedding
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of degree n that maps a point x ∈ R
D to all Mn(D) :=

(

n+D−1
n

)

distinct monomials of degree n in the entries of

x. Having a basis p1, . . . , ps for IX ,n, it can be shown that

the subspace associated to a point x ∈ X can be identi-

fied as the orthogonal complement of the subspace spanned

by the vectors∇p1|x,∇p2|x, . . . ,∇ps|x [26, 14]. Then we

can remove the points that lie in the same subspace as x

and iterate the procedure with the remaining points until all

subspaces have been identified. It is remarkable that this

procedure is provably correct for a known number of sub-

spaces of arbitrary dimensions. Even though this result is

general and insightful, algorithms that are directly based on

it are extremely sensitive to noise. The main reason is that

any procedure for estimating the dimension of the nullspace

will unavoidably involve thresholding the singular values

of Vn(X ), which will in turn yield very unstable estimates

of the subspaces and subsequently poor clustering of the

points.

Spectral Algebraic Subspace Clustering Algorithm. In

the interest of enhancing the robustness of ASC in the pres-

ence of noise and obtaining a working algebraic algorithm,

the standard practice has been to apply a variation of the

polynomial differentiation algorithm based on spectral clus-

tering. More specifically, given noisy data X lying close to

a union of n subspaces A, one computes an approximate

vanishing polynomial p whose coefficients are given by the

right singular vector of Vn(X ) corresponding to its small-

est singular value. Given p, one computes the gradient of p
at each point in X (which gives a normal vector associated

with each point in X ), and builds an affinity matrix between

points xj and xj′ as the cosine of the angle between their

corresponding normal vectors, i.e.,

Cjj′ =
∣

∣

∣

〈 ∇p|xj

||∇p|xj
||
,
∇p|xj′

||∇p|xj′
||

〉
∣

∣

∣
. (4)

This affinity is then used as input to any spectral clustering

algorithm to obtain the clusteringX = ∪ni=1Xi. We call this

Spectral ASC method with angle-based affinity as SASC-A.

To gain some intuition on C, suppose A is a union of n hy-

perplanes and that there is no noise. Then p must be of the

form in (1). In that case Cjj′ is simply the cosine of the

angle between the normals to the hyperplanes that are as-

sociated with points xj and xj′ . If both points lie in the

same hyperplane, their normals must be equal, and hence

Cjj′ = 1. Otherwise, Cjj′ < 1 is the cosine of the an-

gles between the hyperplanes. Thus, assuming that these

angles are not small, and that the points are well distributed

on the union of the hyperplanes, spectral clustering on the

affinity matrix C will in general yield the correct cluster-

ing. Even though SASC-A is much more robust in the pres-

ence of noise than purely algebraic methods for the case of

a union of hyperplanes, it is fundamentally limited by the

fact that it applies only to unions of hyperplanes. Indeed, if

the orthogonal complement of a subspace S has dimension

greater than 1, there may be points x,x′ inside S such that

the angle between ∇p|x and ∇p|x′ is as large as 90◦. In

such instances, points associated to the same subspace may

be weakly connected and thus there is no guarantee for the

success of spectral clustering.

Abstract Filtration Scheme. Motivated by the limita-

tion of the polynomial differentiation algorithm to a known

number of subspaces, and the association of undesired

ghost-subspaces with the recursive method of [8], an al-

ternative algebraic subspace clustering procedure based

on filtrations of subspace arrangements was proposed in

[19, 20]. The procedure is abstract in the sense that it re-

ceives as input a union A ⊂ R
D of an unknown number of

subspaces of arbitrary dimensions, and it decomposes it to

the list of its constituent subspaces. This is done recursively

by identifying a single subspace each time: A is intersected

with the hyperplane V1, whose normal vector is the gradi-

ent of a vanishing polynomial at a point x ∈ A. Then V1
contains the subspace S associated to x and so does the

new smaller union of subspaces A1 = A ∩ V1. Next A1

is intersected with a hyperplane V2 of V1, whose normal is

the gradient of a vanishing polynomial of A1 evaluated at

x. As before, A2 = A1 ∩ V1 contains S and the process

repeats until no non-zero vanishing polynomial exists, in

which case S is precisely Vc, c = D − dimS . By picking

a point x ∈ A − S a new subspace S ′ is identified and so

on. This method has very strong theoretical guarantees (for

noiseless data) but is fairly abstract in nature. It is the very

purpose of the remaining of this paper to adapt the work

of [19, 20] to a numerical algorithm and to experimentally

demonstrate its merit.

3. Filtrated Spectral ASC

In this section, we propose a new subspace clustering

procedure which addresses the robustness of ASC with re-

spect to noise and unknown subspace dimensions, espe-

cially in the case of subspaces of varying dimensions.

3.1. A Distance­Based Affinity

Our first contribution is to replace the angle-based affin-

ity in (4) by a distance-based-affinity and to show that the

new affinity possesses superior theoretical guarantees.

Given unit norm data points X = {xj}
N

j=1 lying close to

an unknown union of n subspaces, let p be an approximate

vanishing polynomial whose coefficients are given by the

right singular vector of Vn(X ) associated with its smallest

singular value. We define the distance-based-affinity as

Djj′ = 1−
1

2

∣

∣〈∇p|xj
,xj′〉

∣

∣−
1

2

∣

∣〈∇p|xj′
,xj〉

∣

∣ (5)

where the gradient vectors are assumed to be normalized to

unit Euclidean norm. We will refer to this Spectral ASC
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R
D ←−− R

D−1 ←−− · · · ←−− R
D−c+1 ←−− R

D−c ∼= S
x





x





x





x





X ←−− X̄1 ←−− · · · ←−− X̄c−1 ←−− X̄c

Figure 1. Commutative diagram of the filtration associated with a

reference point x ∈ X . The arrows denote embeddings.

method with the distance-based affinity in (5) SASC-D.

The denomination distance-based comes from the fact that

the Euclidean distance from point xj′ to the hyperplane

H(j) defined by the unit normal vector ∇p|xj
is precisely

∣

∣〈∇p|xj
,xj′〉

∣

∣. Moreover,H(j) contains the subspace pass-

ing through xj . Thus, if xj and xj′ are in the same sub-

space, then the distance from xj′ to H(j) is zero and so is

the distance from xj to H(j′). This implies that Djj′ = 1.

Of course, it may be the case that Djj′ = 1 for points xj

and xj′ coming from distinct subspaces. For instance, con-

sider a union of two lines in R
3 and choose a plane contain-

ing one of the lines. If the plane happens to contain the two

lines, then Djj′ = 1 for all pairs of points in the two lines.

Theorem 1 Let {xj}
N
j=1 be points of RD lying in a union

of n subspaces A. Let p be a homogeneous polynomial of

any degree vanishing onA. Then the distance-based affinity

in (5) is such that if points xj ,xj′ lie in the same subspace,

then Djj′ = 1. The converse is not true in general.

3.2. Filtrated ASC

Theorem 1 shows the superiority of the distance-based

affinity in (5) over the angle-based affinity in (4) because

it ensures that points from the same subspace will be given

an affinity of maximal value 1. What still limits the theo-

retical guarantees of (5) is the fact that points from distinct

subspaces may also have a maximal affinity 1.

In this section, we show that it is possible to further re-

fine (5) by a filtration process illustrated in Figure 1. Let

X = {x1, . . . ,xN} be a set of points in R
D in general posi-

tion in a union of n transversal subspacesA = ∪ni=1Si. As-

sume that each point lies in only one of the n subspaces and

is normalized to have unit norm. The key idea behind the

filtration process is that, given an arbitrary reference point

x ∈ X in one of the subspaces, say S , we can identify all

other data points in the same subspace as x by 1) projecting

all data points in X onto S and 2) finding the points in X
whose norm after projection remains equal to one.

The fundamental challenge, however, is that we do not

know S . The filtration process in Figure 1 is designed,

precisely, to perform a sequence of projections, which ul-

timately give the projection onto S without knowing S .

At step 1 of the filtration, choose a vanishing polynomial

p0 of A of degree n from the nullspace of Vn(X ) such that

∇p0|x 6= 0. One can show that such a p0 always exists. Let

b1 := ∇p0|x/||∇p0|x|| and let H1 be the hyperplane of

R
D defined by b1. If |〈b1,xj〉| > 0, then by Theorem 1 we

know that point xj is not in S . Consequently, we can filter

the set X to obtain a subset X1 := {xj ∈ X : |〈b1,xj〉| =
0}. Geometrically, X1 is precisely the subset of X that lies

inside the hyperplaneH1, i.e., X1 = X ∩H1.

The key observation now is that X1 is a set of points of

R
D drawn from the union of subspaces A1 := A ∩ H1 =

⋃n

i=1(Si ∩ H1). But A1 is up to isomorphism a union of

subspaces of RD−1, since it is embedded in the hyperplane

H1. In particular, consider the composite linear transfor-

mation π1 : R
D → H1

∼
−→ R

D−1, where the first ar-

row is the orthogonal projection of R
D onto H1 and the

second arrow maps a basis of H1 to the standard basis of

R
D−1. We can replace the redundant representation X1 by

X̄1 := π1(X1) ⊂ R
D−1. It is important to note that the

norm of every point in X1 remains unchanged and equal

to 1 under the transformation π1. Note also that now X̄1

may be actually a subset of a union of n1 ≤ n subspaces

of RD−1, as it is quite possible that all points in X lying in

some subspace Si 6= S were filtered out.

Now, since X is in general position inside A, X1 will

be in general position inside S1, and from this one can de-

duce that every vanishing polynomial of X̄1 has gradient

orthogonal to π1(S1) at π(x), and that there is a vanishing

polynomial p1 of degree n1 such that ∇p1|π1(x) 6= 0. Let

H2 be a hyperplane of RD−1 defined by the normal vector

b2 := ∇p1|π1(x)/||∇p1|π1(x)||. Note that H2 contains all

the points of X̄1 that correspond to S . As before, we can fil-

ter the set X̄1 to obtain a new setX2 = X̄1∩H2. Once again,

X2 lies in a union of at most n1 subspaces of RD−1, which

is however embedded in the hyperplane H2, and thus we

can replace X2 by its image X̄2 under the composite linear

transformation π2 : RD−1 → H2
∼
−→ R

D−2, in which the

first arrow is the orthogonal projection of RD−1 onto H2,

and the second arrow maps a basis of H2 to the standard

basis of R
D−2. Proceeding inductively, this process will

terminate precisely after c steps, where c = D − dim(S)
is the codimension of S . More specifically, there will be

no non-zero vanishing polynomials on X̄c and Hc will be

isomorphic to S . Thus X̄c will consist of the images of

the points of X ∩ S under the sequence of transformations

πc ◦ πc−1 ◦ · · · ◦ π1. We note that the norm of these points

remains unchanged and equal to 1 under πc ◦πc−1 ◦· · ·◦π1.

Once the points of X that lie in S have been identified,

we can remove them and repeat the process starting with

the set X − X ∩ S1, which lies in general position in-

side S2 ∪ · · · ∪ Sn. This leads to Algorithm 1, which we

term Filtrated-Algebraic-Subspace-Clustering (FASC), and

is guaranteed to return the correct clustering:

Theorem 2 Let X = {xj}
N

j=1 be points of RD lying in a

transversal union of subspaces A = ∪ni=1Si. Let Xi =
X ∩ Si, ∀i ∈ [n]. Assuming that the points of X are in
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Algorithm 1 Filtrated Algebraic Subspace Clustering

1: procedure FASC(X = {x1, . . . ,xN} ⊂ R
D, n)

2: Y ← ∅,Z ← ∅;
3: for i = 1 : n− 1 do

4: X ′ ← X −Z; d← D;

5: take any x ∈ X ′, k ← 0;

6: while ||x|| = 1 do

7: k ← k + 1;

8: find p ∈ N (V≤n(X
′)) s.t. ∇p|x 6= 0;

9: πk ←
[

R
d → 〈∇p|x〉

⊥ ∼
−→ R

d−1
]

;

10: X ′ ← {πk(y) : y ∈ X
′, 〈∇p|x,y〉 = 0};

11: x← πk(x); d← d− 1;

12: end while

13: X ′ ← {x ∈ X : ||πk−1 ◦ · · · ◦ π1(x)|| = 1};
14: Z ← Z ∪ X ′; Y ← Y ∪ {(X ′, d+ 1)};
15: end for

16: Y ← Y ∪ {(X − Z, rank(X − Z))};
17: return Y;

18: end procedure

general position inside A, Algorithm 1 returns a set Y =
{(Yi, di)}

n

i=1 such that Yi = Xτ(i), di = dimSτ(i), i =
1, . . . , n, where τ is a permutation on n symbols.

3.3. Filtrated Spectral ASC

Let us now consider the case where the data X are cor-

rupted by noise. In this case, Algorithm 1 (FASC) is not

applicable because the noisy embedded data matrix Vn(X )
is in general full rank. Nonetheless, we will show next that

we can still exploit the insights revealed by the theoretical

guarantees of FASC to construct a Robust-ASC algorithm.

To begin with, note that Algorithm 1 requires a single

vanishing polynomial at each step of each filtration. We

can use any approximate vanishing polynomial at step k.

For example, letting X̄k−1 be the points that have passed

through the filtration at step k − 1, we can let pk−1 be the

polynomial whose coefficients are given by the right singu-

lar vector of Vn(X̄k−1) corresponding to its smallest singu-

lar value. Notice that no thresholding is required to choose

such a pk−1. This is in sharp contrast to the polynomial

differentiation algorithm described in Section 2, which re-

quires a thresholding on the singular values of Vn(X ) in or-

der to estimate a basis of IX ,n. Now, for any point x ∈ X ,

pk−1 gives a hyperplane 〈∇pk−1|x〉
⊥ that approximately

contains the subspace associated to point x. However, we

cannot go to the next step due to the following problems.

Problem 1 In general, two points lying approximately in

the same subspace S will produce different hyperplanes that

approximately contain S with different levels of accuracy.

In the noiseless case any point would be equally good. In

the presence of noise though, the choice of the reference

point x becomes significant. How should x be chosen?

Problem 2 Given a hyperplane produced by a point x, we

need to determine which other points inX lie approximately

in the hyperplane and filter out the remaining points. A

simple approach is to filter out a point if its distance to the

hyperplane is above a threshold δ, or if the relative change

in its norm is more than δ. Clearly the choice of δ will affect

the performance of the algorithm. How should δ be chosen?

Problem 3 Finally, we also need to determine the number

of steps needed to stop the filtration. This is equivalent to

determining the codimension of the subspace associated to

the reference point of that filtration. In the noiseless case,

one stops when the norm of the reference point becomes less

than 1. In the noisy case, because the hyperplanes used to

construct the filtration are only approximate, the norm of

the reference point could drop at every step of the filtration.

Hence a suitable stopping criterion needs to be devised.

Inspired be the SASC-D algorithm, which handles noise

by computing a normal vector for each data point and uses

the normal vectors to define a distance-based affinity, we

propose to address Problem 1 by constructing a filtration

for each data point xj ∈ X with reference point xj and

using the norms of the data points to construct the affinity.

Let π
(j)
k be the projection at step k of the filtration for

point xj . Recall that at step k, only a subset of the original

points will remain, while others will be filtered out. We can

define an affinity matrix as

Ck
jj′ =

{

‖π
(j)
k ◦ · · · ◦ π

(j)
1 (xj′)‖ if xj′ remains

0 otherwise.
(6)

This affinity captures the fact that if points xj and xj′ are in

the same subspace, then the norm of xj′ should not change

from step 0 to step k of the filtration computed with ref-

erence point xj . Otherwise, if xj and xj′ are in different

subspaces, the norm of xj′ is expected to be reduced by the

time the filtration reaches step c = D − dim(S), where

S is the reference subspace associated to xj . In the case

of noiseless data, only the points in the correct subspace

survive step c and their norms are precisely equal to one.

Therefore, C
(c)
jj′ = 1 if points xj and xj′ are in the same

subspace and C
(c)
jj′ = 0 otherwise. In the case of noisy data,

the above affinity will not be perfect due to Problems 2 and

3, which we address next.

To address Problem 2, let p be the approximate vanishing

polynomial whose coefficients are the right singular vector

of Vn(X ) corresponding to the smallest singular value. Let

β(X ) =
1

N

N
∑

j=1

∣

∣

∣

〈

xj ,
∇p|xj

||∇p|xj
||

〉

∣

∣

∣
. (7)
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Notice that β = 0 in the noiseless case. In the presence of

noise, β(X ) is the average over all points of the distance of a

point from the hyperplane that it produces. Evidently, small

levels of noise will correspond to small values of β(X ).
Thus, we propose to define δ = γ · β(X ), where γ > 0
is a user defined parameter. To determine γ, we propose to

construct multiple filtrations for different values γ1, . . . , γM
of γ. Each filtration will result in a different affinity ma-

trix. Suppose we have defined a stopping criterion to termi-

nate each filtration so that we can use the affinity matrix at

the last step of the filtration (see below for stopping crite-

ria). Given these affinity matrices, we choose the one whose

normalized Laplacian has the largest eigengap λn+1 − λn,

where the eigenvalues are ordered increasingly.

To address Problem 3, we stop the filtration at step k if

1) the number of points is less than the ambient dimension

of the Veronese-embedded points; 2) the reference point xj

is filtered out at the (k + 1)th step; or 3) the number of

points that passed through the filtration at step k + 1 is less

than some integer µ. This integer is the smallest number of

points that our algorithm is allowed to consider as a cluster.

Finally, the resulting affinity is symmetrized, and used

for spectral clustering, as described in Algorithm 2.1

4. Experiments

Synthetic Data. We randomly generate n = 3 subspaces of

dimensions di ∈ {1, 2, 3, 4} in R
5. For each choice of {di},

we randomly generate Ni = 100 unit norm points per sub-

space and add zero-mean Gaussian noise with standard de-

viation σ ∈ {0, 0.01, 0.03, 0.05} in the direction orthogonal

to the subspace. For each choice of {di} and σ, we perform

500 independent subspace clustering experiments using the

algebraic methods FSASC, SASC-D and SASC-A, and

compare to state of the art methods such as SSC [6], LRR

[11, 12], LRSC [23] and LSR using equation (16) in [13].

We also use the heuristic post processing of the affinity for

LRR (LRR-H) and LSR (LSR-H). For FSASC we use µ =
10 and γ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10}, for

SSC α = 20 and ρ = 0.7, for LRR λ = 4, for LRSC

τ = 420, α = 4000 and for LSR λ = 0.0048. We report

average clustering errors, intra-cluster connectivities of the

affinity matrices C produced by the methods (defined to be

the minimum algebraic connectivity2 among the subgraphs

corresponding to each of the three subspaces) and inter-

cluster connectivities (
∑

xj∈Si,xj′∈Si′ ,i 6=i′ |Cj,j′ |/||C||1).

Due to lack of space, we report errors on all methods only

1SPECTRUM
(

NL(C+C
⊤)

)

denotes the spectrum of the normalized

Laplacian matrix of C + C
⊤, SPECCLUST

(

C
∗ + (C∗)⊤, n

)

denotes

spectral clustering being applied to C
∗ + C

∗⊤ to obtain n clusters, and

VANISHING
(

Vn(X )
)

is the polynomial whose coefficients are the right

singular vector of Vn(X ) corresponding to the smallest singular value.
2The algebraic connectivity of a graph is the second smallest eigenvalue

of the Laplacian of the graph. Here we use the normalized Laplacian.

Algorithm 2 Filtrated Spectral ASC

1: procedure FSASC(X , D, n, µ, {γm}
M
m=1)

2: if N <Mn(D) then
3: return (’Not enough points’);
4: else
5: eigengap← 0; C∗ ← 0N×N ;
6: xj ← xj/||xj ||, ∀j ∈ [N ];
7: p← VANISHING(Vn(X ));

8: β ← 1
N

∑N

j=1

∣

∣〈xj ,
∇p|xj

||∇p|xj
|| 〉
∣

∣;

9: for k = 1 : M do
10: δ ← β · γk, C ← 0N×N ;
11: for j = 1 : N do
12: Cj,: ← FILTRATION(X ,xj , p, µ, δ, n);
13: end for
14: {λs}

N
s=1 ← SPECTRUM(NL(C +C⊤)) ;

15: if (eigengap < λn+1 − λn) then
16: eigengap← λn+1 − λn; C∗ ← C;
17: end if
18: end for
19: {Yi}

n

i=1 ← SPECCLUST(C∗ +C∗⊤, n);
20: return {Yi}

n

i=1;
21: end if
22: end procedure

23: function FILTRATION(X ,x, p, µ, δ, n)
24: d← D, J ← [N ], q ← p, c← 01×N ;
25: flag← 1;
26: while (d > 1) and (flag = 1) do

27: H ← 〈∇q|x〉
⊥, π ←

[

R
d → H

∼
−→ R

d−1
]

;

28: if (||x|| − ||π(x)||)/||x|| > δ then
29: if d = D then
30: c(j′)← ||π(x′

j)||, ∀j
′ ∈ [N ];

31: end if
32: flag← 0;
33: else

34: J ←
{

j′ ∈ [N ] :
||xj′ ||−||π(xj′ )||

||xj′ ||
≤ δ

}

35: if |J | < µ then
36: flag← 0;
37: else
38: c(j′)← ||π(x′

j)||, ∀j
′ ∈ J ;

39: c(j′)← 0, ∀j′ ∈ [N ]− J ;
40: if |J | <Mn(d) then
41: flag← 0;
42: else
43: d← d− 1,x← π(x);
44: xj′ ← π(xj′) ∀j

′ ∈ J ;

45: X ← {xj′ : j
′ ∈ J };

46: q ← VANISHING(Vn(X )) ;
47: end if
48: end if
49: end if
50: end while
51: return (c);
52: end function

for 0% and 5% noise.

Table 1 reports the mean clustering errors. Observe that

FSASC is the only method that gives 0 error for noiseless

6 33



data for all dimension configurations, thus verifying exper-

imentally its strong theoretical guarantees: no restrictions

on the dimensions of subspaces are required for correct-

ness. As expected, SSC, LRR, LRSC and LSR yield per-

fect clustering when d/D is small, but their performance

degrades significantly for large d/D. Observe also that, al-

though SASC-D is much simpler than FSASC and has sim-

ilar complexity to SASC-A, its performance is very close to

that of FSASC, and much better than SASC-A. We attribute

this phenomenon to the correctness Theorem 1 of SASC-D.

As the noise level increases, FSASC remains stable across

all dimension configurations with superior behavior among

all compared methods. SASC-D is less robust in the pres-

ence of noise, except for the case of hyperplanes, in which

it is the best method. This phenomenon is expected, since

SASC-D is essentially equivalent to FSASC if the latter is

configured to take only one step in each filtration in Figure

1, and this is precisely the optimal stopping point in every

filtration when the subspaces are hyperplanes. In this case,

if data are noisy, the criterion for stopping FSASC filtra-

tions is determined by the parameter γ and by the level of

noise via the quantity β, leading to suboptimal values (i.e.,

more than one step may be taken in the filtration).

Tables 2 and 3 indicate that FSASC yields higher quality

affinity graphs for the purpose of clustering. To see why

this is the case, observe that except for FSASC, we can

distinguish two kinds of behavior in the remaining meth-

ods: the first kind gives high intra-cluster connectivity at

the cost of high inter-cluster connectivity. Such methods

are SASC-D, SASC-A, LRR, LRSC and LSR. The second

kind gives low inter-cluster connectivity at the expense of

low intra-cluster connectivity leading to unstable clustering

results by the spectral clustering method. Such methods are

SSC, LRR-H and LSR-H. This is expected because these

methods use sparse affinities. On the other hand, FSASC

circumvents this trade-off by giving high intra-cluster con-

nectivity and low inter-cluster connectivity, thus enhancing

the success of the spectral clustering step.

Motion Segmentation. We evaluate different methods on

the Hopkins155 motion segmentation data set [18], which

contains 155 videos of n = 2,3 moving objects, each one

with N = 100-500 feature point trajectories of dimension

D = 56-80. While SSC, LRR, LRSC and LSR can op-

erate directly on the raw data, algebraic methods require

Mn(D) ≤ N . Hence, for algebraic methods, we project

the raw data onto the subspace spanned by their D principal

components, where D is the largest integer ≤ 8 such that

Mn(D) ≤ N , and then normalize each point to have unit

norm. We apply SSC to i) the raw data (SSC-raw) and ii)

the raw points projected onto their first 8 principal compo-

nents and normalized to unit norm (SSC-proj). For FSASC,

LRR, LRSC and LSR we use the same parameters as before,

while for SSC the parameters are α = 800 and ρ = 0.7.

Table 1. Mean clustering error in % over 500 independent exper-

iments on synthetic data for 3 subspaces of R5 of varying dimen-

sions (d1, d2, d3) and varying levels of noise σ ∈ {0, 1, 3, 5}%.

method (1, 1, 1) (2, 2, 2) (3, 3, 3) (4, 4, 4) (1, 2, 3) (2, 3, 4)

σ = 0%
FSASC 0.00 0.00 0.00 0.00 0.00 0.00

SASC-D 0.76 0.96 0.03 0.00 0.42 0.13
SASC-A 0.00 34.2 23.3 0.00 20.8 10.7
SSC 0.00 0.16 6.18 43.2 1.38 47.1
LRR 0.00 1.37 25.5 48.7 1.84 25.9
LRR-H 0.00 1.15 18.1 48.4 1.53 20.8
LRSC 0.00 1.32 25.6 48.7 2.27 26.5
LSR 0.00 7.36 34.9 48.8 5.42 28.8
LSR-H 0.00 1.31 28.8 29.3 1.46 32.7

σ = 1%
FSASC 1.70 0.20 0.22 3.17 0.94 0.81

SASC-D 2.91 0.58 0.96 2.39 1.78 1.89
SSC 1.51 1.27 6.24 42.5 8.71 44.2

σ = 3%
FSASC 4.39 1.16 1.40 7.67 2.82 2.88

SASC-D 8.41 2.68 4.05 6.15 5.40 6.46
SSC 3.90 5.17 7.35 44.7 9.50 33.2

σ = 5%
FSASC 7.02 2.69 3.42 11.34 5.13 5.49

SASC-D 13.9 6.81 8.32 9.98 9.98 10.9
SASC-A 43.6 47.0 32.7 12.2 41.9 27.9
SSC 6.23 10.2 13.2 45.9 12.1 35.4
LRR 6.74 4.88 26.2 48.8 7.70 25.5
LRR-H 6.37 3.90 20.9 48.3 6.73 23.6
LRSC 6.32 5.24 26.5 48.8 7.93 27.3
LSR 9.38 16.0 34.3 49.1 17.4 30.5
LSR-H 10.1 13.5 28.8 28.9 10.3 32.5

The clustering errors and the intra/inter-cluster connec-

tivities are reported in Table 4 and Fig. 2. Notice the clus-

tering errors of about 5% and 37% for SASC-A, which is

the classical GPCA algorithm. Notice how changing the

angle-based by the distance-based affinity (SASC-D) al-

ready gives errors of around 5.5% and 14%. But most dra-

matically, notice how FSASC further reduces those errors to

0.8% and 2.48%. This clearly demonstrates the advantage

of FSASC over classical ASC. Moreover, even though the

dimensions of the subspaces (di ∈ {1, 2, 3, 4} for motion

segmentation) are low relative to the ambient space dimen-

sion (D = 56-80) - a case that is specifically suited for SSC,

LRR, LRSC, LSR - projecting the data to D ≤ 8, which

makes the subspace dimensions comparable to the ambient

dimension, is sufficient for FSASC to get superior perfor-

mance relative to the best performing algorithms on Hop-

kins 155. We believe that this is because, overall, FSASC

produces a much higher inter-cluster connectivity, without

increasing the intra-cluster connectivity too much.

Handwritten Digit Clustering. In this section we con-

sider the problem of clustering two digits, one of which

is the digit 1 (see Benford’s law, e.g. [9]). For each pair

(1, i), i = 0, 2, ..., 9, we randomly select 200 images from

the MNIST database [10] corresponding to each digit and

compute the clustering errors averaged over 100 indepen-

dent experiments. SSC, LRR and LSR operate on raw data.
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Table 2. Mean intra-cluster connectivity in % for 3 synthetic sub-

spaces of R5 of dimensions (d1, d2, d3) and noise σ.

method (1, 1, 1) (2, 2, 2) (3, 3, 3) (4, 4, 4) (1, 2, 3) (2, 3, 4)

σ = 0%
FSASC 100 100 100 100 100 100
SASC-D 100 100 100 100 100 100
SASC-A 100 16.6 17.7 100 18.2 16.1
SSC 40.2 0.18 0.40 0.00 0.24 0.15
LRR 100 42.0 38.1 41.6 38.4 31.6
LRR-H 100 22.2 21.5 21.5 22.9 19.8
LRSC 100 42.2 38.0 41.0 38.4 31.8
LSR 100 42.3 37.9 40.9 37.9 32.0
LSR-H 100 3.36 0.92 1.41 2.17 0.39

σ = 1%
FSASC 2.80 21.5 40.8 46.3 73.8 32.8
SASC-D 63.3 81.8 82.0 77.9 71.2 77.2
SSC 0.22 0.25 0.42 0.00 0.19 0.18

Table 3. Mean inter-cluster connectivity (%) for 3 synthetic sub-

spaces of R5 of dimensions (d1, d2, d3), and noise σ.

method (1, 1, 1) (2, 2, 2) (3, 3, 3) (4, 4, 4) (1, 2, 3) (2, 3, 4)

σ = 0%
FSASC 0.0 0.0 0.0 1.3 0.0 0.0
SASC-D 57 56 55 55 56 55
SASC-A 39 46 39 27 40 31
SSC 0.0 0.0 2.2 27 0.0 2.2
LRR 0.0 30 52 61 28 50
LRR-H 0.0 6.1 30 50 3.7 26
LRSC 0.0 31 52 61 28 51
LSR 0.0 21 38 45 19 37
LSR-H 0.0 0.0 0.0 0.0 0.0 0.0

σ = 1%
FSASC 8.6 4.7 11 28 9.1 20
SASC-D 60 58 58 57 59 58
SSC 0.5 0.2 2.5 26 0.5 2.9

Table 4. Mean clustering error (E), intra-cluster connectivity (C1)

and inter-cluster connectivity (C2) in % on the Hopkins155 data.

2 motions 3 motions all motions

method E C1 C2 E C1 C2 E C1 C2

FSASC 0.80 18 4 2.48 10 10 1.18 16 5
SASC-D 5.65 82 26 14.0 80 46 7.59 81 31
SASC-A 4.99 35 5 36.8 9 35 12.2 29 12
SSC-raw 1.53 5 2 4.40 4 3 2.18 5 2
SSC-proj 5.87 4 3 5.70 3 3 5.83 3 3
LRR 4.26 25 19 7.78 25 28 5.05 25 21
LRR-H 2.25 5 2 3.40 4 3 2.51 5 2
LRSC 3.38 25 19 7.42 24 28 4.29 25 21
LSR 3.60 24 18 7.77 23 28 4.54 23 21
LSR-H 2.73 4 1 2.60 3 2 2.70 4 1

LRR and LSR parameters are the same as before. For

FSASC we set µ = 10 and γ = 1 and for SSC we set

α = 10 and ρ = 0.7, as before. For the three algebraic

methods we first project the raw data onto their first 13 prin-

cipal components and then normalize each point to have

unit norm. For comparison, we also run SSC on the pro-

jected data. Mean errors are reported in Table 5 with SASC-

A, LRR, LRSC omitted since they perform poorly (with

LRR performing worse with the post-processing). We also

do not show the numbers for SSC-proj since they are very
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Figure 2. Clustering error ratios for both 2 and 3 motions in Hop-

kins155, ordered increasingly for each method. Errors start from

the 90-th smallest error of each method.

Table 5. Clustering error (%) for two digits (1, i), i = 0, 2, ..., 9
in the MNIST dataset.

Digits Pair

method (1, 0) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) (1, 9)

FSASC 0.50 4.67 1.55 3.31 1.11 1.62 2.27 4.88 1.81
SASC-D 4.91 14.2 10.3 23.9 8.55 13.1 10.2 21.5 17.5
SSC-raw 1.12 9.15 2.66 5.77 2.78 1.87 2.90 13.3 2.00
LSR 1.03 5.26 2.13 19.1 1.29 1.50 5.40 15.3 5.90
LSR-H 0.74 1.35 1.12 3.15 0.88 0.90 1.33 4.38 1.11

close to those of SSC-raw. As in the case of motion seg-

mentation, we observe that FSASC outperforms SASC-D

(this time by a large margin), which in turn significantly out-

performs SASC-A. This confirms the superiority of FSASC

over previous algebraic methods. As before, FSASC is also

superior to SSC. The only method that performs better is

LSR-H. We note that projecting the 784-dimensional data

onto dimension 13, reduces the angles between the sub-

spaces, thus making the clustering problem harder. As a

result, for more than 2 digits the performance of FSASC

degrades singinficantly, even for projection dimensions up

to D = 17, since it becomes harder for the method to dis-

tinguish the subspaces. To circumvent this issue, a higher

projection dimension would be required, which currently

can not be handled by FSASC, due to the high complexity.

5. Conclusions

We presented a novel algebraic subspace clustering

method based on the geometric idea of filtrations and we ex-

perimentally demonstrated its robustness to noise using syn-

thetic and real data and its superiority to the state-of-the-art

algorithms on several occasions. Overall, the method works

very well for subspaces of arbitrary dimensions in a low-

dimensional ambient space, and it can handle higher dimen-

sions via a projection. The main weakness of the method is

its high computational complexity, which comes from the

large number of filtrations required, as well as the expo-

nential cost of fitting polynomials to n subspaces. Future

research will be concerned with reducing the complexity, as

well as dealing with outliers and missing entries.
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