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Abstract

In this paper, we propose a novel framework for find-

ing low rank approximation of a given tensor. This frame-

work is based on the adaptive Lasso with coefficient weights

for sparse computation in tensor rank detection. We also

provide an algorithm for solving the adaptive Lasso model

problem for tensor approximation. In a special case when

each weight equals to one, the convergence of the algorithm

and the probabilistic consistency of the sparsity have been

addressed [15]. The method is applied to background ex-

traction and video compression problems.

1. Introduction

Computer vision problems often require processing

and analyzing multidimensional data in face and object

databases [6], surveillance videos [2, 16] and 3D/4D

CT/fMRI images [19]. Tensors which are multiway arrays

are natural representation of multidimensional data. Recent

works [6, 11, 17] in computer vision use tensor based algo-

rithms which decompose a tensor data into a sum of rank-

one tensors. This tensor decomposition is referred to the

canonical polyadic (CP) decomposition. Although several

techniques [3, 9] can handle this decomposition, most of

them need a priori tensor rank estimates, and a low rank

approximation computation of tensor.

We consider a low rank approximation problem of ten-

sors:

min
B

rank(B) s.t. ‖A − B‖2F ≤ ε (1)

for a given tensor A and a nonnegative regularization pa-

rameter ε. This approximation problem is actually a sparse

recovery problem with an l0-norm term. As in compres-

sive sensing [5], the original l0-minimization is replaced

by an l1-regularization problem. Advantages of this regu-

larization for tensors are in detecting the rank of a given

tensor due to sparsity and in mitigating the ill-posedness

of the best low rank approximation of tensors since the l1-

regularization term provides a restriction on the bounded-

ness of variables. The l1-regularization problem formulated

in [15] is

min
X,Y,Z,α

1

2
‖A − [α;X,Y,Z]R‖2F + λ‖α‖1 (2)

where N(X,Y,Z) = 1. Here N(X,Y,Z) = 1 is

a normalization constraint and B = [α;X,Y,Z]R =
∑R

r=1 αrx ◦ y ◦ z is the R summands of rank one ten-

sors. The symbol ◦ denotes the outer product. The matrices

X,Y,Z are concatenation of the vectors xr,yr, zr where

r = 1, · · · , R, respectively. This formulation led to practi-

cal computation of low rank tensor decomposition.

In this paper, we propose a more general optimiza-

tion framework in the model by using an adaptive method

(known as adaptive Lasso [20]). The new formulation is the

following

min
X,Y,Z,α

1

2
‖A − [α;X,Y,Z]R‖2F + λ

R
∑

r=1

ωr|αr| (3)

where ω = (ω1, · · · , ωR)
T is a vector of known positive

weights and N(X,Y,Z) = 1. We call this optimization

form (3) as the adaptive low rank approximation of tensor.

Observe that the model (2) is recovered from the adaptive

low rank approximation of tensor if ωr = 1 for all r.

1.1. Adaptive Lasso

The Lasso problem [14] is the ℓ1 regularization of the

least-square method (ℓ1 penalized linear regression). Given

a vector y ∈ R
n, a matrix X ∈ R

n×p with a tuning param-

eter λ ≥ 0, the Lasso estimate can be defined as

β̂ ∈ argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1. (4)

The solution to the Lasso problem is unique when X is full

rank. Otherwise, (4) can have multiple solutions when X

is rank deficient. Due to the nature of ℓ1 penalty and on the

value of the tuning parameter λ, the solutions to the Lasso

problem have many coefficients set exactly to zero.
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Now in many studies [8, 12], it has been confirmed that

the Lasso does not possess oracle property [4]. The oracle

property refers to the ability to correctly select the nonzero

coefficients with probability converging to one, and that the

estimators of the nonzero coefficients are asymptotically

normal with the same means and covariance as they would

have if the zero coefficients were known a priori. Zou [20]

argued that it is unreasonable to force the coefficients to

be equally penalized, and introduced a weighted ℓ1 penalty

with weights determined by an initial estimator; i.e.

β̂ ∈ argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ

p
∑

j=1

wj |βj | (5)

This is called the adaptive Lasso. If the weights ωj are

data-dependent and cleverly chosen, the adaptive Lasso has

the oracle properties as shown in the following proposition

[20]:

Proposition 1 (Oracle properties) Suppose that λn√
n

→ 0

and λnn
γ−1

2 → ∞ where n is the sample size. Then the

adaptive Lasso estimates must satisfy the following:

1. Consistency in variable selection: limn P (S∗
n = S) =

1

2. Asymptotic normality:
√
n(β̂

∗(n)
S − β∗

S) →d

N(0, σ2 × C−1
SS )

where S = {j : β∗
j 6= 0} and CSS is the corresponding

submatrix of C = 1
n
XTX .

Note that (5) is a convex optimization problem in which

its global minima can be efficiently solved. Current effi-

cient algorithms can be used to compute adaptive Lasso es-

timates.

1.2. Preliminaries

A bold lower-case letter a is denoted by a vector. The

bold upper-case letter A represents a matrix and the sym-

bol of tensor is a calligraphic letter A. Tensors with three

indices are third order tensors A = (aijk) ∈ R
I×J×K with

1 ≤ i ≤ I, 1 ≤ j ≤ J and 1 ≤ k ≤ K. For the clar-

ity of the exposition, the discussion is limited to third order

tensors, but all the methods proposed here can be applied to

tensors of arbitrary high order.

A third-order tensor A has column, row and tube fibers,

which are defined by fixing every index but one and denoted

by a:jk, ai:k and aij: respectively. Correspondingly, we

can obtain three kinds A(1),A(2) and A(3) of matricization

of A according to respectively arranging the column, row,

and tube fibers to be columns of matrices. We can also

consider the vectorization for A to obtain a row vector

a such the elements of A are arranged according to k

varying faster than j and j varying faster than i, i.e., a =
(a111, · · · , a11K , a121, · · · , a12K , · · · , a1J1, · · · , a1JK , · · · ).

The outer product x ◦ y ◦ z ∈ R
I×J×K of three nonzero

vectors x,y and z is called a rank-one tensor with elements

xiyjzk for all the indices. A canonical polyadic (CP) de-

composition of A ∈ R
I×J×K expresses A as a sum of

rank-one outer products:

A =

R
∑

r=1

xr ◦ yr ◦ zr (6)

where xr ∈ R
I ,yr ∈ R

J , zr ∈ R
K for 1 ≤ r ≤ R. Every

outer product xr ◦ yr ◦ zr is called as a rank-one compo-

nent and the number R is called as the rank-one compo-

nent number of tensor A. The minimal rank-one compo-

nent number R such that the decomposition (6) holds is

called the rank of tensor A, and is denoted by rank(A).
For any tensor A ∈ R

I×J×K , rank(A) has an upper bound

min{IJ, JK, IK}.

The CP decomposition (6) can be also written as:

A =

R
∑

r=1

αrxr ◦ yr ◦ zr (7)

where αr ∈ R is a rescaling coefficient of rank-one tensor

xr ◦ yr ◦ zr for r = 1, · · · , R. For convenience, we denote

the row vector (α1, · · · , αR) ∈ R
R as α, and rewrite the

sum
∑R

r=1 αrxr ◦ yr ◦ zr of (7) into [α;X,Y,Z]R, where

X = (x1, · · · ,xR) ∈ R
I×R,Y = (y1, · · · ,yR) ∈ R

J×R

and Z = (z1, · · · , zR) ∈ R
K×R are called the factor matri-

ces of tensor A. It is often useful to add a constraint on the

columns of factor matrices normalized to length one. We

denote this constraint by N(X,Y,Z) = 1, and call it as

normalization constraint.

The Khatri-Rao product of two matrices X ∈ R
I×R and

Y ∈ R
J×R is defined as

X⊙Y = (x1 ⊗ y1, · · · ,xR ⊗ yR) ∈ R
IJ×R,

where the symbol “⊗” denotes the Kronecker product:

x⊗ y = (x1y1, · · · , x1yJ , · · · , xIy1, · · · , xIyJ)
T .

Using this Khatri-Rao product, the decomposition (7) can

be written in three matricization forms of tensor A:

A(1) = XD(Z⊙Y)T ,A(2) = YD(Z⊙X)T , (8)

A(3) = ZD(Y ⊙X)T

where the matrix D is diagonal with elements of α.
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2. Adaptive low rank approximation of tensor

We use an optimization framework to find a low rank

tensor which can be calculated efficiently from an original

given tensor. For any given error ε, the minimal rank of B
such that ‖A − B‖2F ≤ ε is no larger than rank(A). The

optimal solution B̂ is a low rank approximation of A with

error ε.

We represent the tensor B as
R
∑

r=1
αrxr ◦ yr ◦ zr =

[α;X,Y,Z]R where R is an upper bound of the rank of A
and columns of X,Y,Z satisfy the normalization constraint

N(X,Y,Z) = 1. And the problem (1) is equivalent to the

following constraint optimization problem with l0-norm:

min
α

‖α‖0 s.t. ‖A − [α;X,Y,Z]R‖2F ≤ ε, (9)

where N(X,Y,Z) = 1.

The problem (9) is equivalent to that of finding the rank

of tensors when ε = 0, whose decision version is NP-hard

[7]. Inspired by the theory of compressive sensing [5], we

turn to the following optimization problem with l1-norm to

avoid the intractibility:

min
X,Y,Z,α

1

2
‖A − [α;X,Y,Z]R‖2F + λ

R
∑

r=1

ωr|αr| (10)

where N(X,Y,Z) = 1, λ > 0 and ω = (ω1, · · · , ωR)
T is

a known positive weights vector. In this work, our algorithm

is tailored for solving the problem (10).

We denote the objective function in (10) as

Ψ(X,Y,Z,α) : RI×R × R
J×R × R

K×R × R
R → R

+,

the approximation term 1
2‖A − [α;X,Y,Z]R‖2F by

f(X,Y,Z,α) : RI×R × R
J×R × R

K×R × R
R → R

+,

and the regularized penalty term λ
R
∑

r=1
ωr|αr| as g(α). So

Ψ(X,Y,Z,α) = f(X,Y,Z,α) + g(α). There are four

blocks X,Y,Z,α of variables in the function Ψ(•), and it

is convex on one block for any fixed three blocks.

It is well known that the problem of finding a best rank-R

approximation for tensors of order 3 or higher has no solu-

tion in general, due to the ill-posedness [13, 10] of the best

low rank approximation of tensors. However, after intro-

ducing the l1 penalty term g(α) to the low rank approxima-

tion term f(•), it is always attainable for the minimization

of the objective function in (10). The following theorem

shows the existence of the global optimal solution of prob-

lem (10).

Theorem 1 The global optimal solution of problem (10)

exists.

2.1. Algorithm for tensor approximation

Here we describe an algorithm (ALRAT) of adaptive

low rank approximation of tensor for computing the solu-

tion of problem (10). The idea of this ALRAT algorithm

comes from the proximal alternating linearized minimiza-

tion technique [1]. The objective function Ψ(X,Y,Z,α)
in (10) consists of two parts f(•) and g(•), where the ap-

proximation term f(•) = 1
2‖A − [α;X,Y,Z]R‖2F and the

regularized penalty term g(•) = λ
R
∑

r=1
ωr|αr|. The func-

tion f(•) is a real polynomial function on (X,Y,Z,α) ∈
R

I×R × R
J×R × R

K×R × R
R and the function g(•) is a

non-differential continuous function on α.

Algorithm 1 Adaptive Low Rank Approximation of Tensor

(ALRAT)

Input: A third order tensor A, an upper bound R of

rank(A), a penalty parameter λ, a nonnegative weight

vector ω and a scale s > 1;

Output: A tensor B̂ and a estimated rank R̂;

1: Give an initial tensor B0 = [α0;X0,Y0,Z0]R.

2: Update step:

a. Update matrices X,Y,Z:

Compute Uk+1 from αk,Yk,Zk by (11).

Xk+1
∗ = Xk− 1

sck
(XkUk+1−A(1))U

k+1T , where

ck = ‖Uk+1Uk+1T ‖F .

Compute Vk+1 from αk,Xk+1
∗ ,Zk by (11).

Yk+1
∗ = Yk− 1

sdk
(YkVk+1−A(2))V

k+1T , where

dk = ‖Vk+1Vk+1T ‖F .

Compute Wk+1 from αk,Xk+1
∗ ,Yk+1

∗ by (11).

Zk+1
∗ = Zk− 1

sek
(ZkWk+1−A(2))W

k+1T , where

ek = ‖Wk+1Wk+1T ‖F .

Normalize every column in Xk+1
∗ ,Yk+1

∗ and Zk+1
∗

to one, and obtain updated

matrices Xk+1,Yk+1,Zk+1.

b. Update the row vector α:

Compute Qk+1 from Xk+1,Yk+1,Zk+1 by (12).

αk+1 = αk − 1
sηk

(αkQk+1 − a)Qk+1T , where

ηk = ‖Qk+1Qk+1T ‖F .

For all the indices i of αk+1, use the soft shrinkage:

αk+1
i =











αk+1
i − λωi, if αk+1

i > λωi

0, if −λωi ≤ αk+1
i ≤ λωi

αk+1
i + λωi, if αk+1

i < −λωi

3: Denote the limitations by X̂, Ŷ, Ẑ, α̂, compute B̂ =
[α̂; X̂, Ŷ, Ẑ]R and count the number R̂ of nonzero en-

tries in α̂.

4: return The tensor B̂ and the estimated rank R̂.
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Three kinds of matricization forms of tensor B =
[α;X,Y,Z]R can be written by using Khatri-Rao products

as

B(1) = XD(Z⊙Y)T ,B(2) = YD(Z⊙X)T ,

B(3) = ZD(Y ⊙X)T

where D = diag(α1, · · · , αR). We introduce three matri-

ces for updating computation in Algorithm 1:

U = D(Z⊙Y)T ,V = D(Z⊙X)T , (11)

W = D(Y ⊙X)T .

Thus B(1) = XU, B(2) = YV and B(3) = ZW. So

the function f(X,Y,Z,α) can be written as three forms
1
2‖A(1)−XU‖2F = 1

2‖A(2)−YV‖2F = 1
2‖A(3)−ZW‖2F .

Using the vectorization of tensors, we can vectorize ev-

ery rank-one tensor of outer product xr ◦ yr ◦ zr into a row

vector qr for 1 ≤ r ≤ R, and denote a matrix consisting of

all qr for 1 ≤ r ≤ R by

Q = (qT
1 , · · · ,qT

R)
T . (12)

Thus the function f(X,Y,Z,α) can be also written as
1
2‖a−αQ‖2F , where a is a vectorization for tensor A.

The algorithm starts from (Xk,Yk,Zk,αk) and itera-

tively update variables X,Y,Z and then α in each loop.

The update of X,Y,Z is based on the following optimiza-

tion problems:

Xk+1
∗ = argmin

X

{〈X−Xk,∇Xf(Xk,Yk,Zk,αk)〉

+
sck

2
‖X−Xk‖2F }

Yk+1
∗ = argmin

Y

{〈Y −Yk,∇Yf(Xk+1
∗ ,Yk,Zk,αk)〉

+
sdk

2
‖Y −Yk‖2F }

Zk+1
∗ = argmin

Z

{〈Z− Zk,∇Zf(X
k+1
∗ ,Yk+1

∗ ,Zk,αk)〉

+
sek

2
‖Z− Zk‖2F }

(13)

Notice that the penalty term g(•) vanishes in equations (13)

since it is a function only relying on α.

Since the function f(X,Y,Z,α) can be written as

three forms 1
2‖A(1) − XU‖2F = 1

2‖A(2) − YV‖2F =
1
2‖A(3) − ZW‖2F , we have the following gradient equa-

tions:

∇Xf(X,Y,Z,α) = (XU−A(1))U
T ,

∇Yf(X,Y,Z,α) = (YV −A(2))V
T ,

∇Zf(X,Y,Z,α) = (ZW −A(3))W
T .

(14)

By combining (13) and (14), the solutions of (13) have the

update forms for X,Y,Z as shown in Algorithm 1.

After normalizing Xk+1
∗ ,Yk+1

∗ ,Zk+1
∗ into matrices

Xk+1,Yk+1,Zk+1 with unit columns, we consider to up-

date α:

αk+1 = argmin
α

{〈α−αk,∇αf(X
k+1,Yk+1,Zk+1,αk)〉

+
sηk

2
‖α−αk‖2 + λ

R
∑

r=1

ωr|αr|}. (15)

Since the function f(X,Y,Z,α) can be written as 1
2‖a −

αQ‖2F , the gradient of f(•) on α is

∇αf(X,Y,Z,α) = (αQ− a)QT .

So we can obtain the update form for α

In ALRAT (Algorithm 1), α is updated by using the sep-

arate soft shrinkage S(αi) = sgn(αi)max{|αi| − λωi, 0}.

Notice that in the regularization parameter λ is fixed in Al-

gorithm 1, we can adaptively choose it for practical compu-

tation.

2.2. The choice of weights ωi and regularized pa-
rameter λ

Inspired by Zou’s work [20], one choice of weight ωi is
1

|α̂i|γ where α̂ = {α̂1, · · · , α̂R} is the conventional solution

of (10) without the penalized term g(α). For small α̂i, the

value of ωi is large. This means that this adaptive method

strengthens the penalization for relatively small α̂i.

Another choice of weights is to consider the conven-

tional Lasso with ωi = 1 for all i. In this case, the ALRAT

algorithm has a simpler form in Step 2 (update step) of the

row vector α. Specifically, for all the indices i of αk+1, use

the soft shrinkage:

αk+1
i =











αk+1
i − λ, if αk+1

i > λ

0, if −λ ≤ αk+1
i ≤ λ

αk+1
i + λ, if αk+1

i < −λ

In [15], ALRAT with ωi = 1 for all i is called as the LRAT

algorithm. It was shown in [15] that under some assump-

tions, every limit point of the sequence generated by the

LRAT algorithm is a critical point of the objective function

satisfying the normalization constraint.

Proposition 2 [15] If the Jump Assumption is only violated

in finite loops, every limit point of the sequence generated

by LRAT is a critical point (X,Y,Z,α) of Ψ(•) such that

N(X,Y,Z) = 1.

In this special case, we can further discuss the probabilistic

consistency of algorithm, and consider how to choose the

regularization parameter λ. For a given regularization pa-

rameter λ > 0, an optimal solution to problem (10) with all

ωi = 1 is denoted by

(X̂, Ŷ, Ẑ, α̂) = argmin
X,Y,Z,α

1

2
‖A−[α;X,Y,Z]R‖2F +λ‖α‖1
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where N(X,Y,Z) = 1. As shown in Section 2.1, we can

construct a R× (I ∗ J ∗K) matrix Q̂ = (q̂T
1 , · · · , q̂T

R)
T =

((X̂ ⊙ Ŷ) ⊙ Ẑ)T from (12), and vectorize tensor A into a

row vector a.

For convenience, we introduce new notations b,θ,B for

aT ,αT , Q̂T respectively. Thus b and θ are column vectors

with dimension I ∗J ∗K and R, and B is a (I ∗J ∗K)×R

matrix. Furthermore, we have the following equality

1

2
‖A− [α; X̂, Ŷ, Ẑ]R‖2F +‖α‖1 =

1

2
‖b−Bθ‖22+λ‖θ‖1.

(16)

The optimal solution α̂T for tensor approximation prob-

lem (10) is also an optimal solution θ̂ of a standard l1-

regularized least square problem

min
θ

1

2
‖b−Bθ‖22 + λ‖θ‖1. (17)

Assume that b and B have a sparse representation structure

as

b = Bθ∗ + ε, (18)

where θ∗ is a sparse signal with k non-zero entries (k < R)
and ε is a vector with independent subgaussian entries of

mean zero and parameter σ2. The optimal solution θ̂, which

is also the α̂T , of problem (17) may become a suitable ap-

proximation for the real sparse signal θ∗ from the consis-

tency theory of Lasso [18].

Assume that B is a full column rank matrix. Then the

objective function in problem (17) is strictly convex, and

the optimal solution θ̂ to problem (17) is unique and exact

α̂T . Denote S and Ŝ as the index set of non-zero entries

in θ∗ and θ̂ respectively. So the sparse signal θ∗ can be

rewritten as (θ∗
S
T ,0T )T and the cardinality of S is k.

According to the unknown set S, we can separate columns

of the design matrix B as two parts (BS ,BSC ), where SC

is the complement of S. Moreover, since BS also have full

column rank, there exists a unique solution θ̂S by solving

the restricted Lasso problem:

min
θS

1

2
‖b−BSθS‖22 + λ‖θS‖1. (19)

Proposition 3 [15] Suppose that the sparse structure (18)

exists, the sparse signal θ∗ = (θ∗
S
T ,0T )T and B has full

column rank. If there exist some parameters γ and µ where
0 < γ < 1 and µ > 0 such that ‖BT

SCBS(B
T
SBS)

−1‖∞ ≤
1− γ and λmin(B

T
SBS) ≥ µ, we have that

Pr

(

{Ŝ ⊆ S}
⋂

{‖δS‖∞ ≤ λ

2
√
µ
+ λ‖(BT

SBS)
−1‖∞}

)

1− 2R exp(−λ2γ2

8σ2
), (20)

where Ŝ is the index set of non-zero entries in θ̂, and

δS = θ̂S − θ∗
S and θ̂S is the optimal solution of (19). Fur-

thermore, if the lower bound of the absolute values of ele-

ments in θ∗
S is larger than λ( 1

2
√
µ
+ ‖(BT

SBS)
−1‖∞), we

have that

Pr({Ŝ = S}) ≥ 1− 2R exp(−λ2γ2

8σ2
). (21)

Proposition 3 tells us that if we want to recover the spar-

sity in (18) with a probability p, we should choose a λ such

that 1 − 2R exp(−λ2γ2

8σ2 ) > p when we know the intrinsic

parameters γ and σ2. So to adaptively give a regulariza-

tion parameter λ based on the data A, we need to give two

guesses on the intrinsic parameters γ and σ2. We set λ to

zero in the LART algorithm, and compute a estimated ten-

sor B̂ = [α̂; X̂, Ŷ, Ẑ]R from the tensor data A. The pa-

rameter σ2 is estimated by using the variance σ̂2 of all the

entries in the difference A − B̂, and the parameter γ is set

as γ̂ = 1 − max{|〈Bi,Bj〉||i 6= j}, where Bi is the i-th

column in B = (X̂ ⊙ Ŷ) ⊙ Ẑ. With regularization param-

eter λ̂ = 2
γ̂

√

2σ̂2 log(200R), the result of our algorithm is

shown by using the real data in the next Section.

3. Application to background extraction and

video compression

We apply our method to one video dataset from Percep-

tion Test Images Sequences1 (Institute for Infocomm Re-

search, Singapore). This dataset consists of nine surveil-

lance videos. For each video, we choose 220 consecutive

frames for our experiments. All of the experiments are exe-

cuted in C++ with OpenCV2.3.1 and run on a desktop com-

puter with Intel i5 CPU 3.3GHz and 8Gb memory.

For the implementation, the regularization parameter λ̂

is set to 2
γ̂

√

2σ̂2 log(200R) where σ̂2 and γ̂ are computed.

The upper bound R of rank is set to min{I, J,K}, where

I is the number of rows in one frame, J is the number of

columns in one frame, and K is the number of frames in the

video. All of the weights ωi are set to one.

As shown in the first two columns of Figure 1, the pro-

posed method for tensor approximation is applied to the

background and foreground separation. The background in-

formation of the video is captured by the low rank approx-

imation B̂ of the video tensor A, while the foreground can

be seen from the residual A− B̂.

We notice that the complementary information of the low

rank tensor B̂ is mainly from the extreme values of the resid-

ual A−B̂. In other words, if we truncate the residual part at

a value ǫ and keep both sides of extreme values, we can ob-

tain a compression video tensor which is the low rank tensor

B̂ plus the truncation tensor of A − B̂. The corresponding

1http://perception.i2r.a-star.edu.sg/bk_model/bk_

index.html
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compression ratio of video tensor A ∈ R
I×J×K is

ratio =
IJK

(I + J +K)R̂+ n(ǫ)
(22)

where R̂ is the estimated rank and n(ǫ) is the total number

of voxels for the truncation tensor. The compression results

are illustrated in the third column of Figure 1. The specific

compression ratio and estimated rank for all the video ten-

sors are shown in Table 1.

Table 1. Dimension, time cost, estimated rank and compression

ratio of videos.

video dimension time(s) rank ratio

Bootstrap 120*160*220 893.97 45 2.03

Campus 128*160*220 1104.13 69 1.9

Curtain 128*160*220 1103.84 78 5.34

Escalator 130*160*220 1032.26 109 2.07

Fountain 128*160*220 1113.44 111 3.55

Hall 144*176*220 1528.29 87 2.04

Lobby 128*160*220 1093.99 128 9.37

ShoppingMall 256*320*220 7296.54 117 2.8

WaterSurface 128*160*220 1097.96 40 2.52

From Table 1, when the dimension of tensor is

128*160*220, the time cost of approximation algorithm is

no more than 20 minutes. The estimated rank of WaterSur-

face is minimum. It is because those consecutive frames for

WaterSurface may have a very low rank structure as their

similarities of different frames. The Lobby tensor has a

high estimated rank, and its compression rate is high up to

9.37. As shown in the 7th row of Figure 1, the compressed

Lobby video can obtain a comparatively satisfactory effect

compared to the original one while the compressed one only

needs around one ninth memory space.

4. Future outlook

The proposed method for low rank approximation has

many applications in analyzing multilinear signals. One in-

teresting research direction is to build the relation between

tensor computation and intelligent multiple objects track-

ing. Moreover, shedding light on the convergence rate of the

algorithm will helpful in the theoretical study of the sparsity

optimization problem.
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Figure 1. The first column is the low rank part. The second column is the residual part. The third column is the compression result. The

fourth column is the original frame.
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