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Abstract

In this paper, we propose a novel approach to cluster in-

complete images leveraging sparse subspace structure and

total variation regularization. Sparse subspace clustering

obtains a sparse representation coefficient matrix for input

data points by solving an ℓ1 minimization problem, and then

uses the coefficient matrix to construct a sparse similarity

graph over which spectral clustering is performed. Howev-

er, conventional sparse subspace clustering methods are not

exclusively designed to deal with incomplete images. To this

end, our goal in this paper is to simultaneously recover in-

complete images and cluster them into appropriate cluster-

s. A new nonconvex optimization framework is established

to achieve this goal, and an efficient first-order algorithm

is developed to tackle the nonconvex optimization. Exten-

sive experiments carried out on three public datasets show

that our approach can restore and cluster incomplete im-

ages very well when up to 30% image pixels are missing.

1. Introduction

With the emergence of new sensory elements, improve-

ments of computing nodes, and bandwidth growths of wire-

less communication in intelligent sensing systems, the past

few years have witnessed an explosion of high-dimensional

data. In a variety of problems such as geographic informa-

tion systems, spatial databases, solid modeling, computer

vision, computational geometry, and bioinformatics, high-

dimensional data is ubiquitous. High-dimensional data not

only provides opportunities to discover hidden patterns and

correlations, but also inspires higher computational cost-

s and memory requirements. However, high-dimensional

data is usually, for example in face clustering and motion

segmentation, supposed to lie in relatively low-dimensional

one or multiple subspaces. In other words, the intrinsic

dimension of data is much lower than the original dimen-

sion. For example, as illustrated in [23], in handwritten digit

recognition the images from a single digit can be well ap-

proximated by a 12-dimensional subspace. [20] shows that

in motion segmentation the feature points of a single rigid

motion will lie in a linear subspace of dimension at most

four. Likewise, in face clustering the images under differ-

ent lighting conditions belonging to one person can be well

approximated by a 5-dimensional subspace [19].

Subspace clustering naturally arises with the emergence

of high-dimensional data. It refers to the problem of finding

multiple low-dimensional subspaces underlying a collection

of data points sampled from a high-dimensional space and

simultaneously partitioning these data into subspaces. Mak-

ing use of the low intrinsic dimension of input data and the

assumption of data lying in a union of linear or affine sub-

spaces, subspace clustering assigns each data point to a sub-

space, in which data points residing in the same subspace

belong to the same cluster. Subspace clustering has been

applied to various areas such as computer vision [10], sig-

nal processing [15], and bioinformatics [12]. In the past two

decades, numerous algorithms to subspace clustering have

been proposed, including K-plane [3], GPCA [24], Spectral

Curvature Clustering [4], Low Rank Representation (LRR)

[14], Sparse Subspace Clustering [8], etc. Among these al-

gorithms, the recent work of Sparse Subspace Clustering

(SSC) has been recognized to enjoy promising empirical

performance. SSC assumes that each data point can be rep-

resented as a linear combination of other points that belong

in the same subspace, and then finds a sparse representation

coefficient matrix by which a weighted graph is constructed.

On the graph, a conventional spectral clustering algorithm

can be applied to assign each data point to a cluster, tol-

erating sparse noise or outliers. When some entries of the

data matrix are corrupted or missing, the drawback of SSC

is that it simply disregards the fact that we know the loca-

tions of the missing entries in the data matrix, though some-

times we may have no idea about the range or distribution
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of the corresponding values. Another approach suggested in

[8] deletes the rows of the data matrix that involve missing

values, and then clusters the data using only the remaining

rows. To explain how this approach works, let us consider

a data matrix � = [�1, . . . ,�� ] ∈ ℝ
�×� , where each

column vector �� ∈ ℝ
� represents one data point. Let

�� ⊂ {1, ..., �} denote the indices of the known entries of

�� and define by � =
∩�

�=1
��. If we only keep the rows of

� that correspond to � , we can obtain a reduced data ma-

trix �̄ ∈ ℝ
∣�∣×� with only known entries. Sparse subspace

clustering is then performed over the reduced matrix. The

drawback of this approach is that the size of � is quite small

relative to the ambient space dimension �, and much useful

information (e.g., known pixel values) is thus ignored. In

fact, for the images considered in this paper, we find that �
is always empty when more than 10% entries are missing

with their locations randomly chosen, because missing pix-

els are present in every row of the data matrix � . Recently,

[25] showed that a modified version of SSC is provably ef-

fective in correctly identifying the underlying subspaces for

even noisy data. This extends the theoretical guarantees of

SSC to practical settings, and provides a justification to the

success of SSC in a class of applications. [18] proposed a

greedy algorithm to cluster incomplete data. However, such

a greedy algorithm lacks theoretical convergence guaran-

tees and is time consuming. Due to all these limitations,

as pointed out in [8], addressing the problem of subspace

clustering under a large fraction of missing entries is a chal-

lenging topic, which has not been thoroughly explored yet.

This challenge is exactly what we will address in this pa-

per. While this work focuses on optimization models for

tackling subspace clustering, we note that there exist some

work that deals with subspace clustering from a probabilis-

tic perspective (see [9] and the references therein).

In this paper, we propose a novel approach beyond SSC

to cluster incomplete images. Compared with the approach-

es mentioned above, the key advantage of our approach is

that it can accomplish image restoration and subspace clus-

tering simultaneously. The model that we build for cluster-

ing incomplete images incorporates popular total variation

(TV) regularization [21] into image restoration. By integrat-

ing SSC and TV together, our model formulates subspace

clustering as a structured nonconvex optimization problem.

This formulation generalizes traditional SSC, and captures

the global structure of incomplete image data. We present

a first-order algorithm to solve the nonconvex optimiza-

tion, and further prove that it converges to a KKT point of

the nonconvex problem under certain standard assumptions.

Extensive experiments on the Extended Yale B dataset [13],

the USPS digital images dataset [11], and the Columbia Ob-

ject Image Library (COIL20) [16] show that for images with

up to 30% missing pixels the clustering quality achieved by

our approach compares favorably to the state-of-the-arts.

The rest of the paper is organized as follows. In Section

2, we propose our optimization model that incorporates SS-

C with TV for incomplete images clustering. We introduce

a first-order algorithm, i.e., the so-called alternating direc-

tion method of multipliers, to solve our optimization prob-

lem in Section 3. In Section 4, we analyze the convergence

property of the proposed algorithm. Section 5 shows the

numerical results on three data sets: the Extended Yale B

dataset, the USPS digital images dataset, and the Columbia

Object Image Library. Conclusions are drawn in Section 6.

2. SSC with TV Regularization

2.1. Sparse Subspace Clustering

In this section we introduce the basic idea and formula-

tion of SSC proposed by Elhamifar and Vidal [7, 8]. SSC

takes advantage of the so-called self-expressiveness proper-

ty. To be specific, suppose we want to cluster � data points

� := [�1, . . . ,�� ] to � subspaces �1, . . . ,��. The key

idea of SSC is to find a sparse expression of each column

�� as a linear combination of all other columns of � , i.e.,

�� = ���, where �� ∈ ℝ
� is the coefficient vector. It is

believed that �� should be a sparse vector with the �-th entry

being zero, as each data point is expected to be represented

only by the other data points lie in the same subspace. This

motivates the following optimization problem on coefficient

matrix � := [�1, . . . , �� ] ∈ ℝ
�×� .

min ∥�∥1, s.t.,� = ��, diag(�) = 0, (1)

where ∥�∥1 =
∑

�,� ∣��,� ∣, diag(�) represents the diagonal

vector of �. It is suggested in [7] that the affinity matrix �
can be defined as � = ∣�∣+∣�∣� , i.e., ��� = ∣��� ∣+∣���∣.
A weighted graph � := (�, ℰ ,� ) is then constructed,

where � denotes the set of � nodes corresponding to the

� data points, ℰ ⊆ � ×� denotes the set of edges between

nodes. Clustering of data into subspaces follows by apply-

ing spectral clustering [17] to the graph �.

In real applications, data are often corrupted by noise

or sparse outliers. In [8], the following variant of SSC is

proposed to deal with data corruption:

min ∥�∥1 +
�
2
∥�∥2� + �∥�∥1,

s.t. diag(�) = 0, � = � −�� − �,
(2)

where � and � correspond to noise and sparse outliers re-

spectively, � > 0, � > 0 are two trade-off parameters bal-

ancing the three terms in the objective function.

In our problem, we assume that the data matrix � is

incomplete and corrupted only by noise, so � is eliminated

from optimization problem (2). In the application of images

clustering, incomplete data indicate that there are missing

pixels in the images. An SSC-based approach for this in-



complete images clustering problem can be formulated as

min�,� ∥�∥1 +
�
2
∥� − � �∥2� ,

s.t., diag(�) = 0, ��� = ��� , (�, �) ∈ Ω,
(3)

where Ω denotes the set of indices of the known pixels of

the images � . Solving (3) recovers the images � and ob-

tains the sparse coefficient matrix � simultaneously. How-

ever, note that problem (3) ignores the fact that each column

of � corresponds to an image and thus adding some regu-

larization term for � is expected to achieve better recovery

quality. Here the total variation regularization is adopted for

this purpose.

2.2. SSC with TV Regularization

Removing noise from images using total variation regu-

larization was first proposed in [21]. For a two-dimensional

signal � ∈ ℝ
�×�, such as an image, the total variation

function is defined as

TV(�) :=
∑

�,�

∥(��+1,�−��,� ;��,�+1−��,�)∥2 =

��
∑

�=1

∥���∥2,

where � := vec(�) ∈ ℝ
�� is the vector form of matrix � ,

and �� denotes the first-order horizontal and vertical finite

differences of � at the �-th pixel.

Our approach naturally combines SSC and TV to achieve

the goal of images clustering and restoration simultaneous-

ly. Our optimization model for SSC with TV regularization

(SSC-TV) can be formulated as (assuming that we have �
images with size �× �):

min
�,�

∥�∥1 +
�
2
∥� − � �∥2� + �

�
∑

�=1

��
∑

�=1

∥����∥2

s.t. diag(�) = 0, ��� = ��,� , (�, �) ∈ Ω,

(4)

where � = [�1, . . . , �� ], �� ∈ ℝ
��, � = 1, . . . , � , and

� > 0, � > 0 are two parameters balancing the three terms

in the objective function. Note that TV regularization is

adopted for each image ��.

3. Algorithm

In this section, we propose an efficient first-order algo-

rithm, the so-called alternating direction method of multi-

pliers (ADMM), to solve (4). ADMM has been proved to

be very efficient for solving structured convex optimization

problems (see [2] for a recent survey on this topic). Here

we adopt this algorithm to solve the nonconvex optimiza-

tion problem (4).

By introducing auxiliary variables ��� = ����, (4) can

be reformulated as

min ∥�∥1 +
�
2
∥� − � �∥2� + �

�
∑

�=1

��
∑

�=1

∥���∥2

s.t. ��� = ����, ∀�, �, � ∈ �1, � ∈ �2,

(5)

where �1 := {� ∣ ��� = ��� , (�, �) ∈ Ω} and �2 :=
{� ∣ diag(�) = 0}. The augmented Lagrangian function

of (5) without considering the two constraints � ∈ �1 and

� ∈ �2, is given by

ℒ(�,�,� ;�)

:= ∥�∥1 +
�
2
∥� − � �∥2� + �

∑�

�=1

∑��

�=1
∥���∥2

−
∑

��⟨��� −����, ���⟩+
�
2

∑

�� ∥��� −����∥
2
2,

where ��� denotes the Lagrange multiplier associated with

the equality constraint ��� = ����, and � > 0 is a penalty

parameter.

Given (� �, ��,� �, ��), ADMM iterates as follows

� �+1 := argmin
� ∈�1

ℒ(�,��,� �;��), (6a)

��+1 := argmin
�∈�2

ℒ(� �+1, �,� �;��), (6b)

� �+1 := argmin
�

ℒ(� �+1, ��+1,� ;��), (6c)

��+1
�� :=��

�� − �(� �+1
�� −���

�+1
� ), ∀�, �. (6d)

Now we show how to solve the three subproblems in

(6a), (6b) and (6c). Note that (6a) reduces to a quadratic

programming (QP). Although there are many existing algo-

rithms for solving a QP, we here use a simple linearization

strategy to approximate this problem, as it is a subproblem

and does not need to be solved exactly all the time. Our lin-

earization strategy for approximating (6a) is to take a gradi-

ent projection step for it, i.e., (6a) is replaced by

min
� ∈�1

∥� − (� � − �1�
�
� )∥

2
� , (7)

where �1 > 0 is the step size for the gradient step,

��� := �� �(� − ��)(� − ��)� +
∑

�� �
�
� ��

���
�
�

+�
∑

��(�
�
� ���

����
�
� −��

� � �
���

�
� )

is the gradient of ℒ(�,��,� �;��) at the current iterate

� �, and �� denotes the �-th unit vector. Note that (7) corre-

sponds to an easy projection onto �1.

Note that (6b) and (6c) can actually be solved simultane-

ously. To solve (6b), we apply a similar linearization strate-

gy. Specifically, we replace (6b) by

min
�∈�2

∥�∥1 +
1

2�2
∥� − (�� − �2�

�
�)∥

2
� , (8)

where �2 > 0 is the step size for the gradient step, and

��� := −�(� �+1)� (� �+1 − � �+1��) is the gradient of
�
2
∥� �+1 − � �+1�∥2� at the current iterate ��. Note that

in this subproblem we only linearize the quadratic part, be-

cause the other part ∥�∥1 is nonsmooth. This technique

has been widely used in algorithms for solving sparse re-

construction problem arising from compressed sensing (see,



e.g., [1, 28]). Note that without considering the constraint

� ∈ �2, (8) admits an easy closed-form solution known

as the soft-shrinkage operation �̄�+1 := shrink1(�
� −

�2�
�
� , �2), where the soft-shrinkage operator is defined as

(see [5])

[shrink1(�, �)]�� := sign(���) ∙max{∣��� ∣ − �, 0}.

Now the solution of (8), i.e., ��+1 is obtained by setting the

diagonal of �̄�+1 to zero. (6c) can be reduced to

min
�

�

2

∑

��

∥���−���
�+1
� ∥22−

∑

��

⟨���, �
�
��⟩+�

∑

��

∥���∥2,

(9)

which admits a closed-form solution given by the so-called

ℓ2-shrinkage operation � �+1
�� := shrink2(���

�+1
� +

��
��/�, �/�), ∀�, �, where the ℓ2-shrinkage operator is de-

fined as (see [27]) shrink2(�, �) := �
∥�∥2

∙ max{∥�∥2 −

�, 0}, where we adopted the convention 0 ⋅ (0/0) = 0.

Thus we have shown that the three subproblems (6a),

(6b) and (6c) in the ADMM algorithm can be (approximate-

ly) solved relatively easily. Note that all the three reformula-

tions in (7), (8) and (9) admit simple closed-form solutions.

We now summarize our ADMM algorithm for solving (5)

in Algorithm 1.

Algorithm 1 ADMM algorithm for solving problem (5)

Input: �
0, �0, � 0, �0

Output: � , �

1: Update �
�+1 by solving (7)

2: Update �
�+1 by solving (8)

3: Update �
�+1 by solving (9)

4: Update �
�+1 by (6d)

4. Convergence Analysis

Similar to [22, 26], in this section, we provide a conver-

gence analysis for the proposed ADMM algorithm showing

that under certain standard conditions, any limit point of the

iteration sequence generated by Algorithm 1 is a KKT point

of (5).

Theorem 1. Let � := (�,�,�,�) and {��}∞�=1
be gen-

erated by Algorithm 1. Assume that {��}∞�=1
is bounded

and lim�→∞(��+1 − ��) = 0. Then any accumulation

point of {��}∞�=1
is a KKT point of problem (5).

Due to the space limit, the proof of Theorem 1 is placed

in the supplemental material. It should be pointed out that

the assumptions in Theorem 1 are standard in the literature.

For example, these assumptions were also used in [22, 26].

5. Experiments

In this section, we apply our SSC-TV approach

to three different data sets. As SSC proposed in

[8] is considered as one of the state-of-the-art algo-

rithms for subspace clustering, we will mainly focus

on the comparison of our approach with SSC [8].

The MATLAB codes of SSC were downloaded from

http://www.cis.jhu.edu/∼ehsan/code.htm.

5.1. Post-Processing and Spectral Clustering

After solving (4), we obtain the recovered images � and

the sparse coefficient matrix �. Similar to [6], we perform

some post-processing procedure on �. For each coefficien-

t vector ��, we keep its largest � coefficients in absolute

magnitude and set the remaining coefficients to zeros. The

affinity matrix � associated with the weighted graph � is

then constructed as � = ∣�∣ + ∣�∣� . To obtain the final

clustering result, we apply the normalized spectral cluster-

ing approach proposed by Ng et al [17]. Thus, the whole

procedure of our SSC-TV based clustering approach for in-

complete images can be described as in Algorithm 2.

Algorithm 2 SSC with TV regularization

Input: A set of points {��}
�

�=1 (with missing entries) lying in a

union of � linear subspaces {�ℓ}
�

ℓ=1

Output: Clustering and recovering results of the images

1: Normalization: normalize the data points.

2: SSC-TV: solve the SSC-TV optimization problem (4) by Al-

gorithm 1.

3: Post-processing: for each ��, keep its largest � coefficients

in absolute magnitude, and set the remaining coefficients to

zeros.

4: Similarity graph: form a similarity graph with � nodes rep-

resenting the data points, and set the weights on the edges

between the nodes by � = ∣�∣+ ∣�∣� .

5: Clustering: apply the normalized spectral clustering approach

in [17] to the similarity graph.

5.2. Implementation Details

We applied our Algorithm 2 to three public datasets: the

Extended Yale B dataset1, the USPS digital images dataset2,

and the COIL20 dataset3. The Extended Yale B dataset is

a well-known dataset for face clustering, which consists of

images taken from 38 human subjects, and 64 frontal im-

ages for each subject were acquired under different illumi-

nation conditions and a fixed pose. To reduce the computa-

tional cost and the memory requirements of the algorithms,

we downsampled the raw images into the size of 48 × 42.

Thus, each image is in dimension of 2,016. The USPS

dataset is relatively difficult to handle, in which there are

7,291 labeled observations and each observation is a digit

of 16 × 16 grayscale image and of different orientations.

1http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
2http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
3http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php


(a) Original images (b) Incomplete images

Cluster labeled #1,and the majority is original class #2 with TP=100.0% and FP=0.0% Cluster labeled #2,and the majority is original class #6 with TP=100.0% and FP=0.0%

Cluster labeled #3,and the majority is original class #4 with TP=98.4% and FP=1.6% Cluster labeled #4,and the majority is original class #5 with TP=98.5% and FP=1.5%

Cluster labeled #5,and the majority is original class #8 with TP=97.0% and FP=3.0% Cluster labeled #6,and the majority is original class #3 with TP=95.5% and FP=4.5%

Cluster labeled #7,and the majority is original class #1 with TP=100.0% and FP=0.0% Cluster labeled #8,and the majority is original class #7 with TP=100.0% and FP=0.0%

(c) Recovered and clustered images

(d) Misclassified images

Figure 1: Sparse subspace clustering for incomplete face images from Extended Yale B dataset



Table 1: Results of different algorithms with different fraction of missing entries for different datasets
spa=10% spa=20% spa=30%

Alg. SSC-0 SSC-AVE SSC-TV SSC-0 SSC-AVE SSC-TV SSC-0 SSC-AVE SSC-TV

Yale B dataset: 3 subjects

SCE-Mean 5.83 5.20 2.41 27.00 7.57 4.01 51.84 14.68 5.02

SCE-Median 0.85 0.81 0.78 31.51 5.20 1.04 57.29 11.71 2.60

Yale B dataset: 5 subjects

SCE-Mean 5.62 4.76 4.31 40.32 17.23 5.29 54.28 32.23 7.75

SCE-Median 2.74 3.43 2.34 44.53 16.71 3.75 50.93 31.25 3.28

Yale B dataset: 8 subjects

SCE-Mean 7.81 6.45 3.12 42.18 40.37 4.42 60.62 46.57 9.19

SCE-Median 4.75 5.89 3.32 40.13 41.30 3.22 60.44 45.80 4.88

USPS dataset: 3 subjects

SCE-Mean 0.07 0.07 0.03 9.07 9.33 5.43 10.52 9.97 6.32

SCE-Median 0.00 0.00 0.00 1.67 0.67 0.67 1.67 2.17 1.50

USPS dataset: 5 subjects

SCE-Mean 8.76 7.68 0.07 23.51 21.69 15.91 24.55 21.06 18.93

SCE-Median 0.40 0.40 0.00 28.00 26.60 16.20 25.70 24.70 26.20

USPS dataset: 8 subjects

SCE-Mean 12.50 10.11 0.95 36.81 34.59 19.26 46.93 29.08 24.66

SCE-Median 17.38 15.84 0.13 37.31 35.63 19.06 50.13 27.63 21.13

COIL20 dataset: 3 subjects

SCE-Mean 6.99 6.74 3.45 38.47 19.75 4.17 45.74 19.72 5.97

SCE-Median 0.00 0.00 0.00 50.93 2.55 0.00 51.39 5.56 0.00

COIL20 dataset: 5 subjects

SCE-Mean 7.79 9.17 4.14 41.76 18.60 4.50 46.74 26.36 4.18

SCE-Median 0.00 0.00 0.00 37.22 5.69 0.00 46.11 28.33 0.00

COIL20 dataset: 8 subjects

SCE-Mean 11.55 9.44 7.40 41.94 28.32 7.53 48.51 35.54 7.40

SCE-Median 10.33 0.00 0.19 40.80 20.89 3.04 46.96 45.83 2.69

The number of each digit varies from 542 to 1,194. To re-

duce the time and memory cost of the expriement, we ran-

domly chose 100 images of each digit in our experiment.

COIL20 is a database consisting of 1,440 grayscale images

of 20 objects. Images of the 20 objects were taken at pose

intervals of 5 degrees, which results in 72 images per objec-

t. All 1,440 normalized images of 20 objects are used in our

experiment.

To study the effect of the number of subspaces in the

clustering and recovery performance of algorithms, we ap-

plied algorithms under cases of � = 3, 5, 8, where � de-

notes the number of subspaces, i.e., the number of different

subjects. To shorten the testing time, � subjects were cho-

sen in the following way. For example, in the Extended Yale

B dataset, all the 38 subjects were divided into four groups,

where the four groups correspond to subjects 1 to 10, 11 to

20, 21 to 30, and 31 to 38, respectively. � subjects were

chosen from the same group. For example, when � = 5,

the number of possible 5 subjects is 3
(

10

5

)

+
(

8

5

)

= 812.

Among these 812 possible choices, 20 trials were randomly

chosen to test the proposed algorithms under the condition

of � subspaces.

These datasets were randomly corrupted to challenge the

clustering and recovery ability of the proposed algorithm-

s. To generate corrupted images with a specified missing

fraction which is denoted as “spa", we randomly removed

squares whose size is not larger than 10 × 10 in uniform

manner, repeatedly until the total fraction of missing pixels

is no less than the specified “spa" . To study the effect of the

fraction of missing entries in clustering and recovery perfor-

mance of algorithms, we artificially corrupted images into

3 different missing levels: 10%, 20% and 30%. To make

the comparison of different algorithms as fair as possible,

we randomly generated the missing images first, and then

all algorithms were applied to the same randomly corrupted

images to cluster the images and recover the missing pixels.

We use the following measure to demonstrate the clus-

tering quality: the subspace clustering error (SCE)

��� := (# of misclassified images)/(total # of images).

For each set of � with different percentage of missing pix-

els, the averaged SCE over 20 random trials are calculated.

In Algorithm 1 (SSC-TV), we initiate � by filling in each

missing pixel with the average value of corresponding pix-

els in other images with known pixel value. We implement

SSC proposed in [8] in two different ways. In Algorith-

m “SSC-AVE”, we fill in the missing entries in the same

way as “SSC-TV”, and in Algorithm “SSC-0”, we fill in the

missing entries by 0.

In Algorithm 1, we choose � = 5 × 104, � = 5 × 104,

�1 = �2 = 10−6 in all experiments. We set � = 1000/�,

where � := min�max� ∕=�∣�
�
� �� ∣ to avoid trivial solutions.

It should be noted that � actually changes in each iteration,

because matrix � is updated in each iteration. We choose

the parameter � in the post-processing procedure in Algo-

rithm 2 as � = 5. To accelerate the convergence of Al-

gorithm 1, we adopted the following stopping criterion to

terminate the algorithm.

Note that we need to update both � and � in Algorith-

m 1. To speed up the convergence, we stopped updating



(a) Original images (b) Incomplete images (c) Recovered images

(d) Original images (e) Incomplete images (f) Recovered images

(g) Original images (h) Incomplete images (i) Recovered images

Figure 2: Sparse subspace clustering for incomplete face

images from Extended Yale B dataset. The 1st, 2nd and

3rd rows show the recovering and clustering results for in-

complete images with 10%, 20%, and 30% pixels missing,

respectively.

� when TV0−TV�

TV0−�∗�∗64 ≥ 0.8, where TV0 is the TV of the

normalized incomplete images with missing entries, TV�

is the TV after � iterations. � is related to the mean of

the TV terms of the images, and is chosen empirically. In

our experiments, we chose � = 7.5 for the extended Yale B

dataset, � = 7.7 for USPS dataset and � = 6.8 for COIL20.

Thus, when the above stopping criterion is satisfied, it in-

dicates that the images have been restored well, and we

can stop updating � . Algorithm 1 is terminated when

∥(� �+1;��+1)− (� �;��)∥� /∥(� �;��)∥� ≤ 2× 10−4.

5.3. Results

We report the experimental results in Table 1. From Ta-

ble 1, we can see that when the images are incomplete, for

example when � = 3, the mean of SCE is usually smaller

than 7%. This means that the percentage of misclassified

images is smaller than 7%. It can been seen that our Al-

gorithm 2 gives better results on clustering errors in almost

all situations. Especially, when ��� = 20% and 30%, the

mean clustering errors are much smaller than the ones given

by SSC-AVE and SSC-0, this phenomena is more obvious

(a) Original images (b) Incomplete images (c) Recovered images

(d) Original images (e) Incomplete images (f) Recovered images

(g) Original images (h) Incomplete images (i) Recovered images

Figure 3: Sparse subspace clustering for incomplete face

images from USPS dataset. The 1st, 2nd and 3rd rows show

the recovering and clustering results for incomplete images

with 10%, 20%, and 30% pixels missing, respectively.

with the increase of number of subjects. These comparison

results show that our SSC-TV model can cluster the incom-

plete images very robustly and greatly outperforms SSC.

Figure 1 shows the clustering and recovery results of one

instance of � = 8 using Algorithm 2 for the Extended Yale

B dataset. The subfigure (a) are the original images before

clustering. There are 512 images with 8 individuals, and

64 frontal images for each individual were acquired under

different illumination conditions and a fixed pose. The sub-

figure (b) are incomplete images with 10% pixels missing.

The subfigure (c) are the clustered and recovered images by

our Algorithm 2. The misclassified images in each cluster

are labeled with colored rectangles and the true positive rate

(TP) and false positive rate are also given. The subfigure

(d) are the misclassified images, and we can see that most

of these images are not in good illumination conditions and

they are thus difficult to be classified. Due to the space lim-

it, we show the results of one instance of � = 8 for the

USPS dataset and the COIL20 dataset in the supplementary

material.

Figure 2 shows the clustering and recovery results of one

instance of � = 3 using Algorithm 2 for the Extended Yale



(a) Original images (b) Incomplete images (c) Recovered images

(d) Original images (e) Incomplete images (f) Recovered images

(g) Original images (h) Incomplete images (i) Recovered images

Figure 4: Sparse subspace clustering for incomplete face

images from COIL dataset. The 1st, 2nd and 3rd rows show

the recovering and clustering results for incomplete images

with 10%, 20%, and 30% pixels missing, respectively.

B dataset. To make the results more visually, we selected 6

images from each subject to show the clustering and recov-

ery results. Part (a) of Figure 2 shows the 18 images taken

from 3 subjects. They are ordered randomly because we

do not know their clusters. Part (b) of Figure 2 shows the

same images with 10% pixels randomly missing. Part (c) of

Figure 2 gives the clustered and recovered images provided

by the results of Algorithm 2. From Figure 2 we see that

the 18 images are clustered into the correct clusters, and at

the same time, the missing pixels are filled in and the im-

ages are recovered very well. The images in the second and

third rows of Figure 2 respectively show the recovering and

clustering results for incomplete images with 20% and 30%

pixels missing. In Figures 3 and 4 we show one instance of

� = 5 for the USPS dataset and the COIL20 dataset. They

both show that our SSC-TV method can cluster and recover

the incomplete images very well.

5.4. Choices of Post-Processing Parameter �

In Algorithm 2, a very important parameter is the thresh-

olding parameter � in the post-processing procedure. This

post-processing procedure was suggested in many existing
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Figure 5: Effects of different � on Extended Yale B dataset

works (see, e.g., [6, 7]). However, the choice of � was not

thoroughly investigated. In this section, we show the effect-

s of different choices of � using Algorithm 2 on Extended

Yale B dataset. We set the percentage of missing pixels

as 10%, and vary � from 0 to 10, where � = 0 indicates

that no post-processing procedure is performed. We plot

the mean of SCE on the same dataset as in the previous

section for different � in Figure 5. From Figure 5 we can

see, for different number of subjects �, the averaged SCE

by Algorithm 2 approximately achieves the minimum value

at � = 5. That is to say, keeping the largest five compo-

nents for each coefficient vector �� is a good choice. This

implies that each image in the subspace should be approxi-

mately a linear combination of five images in the same sub-

space. This observation is consistent with the conclusion

in [19], where it is suggested that the face images taken

from the same subject under different lighting conditions

can be well-approximated by a five-dimensional subspace.

Due to the space limit, we only show the choices of Post-

Processing Parameter � on the Extended Yale B dataset.

The similar results are also obtained on the other datasets.

6. Conclusion

In this paper, we proposed a novel subspace clustering

approach for clustering incomplete images. Our approach

integrates the techniques of sparse subspace clustering and

total variation regularization, which enables to simultane-

ously recover and cluster incomplete images. The main in-

gredient of our approach is a nonconvex optimization mod-

el that obtains the affinity matrix of input data for spectral

clustering. We developed an efficient first-order algorithm

to solve the nonconvex optimization, and presented the con-

vergence analysis under standard assumptions. The experi-

mental results on images from the Extended Yale B dataset,

the USPS dataset, and the COIL20 dataset have demonstrat-

ed that our approach works very well in comparison to the

existing clustering methods.
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