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Abstract

Face recognition (FR) via regression analysis based

classification has been widely applied in the past several

years. In the existing regression methods, the testing image

is represented as a linear combination of the training sam-

ples and the error image is converted into vector which is

characterized by l1-norm or l2-norm. Therefore the two-

dimensional structure of the error image is neglected in

practice. In this paper, we operate on the two-dimensional

image matrix directly, and propose a new face recognition

method, namely Robust Matrix Regression (RMR). We per-

form the minimal weighted nuclear norm constraint on the

representation error image as criterion to make full use of

the low rank structural information. The proposed mod-

el is efficiently solved by an alternating direction method

of multipliers (ADMM) and experimental results on public

face databases demonstrate the effectiveness of our model

in dealing with variations of occlusion and illumination.

1. Introduction

Face recognition (FR) is one of the most visible and

challenging problems in computer vision and has been re-

ceived significant attention [22]. In the past two decades,

numerous face classification methods have been developed

by many scholars around the world. Among these method-

s, linear regression analysis based methods have achieved

promising results.

Naseem et al. presented the linear regression classifi-

er (LRC)[15] and the robust linear regression classifier for

face classification (RLRC)[16]. Wright et al. presented

a sparse representation based classification (SRC) method

[17], which codes a query image as a sparse linear combi-

nation of the training samples via the l1-norm minimiza-

tion. It’s interesting that SRC gives remarkable perfor-

mance when dealing with FR with block occlusion and ran-

dom pixel corruption.

Since SRC has got the exciting breakthroughs in visu-

al identification and classification tasks, many researchers

began to investigate the role of the sparse coding for im-

age classification. Yang et al. found that the l1-constraint

is more meaningful than l0-constraint for classification, and

provided some theoretical supports for SRC [19]. Besides,

Zhang et al. proposed the l2-norm regularization on the rep-

resentation coefficients, which is named as collaborative

representation classifier (CRC) [21]. CRC achieves simi-

lar results as SRC. However, CRC is not a robust method

for FR. In order to deal with the practical noises, Yang et al.

proposed a robust sparse coding (RSC) based on robust lin-

ear regression model and fit the character of the noises with

an adaptive distribution. RSC is robust to various kinds of

outliers in FR [20]. Recently, He et al. presented the cor-

rentropy based sparse representation (CESR) algorithm for

FR [6, 7], which enables one to perform both error correc-

tion and error detection. Motivated by recent advances in

structured sparsity, Jia et al. proposed a structured sparse

representation classifier (SSRC) by introducing a class of

structured sparsity-inducing norms into the SRC framework

[10].

However, these former regression based methods usual-

ly stretch the image matrix into a vector. That is to say, the

error image is characterized pixel by pixel, which ignores

the structural information in the original data. These meth-

ods actually assume that the pixels in the error image are

independent identically distributed (i.i.d.). However, this

assumption dose not hold in real scenarios (e.g. occlusion

and illumination). Compared with the previous methods,

Yang et al. proposed nuclear norm based matrix regression

(NMR) [18], which employed nuclear norm constraint as a

criterion to make full use of the low rank structural infor-

mation. They reveal that the nuclear norm constraint is bet-

ter than l1-norm or l2-norm constraint when the images are

with structural noises. More recently, Chen et al. believed

that the error image followed matrix elliptically contoured

distribution and employed l1-norm constraint on the repre-

sentation coefficients [2].

Some recent work pointed out that the visual data had

low-rank structure [12]. However, the rank minimization

problem is NP hard in general. To address this problem,

Fazel et al. applied the nuclear norm heuristic to solve

the rank minimization problem [3]. Gu et al. introduced
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weighted nuclear norm minimization in image denoising

area [5].

To make full use of the low-rank structural information

of the error image, Our method no longer convert the image

matrix into a vector in advance, but search for the repre-

sentation coefficients based on the image matrix directly.

The proposed model is named as robust matrix regression

(RMR), which is efficiently solved by an alternating di-

rection method of multipliers (ADMM). Experiments per-

formed on the benchmark face databases show that RMR

achieves much better performance than existing regression

based methods for FR. In next section, we briefly review N-

MR [18] and then point out the pros and cons of the nuclear

norm as the error description.

1.1. Nuclear Norm based Matrix Regression

Suppose an image data Y ∈ Rm×n to be represented lin-

early using a set of k image matrices A1, · · · ,Ak ∈ Rm×n

i.e.,

Y = x1A1 + x2A2 · · ·+ xkAk + E, (1)

where x1, x2, · · · , xk is a set of representation coefficients.

For convenience, we denote the following linear mapping

A(x) = x1A1 + x2A2 · · · + xkAk and then represent the

error matrix as: E = Y − A(x).
NMR uses l2-norm to constraint the representation coef-

ficients, the objective function is formulated as the follow-

ing minimization problem

min
x

||Y − A(x)||∗ +
λ

2
||x||22, (2)

where ||E||∗ =
q∑

i=1

di is the nuclear norm of matrix E, q =

min(m,n), di is the ith biggest singular values of E. Eq.

(2) is named as nuclear norm based matrix regression.

1.2. Pros and Cons of Nuclear Norm based Error
Description

NMR achieves many merits in FR. First, NMR is more

robust than vector regression based models and achieve sat-

isfying results when handling the general FR. Second, NM-

R is more powerful than the structured sparse error coding

models.

As we know, the nuclear norm is the sum of the magni-

tudes of the singular values, as a result, the larger singular

values will have more heavily influence on the nuclear norm

than the small ones. In FR, when the testing and training im-

ages are clean and without extreme illumination, the nucle-

ar norm minimization can get perfect classification results.

However, when the images are under the extreme lighting

condition or corruption, the classification result based on

nuclear norm is unsatisfactory.

Let’s take an example to illustrate this scenario. Figs.1(a)

(a) A (b) A1 (c) A2 (d) B

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

 

 

the singular values of A−A1
the singular values of A−A2
the singular values of A−B

2 4 6 8 10 12 14
0

5

10

15

20

25

30

(e)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

Histogram
Empirical distribution

(f)

Figure 1. (a) and (b) are clean face image, (c) and (d) with extreme

illumination changes. (e) The singular values of different error

image matrices. (f) The empirical distribution curve and histogram

of the singular values of matrix (A-A2).

and (b) show clean face images, and (a), (b), (c) come from

the same class. Figs.1 (c) and (d) show the face images with

extreme illumination condition from different classes. From

Fig.1 (e) (including the local enlarge figure) and Fig.1(f),

we find that the singular values of error images have two

major characters: (1) the distribution of the singular values

of error image (A-A1) is more stable and the singular val-

ues are much smaller than others; (2) the nuclear norm of

A-A2, and A-B is 76.57 and 76.45, which is influenced by

extreme illumination seriously. According to the minimiza-

tion of the nuclear norm, the image B will be miss-classified

to A, this case is led by some bigger singular values.

2. Proposed method

Motivated by the idea of robust regression, we de-

fine a robust nuclear norm of the error matrix, and adop-

t Majorization-Minimization (MM) algorithm to develop a

reweighted nuclear norm minimization algorithm.

2.1. Robust Nuclear Norm: An non­convex function

As we know, the rank of a matrix equals the number of

nonzero singular values of a matrix, we can relate the matrix

rank to the l0-norm of a vector [13]. This relation encour-

ages us to utilize a non-convex function for dealing with the

rank minimization problems of the error matrix.

Motivated by the recent developments of non-convex

penalties in sparsity model, we propose a non-convex op-

timization model for handing the minimization of the low

rank error matrix. The robust nuclear norm is defined by

Fθ(d) =

q∑

i=1

ρθ(di). (3)
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di is the ith biggest singular values of the error matrix

E, the function ρθ gives the contribution of each singular

value di to the Fθ(d). Based on the characteristic of d,

a reasonable ρθ should be a nondecreasing function, i.e.

ρθ(di) ≤ ρθ(di′ ) for di ≤ di′ , and the first order deriva-

tive exist. For example, we can define ρθ(di) = (di + γ)θ,

where 0 < θ ≤ 1 and γ is small positive value; or

ρθ(di) = log(di + γ).
It was shown by Chartrand [1] that a nonconvex function

ρθ could produce exact result with fewer measurements.

Recently, there has been an explosion of research on this

topic in matrix norm case.

In this paper, we let ρθ(di) be a non-convex function. S-

ince the function ρθ satisfies the properties of nondecreasing

and non-convex, the first-order Taylor expansion of Fθ(d)

in the neighborhood of d(t) satisfies

Fθ(d) ≤ Fθ(d
(t)) + F

′

θ(d
(t))T (d − d(t)), (4)

where F
′

θ(d
(t)) = [ρ

′

θ(d
(t)
1 ), ρ

′

θ(d
(t)
2 ), · · · , ρ

′

θ(d
(t)
q )]T is the

derivative of Fθ(d) respect to d. We employ a bound

optimization strategy that is a special instance of the

Majorization-Minimization (MM) algorithms [9], which al-

ternates between the construction of a convex upper bound

of the objective function and the minimization of that

bound.

Let Jθ(d|d
(t)) = Fθ(d

(t)) + F
′

θ(d
(t))T (d − d(t)). For

any d and d(t), MM algorithm proceeds by repeating two

steps: (1) construct a convex upper bound for non-convex

prior terms; (2) minimize the upper bound until the algo-

rithm converges. Particularly, it computes a sequence of

successive iterations as follows: given a singular value vec-

tor d(t) at the tth iteration, the algorithm computes d(t+1) in

the sequence as: d(t+1) = argmin
d

Jθ(d|d
(t)), which guar-

antees that the current iteration is tight at the previous itera-

tion minimizer.

It can be proved that the objective function monotonical-

ly decreases, since

Fθ(d
(t+1)) ≤ Jθ(d

(t+1)|d(t)) ≤ Jθ(d
(t)|d(t)) = Fθ(d

(t)),
(5)

Therefore, we omit constant terms from the upper

bounding function that do not effect the optimization.

The solution of minF(d) equates to minF
′

(d(t))T d =

min
∑m2

i=1 ρ
′

(d
(t)
i )di. We can view ρ

′

(d
(t)
i ) as the t-th it-

eration weight of di, so

minF
′

(d(t))T d = min

q∑

i=1

w
(t)
i di , ‖E‖w∗, (6)

we call the reweighted form of Eq. (6) as Robust Matrix

Regression (RMR) model.

2.2. Reweighting Scheme

In this section, we discuss the weighted function w(t) =

(w
(t)
1 , · · · , w

(t)
q )T , which is assigned to the singular values

of the error image E.

Low rank structure of the error image is an important

assumption in FR. However, the low rank matrix minimiza-

tion problem is non-convex and intractable, hence approx-

imation is required. Function ρθ =
∑q

i=1(di + γ)θ →

rank(E) as θ → 0 and limθ→0
(di+γ)θ

θ
= log(di + γ),

which means that the function log(di + γ) is a smooth sur-

rogate for rank(E) [4]. In our paper, we choose ρθ =
log(di + γ), the low rank matrix minimization problem can

be approximated as the minimization the robust nuclear nor-

m

min

q∑

i=1

log(di + γ), (7)

where γ is set to be a small positive value to provide stabil-

ity for the log function. The first-order Taylor expansion of

log(di + γ) in the neighborhood of d
(t)
i satisfies

log(di + γ) ≤ log(d
(t)
i + γ) +

di + γ

d
(t)
i + γ

, (8)

we employ MM algorithms [9] to optimize Eq. (7)

min

q∑

i=1

(d
(t)
i + γ)−1di, (9)

if the initial weight is chosen as w(0) = (1, · · · , 1)T , the

first iteration will minimize the nuclear norm of matrix

E, the other iterative procedure shows that in each step, a

weighted nuclear norm is minimized.

For the sake of simplicity and computational efficiency,

l2-norm is chosen to be constraint on coefficients.

3. Optimization of RMR

In this section, we use the alternating direction method

of multipliers (ADMM) to solve the optimization problem

(9). ADMM was presented in [12], which has been stud-

ied extensively in the theoretical frameworks of Lagrangian

functions. First, the objective function of RMR is formulat-

ed as

min
x

‖E‖w∗ +
λ

2
‖x‖22 s.t. E = Y − A(x), (10)

where the variable E and x are separable in the objective

function. The augmented Lagrangian function Lµ is defined

by

Lµ = ‖E‖w∗ +
λ

2
‖x‖22 + Tr(ZT (A(x) + E − Y))

+
µ

2
‖A(x) + E − Y‖2F ,

(11)

48



where µ > 0 is a penalty parameter and Z is the Lagrangian

multipliers. ADMM utilizes the separability of Eq. (11)

and substitutes the joint minimization over E and x with two

sub-problems. We minimize the Lagrangian function with

respect to each variable E and x one at a time while fixing

the others, i.e., the update of the variables goes as follows:

x(t+1) = argmin
x

Lµ(E
(t), x,Z(t)); (12)

E(t+1) = argmin
E

Lµ(E, x(t+1),Z(t)); (13)

Z(t+1) = Z(t) + µ(A(x(t+1)) + E(t+1) − Y). (14)

Noting that Eq. (12) and Eq. (13) are the critical optimiza-

tion problems and Eq. (14) is a proximal minimization step

of the Lagrange multipliers Z.

Solving of x: Fixing E(t) and Z(t), the objective function of

Eq. (12) is reformulated as

x(t+1) = argmin
x

(
µ

2
‖A(x)−(Y−E(t)−

1

µ
Z(t))‖2F+

λ

2
‖x‖22)

(15)

A(x) can be written as Hx in the context of Frobe-

nius norm, where H = [vec(A1), · · · , vec(Ak)] and vec(·)
denotes the vectorization of a matrix into a vector by s-

tacking all its columns below each other. Letting b(t) =
vec(Y − E(t) − 1

µ
Z(t)) , thus the solution of Eq. (15) is

x(t+1) = argmin
x

(‖Hx − b(t)‖2F +
λ

µ
‖x‖22), (16)

this problem is a standard ridge regression model, we can

get its closed-form solution as

x(t+1) = (HT H +
λ

µ
I)−1HT b(t). (17)

Solving of E: First, we computer weight w. Using the sin-

gular value decomposition E(t) = U(t)D(t)V(t)T , we can

get d(E(t)) = (d
(t)
1 , · · · , d

(t)
q ). Update w

(t)
i = (d

(t)
i +γ)−1,

the weight values are satisfied with w
(t)
1 ≤ w

(t)
2 ≤ · · · ≤

w
(t)
q .

Second, fixing x(t+1) and Z(t), the Eq. (13) is expressed

as:

E(t+1) = argmin
E

[
1

2
‖E − (A(x(t+1))− Y

+
1

µ
Z(t))‖2F +

1

µ
‖E‖w(t)

∗
].

(18)

The above optimal problem is normally solved via the sin-

gular value thresholding (SVT) operator with weighted vec-

tor w = (w1, · · · , wq)
T [5].

Theorem 1 [5] For each 0 ≤ w1 ≤ · · · ≤ wq and Y ∈
Rm×n, the weighted nuclear norm minimization problem

min
X

1
2‖X − Y‖2F + τ‖X‖w∗ has the solution

X = USw,τ (D)VT , (19)

Algorithm 1 RMR Algorithm via ADMM

Input: an image matrix Y ∈ Rm×n, a set of training images

A1, · · · ,Ak and convert to matrix H. The parameters λ, µ,

γ and the termination condition parameters ε1, ε2 > 0. The

iteration counter t = 0 and the maximum number of itera-

tions tmax.

Initialize: Z = E = 0 ∈ Rm×n, w = 1 ∈ Rq .

While not converged do

1. Update x(t+1) by Eq. (17).

2. Update weight w
(t)
i : w

(t)
i = (d

(t)
i + γ)−1.

3. Update E(t+1) with SVT operator by Eqs.(19, 20),

E(t+1) = USw(t), 1
µ
(A(x(t+1))− Y + 1

µ
Z(t))VT .

4. Update Z(t+1) by Eq. (14).

Terminate on convergence or when t attains a specified

maximum number of iterations tmax, output solution, oth-

erwise t = t+ 1, and go to step 1.

Output: Optimal regression coefficient vector x∗

where Y = UDV
T is the SVD of Y, and Sw,τ (D) is the SVT

operator with weighted vector w,

Sw,τ (D) = diag(max(di − wiτ, 0)). (20)

The detailed algorithm for solving RMR is summarized in

Algorithm 1. The termination conditions are given as fol-

lows with the proper termination parameters ε1 and ε2.

‖A(X(t+1)) + E(t+1) − Y‖2F /‖Y‖2F < ε1, (21)

max(‖x(t+1) − x(t)‖22, ‖E(t+1) − E(t)‖2F )/‖Y‖2F < ε2.
(22)

We now discuss the computational complexity of the

proposed Algorithm 1. Given the training sample size k and

the image size m×n, the computational complexity of ma-

trix multiplications in step 1 is O(k·mn); the computational

complexity of the SVD in step 2 and step 3 is O(mn2) (as-

suming n ≤ m ). Therefore, the total computational com-

plexity of the optimal algorithm is O(k · mn + 2mn2) for

one time iteration.

4. RMR Classifier

Similar to the strategy of SRC, we use the training sam-

ples of all classes to form the set of regressors. Given suffi-

cient training samples A1, · · · ,Ak from different classes, a

new testing sample Y ∈ Rm×n can be approximated by the

linear span Y = x1A1 + · · · + xkAk, where x is the repre-
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sentation coefficient by solving the following RMR model

x∗ = argmin
x

‖Y − A(x)‖w∗ +
λ

2
‖x‖22. (23)

Based on the optimal solution x∗, we get the reconstructed

image of Y as Ŷ = A(x∗) and the error image E = Y − Ŷ.

Let δi : R
k → Rk be the characteristic function that selects

the coefficients associated with the ith class. For x ∈ Rk,

δi(x) is a vector whose only nonzero entries are the entries

in x that are associated with class i. Using the coefficients

associated with the ith class, one can get the reconstruction

of Y in class i as Ŷi = A(δi(x
∗)). The corresponding class

reconstruction error is defined by

ei(Y) = ‖Ŷ − Ŷi‖wfinal
∗
= ‖A(x∗)− A(δi(x

∗))‖wfinal
∗
,

(24)

where ‖E‖wfinal
∗

=
∑q

i=1 w
final
i di, wfinal is the final

weighted vector. The decision rule is

identity(Y) = argmin
i

ei(Y). (25)

5. Experiments

In this section, the proposed method RMR is evaluated

and compared with LRC [15], CRC [21], SRC [17], SS-

RC [10], RLRC [16], CESR [6], RSC [20], half-quadratic

with the additive form (HQ A), half-quadratic with the mul-

tiplicative form (HQ M) [8] and NMR [18]. The parameter

settings of all the methods follow the author’s suggestions

and all experiments are done on the original face images.

We choose parameters λ ∈ [0.01, 200], γ = 10−6, µ = 1.

5.1. Experiments on the Extended Yale B Database

The Extended Yale B database contains 38 classes [11]

and each class contains 64 images taken under different il-

lumination conditions. The 64 images of a subject are re-

quired at camera frame rate of 30 frames/second, so there

is only small change in head pose and facial expression for

those 64 images. Each image is resized to 96× 84 pixels in

our experiment.

We design four different experiments. In the first two

experiments, we set two training modes: the “single train-

ing sample” protocol and the “multi training samples” pro-

tocol. It should also be noted that for the “single training

sample” protocol, we choose the first image of each person

from Subset 1 for training.

In the first experiment, Subset 1 is chosen for training,

Subset 4 and Subset 5 as shown in Fig.2 with extreme light-

ing conditions are used for testing. The experimental result-

s of LRC, CRC, SRC, SSRC, RLRC, CESR, RSC, HQ A,

HQ M, NMR and RMR are shown in Fig. 3.

From Fig.3, we find that RMR achieves the best results

than the other methods no matter the training sample is s-

ingle or not, Even the testing images are from Subset 4 or

 

Figure 2. Sample images with different illumination conditions.

Top: Subset 4, Bottom: Subset 5
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Figure 3. Recognition rates (%) of each classifier under different

illumination conditions on Extended Yale B database. (a) on the

Subset 4, (b) on the Subset 5.

Subset 5, and Especially, from Subset 5, the recognition rate

of our method is 92.52% which achieves 200% improve-

ment over NMR. Some robust sparse representation meth-

ods work well for pixel-level noise, but they seem to be very

sensitive to the extreme illumination changes.

In the second experiment, we investigate the robustness

of the proposed method to different level of contiguous

noise. We use the similar experiment setting as in [17], and

Subset 3 for testing, but with different kinds of occlusions:

cup, dollar, cartoon mask, book, flower and puzzle in test-

ing images (as show in Fig. 4). We compare our method

with several related methods. The recognition results of

each method are displayed in Fig. 5

The proposed RMR achieves the best result among all

methods. This experiment demonstrates that RMR is more

robust than the other methods for FR with different contigu-

ous occlusions even when the training set is not adequate.

Figure 4. Sample images of one person with different occlusion.
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Table 1. Recognition rates (%) of each classifier under different

levels of occlusion
Occlusion 10% 20% 30% 40% 50% 60%

LRC 100 96.3 82.2 67.3 45.0 27.4

CRC 100 97.8 90.4 73.9 48.5 31.3

SRC 100 99.8 98.5 90.3 65.3 37.5

SSRC 100 100 98.5 90.0 69.8 43.0

RLRC 100 100 99.7 96.2 85.0 55.9

CESR 92.7 89.8 83.9 75.5 57.4 40.1

RSC 100 100 99.8 96.9 87.6 60.1

HQ A 99.6 99.1 95.0 87.5 71.5 49.3

HQ M 99.8 99.1 99.3 93.9 83.3 59.6

NMR 100 100 99.3 97.6 95.8 82.7

RMR 100 100 100 100 100 100
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Figure 5. Recognition rates (%) of each classifier under different

occlusion.

Figure 6. Sample images of one person with different levels of

occlusion.

In the third experiment, we use the similar training sam-

ples as mentioned in the first experiment, and Subset 3 for

testing. Here, each testing image is corrupted by randomly

located square block of ”baboon” with varying block sizes.

The block size determines the occlusion level of an image.

Fig. 6 illustrates the occlusion levels varying from 10% to

60% . Table 1 shows the recognition rates of LRC, CRC,

SRC, SSRC, RLRC, CESR, RSC, HQ A, HQ M, NMR and

RMR under different occlusion levels. From Table 1, we

can see that the recognition rates of RMR are 100%, when

the occlusion levels from 10% to 60% , which exhibits bet-

ter performance than the compared methods.

In the fourth experiment, for the testing images in subset

3, we impose two special occlusions: a square black block

and a square random block. The occlusion levels varying

from 10% to 60% and the recognition rates of each method

under various occlusion levels are illustrated in Figs. 7 (a)

and (b) respectively. In general, the recognition rates of

RMR always achieve 100%, which outperforms those state-

of-the-art methods in different levels of different occlusion.
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Figure 7. Recognition rates (%) of each classifier under different

occlusion levels.

5.2. Experiments on the AR Database

The AR face database [14] contains over 4000 face im-

ages of 126 people, including frontal views of faces with

different facial expressions, illumination conditions and oc-

clusions. The pictures of most persons were taken in two

sessions, separated by two weeks. Each section contains 13

color images and 120 individuals participated in both ses-

sions. The images of these 120 individuals were selected

and used in our experiments. We manually cropped the face

portion of the image to 50×40 pixels and the images of one

person are shown in Fig. 8.

First, we divide the images of one person into four sets:

(1) the first 4 images of sessions 1 and 2; (2) the first 4 im-

ages of sessions 1 and 2 corrupted by a square block of “ba-

boon” with a 60% occlusion level; (3) 6 images with sun-

glasses from both sessions; (4) 6 images with scarves from

both sessions. In this experiment, we still set two training

modes. The first mode is that we use the eight images of

the first set for training and the others for testing to verify

the effectiveness of our method in dealing with real disguise

and high level occlusion. The second mode is that we use

only the first image of session 1 for training and the test

setting remains the same as the previous mode.

The results of FR are listed in Table 2. As it is shown

in Table 2, compared with the other methods, the pro-

posed method achieves the highest recognition rate for each

test, no matter the training samples are adequate or not.
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Table 2. Recognition rates (%) of each classifier on AR face database.

Model Multi training samples Single training sample

Case “baboon” Occlusion Sunglasses Scarf “baboon” Occlusion Sunglasses Scarf

LRC 52.3 92.8 30.7 38.4 70.6 29.4

CRC 68.6 93.5 63.6 39.5 73.8 40.1

SRC 70.0 94.4 57.6 39.9 72.4 43.8

SSRC 94.0 95.4 66.7 53.4 74.6 45.1

RLRC 95.1 94.6 53.3 60.0 75.1 38.2

CESR 88.9 95.0 33.5 51.1 72.5 21.8

RSC 94.8 94.7 66.8 41.4 75.3 46.0

HQ A 94.2 94.7 48.7 47.6 74.2 35.8

HQ M 94.6 95.0 50.1 56.3 75.5 35.8

NMR 95.1 96.9 73.5 64.8 75.9 50.0

RMR 96.9 97.1 78.1 65.3 82.1 54.0

(1) (2) (3) (4) (5) (6) (7) 

(8) (9) (10) (11) (12) (13) 

(a) 

(b) 

Figure 8. Example images from AR face database. (a) Sample

images of a person in session 1. (b) Sample images with 60%

”baboon” occlusion.

More specifically, given adequate training samples, when

the faces are disguised with sunglasses, our method shows

some improvement with the recognition rate to be 97.1%;

when the faces are disguised with scarves, in which the oc-

clusion level becomes larger, the advantage of RMR be-

comes evident. It achieves 78.1% recognition rate that

improves 4.6% compared with NMR which ranks second;

when the testing images were corrupted by a very high lev-

el artificial occlusion (e.g. ”baboon” with a 60% occlusion

level), RMR can still achieve 96.9% recognition rate. We

think the inherent difference between the natural and arti-

ficial occlusions that plays a dominant role in the recogni-

tion task, and the natural occlusion is more complicated and

more difficult than the artificial one.

The convergence of the ADMM process is shown in

Fig.9 (a) and Fig.9 (b) plots the residuals of each class.

6. The performance of difference parameter

In this section, we investigate how the parameter λ af-

fect the performance of our method in different sceneries.

For FR with occlusion, Subsets 1 and 2 of Extended Yale

B database are used for training and Subset 3 with block

occlusion (the square black 60% occlusion level) are used
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Figure 9. An example of face recognition with sunglasses using

RMR. (a) The convergence curve of ADMM. (b) The residual of

each class by RMR.

for testing. For FR with real-disguise, the first 4 images of

Sessions 1 and 2 are used for training and the images with

real face disguise (glasses, scarf) of each session are used

for testing. For FR with illumination, the Subset 1 of the

Extended Yale B database is used for training, and the im-

ages with extreme lighting conditions (Subset 4, Subset 5)

are used for testing. We compare the performance of param-

eters varying in the range of [0.01, 200]. As show in Fig.

10, in the general case, the recognition rates of RMR with

respect to different sceneries always achieve its optimal or

nearly optimal performance when the parameter is set to be

10. Hence, we set the parameter λ = 10 in the experiment

for convenience. when the testing images are extremely in-

fluenced by illumination variations (Subset 4 and Subset 5

of Extended Yale B database), our experiment results show

that we get higher recognition rates by adjusting the param-

eter. More specifically, we set parameter λ = 1 for Subset

4 of Extended Yale B database and λ = 200 for Subset 5.

7. Conclusions

This paper presents a novel robust matrix regression

model, and applies the alternating direction method of mul-

tipliers to solve it. The main merit of RMR is its robustness
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Figure 10. Recognition rates (%) with different parameters

to occlusions and illumination changes in FR. The reason

lies in the fact that RMR adopts the minimal weighted nu-

clear norm constraint on the representation error image and

takes advantage of the low rank structural information of

image matrix. Extensive experimental results demonstrate

that the proposed method is more robust than state-of-the-

art regression based methods for FR with the variations of

occlusion and illumination.
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