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Abstract

We propose Multi-View Constrained Local Models - a

simple but effective technique for improving facial point de-

tection under large head angles, such as in a car driving

setting. Our approach combines a global shape model with

separate sets of response maps targeted at different head

angles, indexed on the shape model parameters. We explore

shape-space division strategies and show that, as well as

outperforming the traditional method, our approach also

provides a marked speed-up which demonstrates the suit-

ability of this technique for real-time face tracking.

1. Introduction

Accurate facial point detection is a crucial part of any fa-

cial analysis system. It allows for consistent feature extrac-

tion either through facial alignment, or targeting of areas

around the feature points identified. Many methods have

been developed for this task, but in recent years the ma-

jority of approaches have been based on one of three main

methods: Active Appearance Models (AAMs) [8], pictorial

structures [12], Constrained Local Models (CLMs) [11].

Though recently Supervised Descent Method (SDM) has

been proposed [18], which employs a sequence of linear

regressors to predict shape representation. Advances on

these basic techniques include Bayesian AAMs [1], His-

togram of Oriented Gradient (HOG) AAMs [2], the use

of Structured Support Vector Machines (SSVMs) [19, 20],

and parallel cascades of linear regressors [4] which allow

updating of the sequence. Recent extensions of the basic

CLM idea include the use of more discriminative response

maps [3], Local Neural Fields (LNFs) [5] and Random For-

est Regression-Voting (RFRV) techniques [9]. These ap-

proaches have demonstrated that CLMs are highly accurate

and robust, and able to deal with unseen identities as well

as a large number of expressions and lighting conditions.

In a number of applications, such as the tracking of driver

faces in cars, the facial point detection must be accurate

over a wide range of head angles, due to the regular turning

of the head that occurs. However, traditional methods of-

ten fail when there is large yaw (horizontal turning) or pitch

(vertical nodding) of the head. In this paper we propose a

novel method to tackle the problem of facial feature point

detection and tracking in large head angles: Multi-View

Constrained Local Models (MV-CLMs). Our approach is

simple, but gives improved performance on large head an-

gle face images, whilst offering a significant speed-up over

the traditional CLM techniques. We employ shape-space

division in order to select pose-specific training sets that

allow a number of models to be built, each targeted at a

narrower head angle range. We then propose an efficient al-

gorithm for switching between these models that allows for

improved accuracy without the need to test all models on

every image.

In summary, the contributions of the paper are as fol-

lows: we propose a novel Multi-View CLM approach that

combines one shape model with response maps that are

specifically targeted at different head orientation examples,

and adapt the CLM search algorithm to allow for switch-

ing to the appropriate response maps. We demonstrate how

this approach improves performance on large head angle

test images, as well as giving a significant speed-up over

the traditional approach. Finally, we investigate a number

of strategies for division of the shape-space for training of

our response maps and shape models, and test all strategies

on appropriate datasets containing large head angles.

2. Random Forest Regression Voting CLMs

CLMs are a widely employed approach for detection of

feature points, particularly in faces [11]. They exploit a

combination of a statistical shape model with point-specific

local response maps, in order to match points against an im-

age. The shape model represents the position of the full set

of points, X, through a linear combination of a set of modes

of variation:

X = T (X̄+Pa) (1)

where X̄ is the mean positions of the set of points in a suit-

able reference frame, P the set of orthogonal modes of vari-
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Figure 1: Overview of the Multi-View CLM approach.

ation, a a set of shape parameters, and T a global transfor-

mation (typically similarity).

Point response maps are generated from the approxi-

mated positions of the points which are used to provide a

quality of fit, Cj(xj), of each point. The full objective func-

tion for optimisation of the shape parameters and transfor-

mation parameters, t, given image I is then:

f(a, t) = − log p(a, t) + α

N
∑

j=1

Cj(xj) (2)

where α is a normalising constant, and p(a, t) = p(a) as

all poses are equally likely. Minimisation of this cost func-

tion will therefore lead to the best fit of all facial points.

A number of functions are possible for C, such as nor-

malised correlation, but here we are interested in the use

of RFRV methods, which have been shown to lead to fast,

robust and accurate performance in the application of facial

point tracking [9].

Regression-Voting is a technique for building response

maps via exploitation of a regressor which has been trained

to predict the position of a point relative to each coordinate

in a regular grid, around which features are sampled. The

confidence of predictions for all possible positions are ag-

gregated over all of the regressors in an accumulator array.

The resulting map is then smoothed to allow for uncertainty

in the predictions. The Random Forest Regression-Voting

Constrained Local Model (RFRV-CLM) technique exploits

Hough Forests which provide multiple regressors employed

per point response map, with each random forest also able

to used make multiple predictions. A number of different

voting procedures were explored in [9], however a single

unit vote per tree was found to produce the most accurate

results as well as being the most cost efficient method.

3. Multi-View Constrained Local Models

RFRV-CLMs have been shown to be very robust when

applied to frontal and near-frontal face images, able to deal

with a wide range of expressions [9]. However, larger head-

turns can cause inaccuracy in the facial point detection. At

large head angles, the appearance of the patches around

each point are very different from those in frontal or near

frontal images. As the Regression Forests (RFs) are built on

a wide range of examples, the majority of which are frontal,

this can lead to inaccuracy in their predictive performance

at large head angles. The aim of this work is to overcome

these limitations by building facial orientation specific re-

gressors. By training each set of regressors on examples of

a limited range of facial angles only, we can build RFs that

are better targeted at point detection in particular head angle

images. Hence, we propose a novel MV-CLM approach that

employs one global shape model along with pose-specific

response maps. Fig. 1 gives an overview of our method.

3.1. Training

The training process for the MV-CLM is similar to the

training of a traditional RFRV-CLM. However, the differ-

ence here is that we divide the training set according to

two shape model parameters of the global shape model -

the parameters that govern head pose. We employ a set of

N images, L = {I1, ..., IN}, for which the feature points

of interest, X = {X1, ...,XN}, have been annotated. The

first stage in training is to construct a global statistical shape

model. This is trained by applying Principal Component

Analysis (PCA) to the aligned shapes to produce the major

modes of variation [10]. This shape model is common to

all the local models, and employed to select which model

should be applied as well as for constraining the feature

points.

Then, given a training image, after estimation of the

global pose and resampling into a reference frame, the

shape model is fitted to the annotated facial points and the

two relevant shape parameters taken: the first correspond-

ing to rotation about a horizontal axis, (i.e. variation in head

pitch), av , and the second to rotation about a vertical axis

(i.e. variation in head yaw), ah. Given these parameters we

construct a model index, mi, for each training image:

mi = g(avi , a
h
i ) (3)

where g defines an indexing function. This allows the train-

ing set to be divided into model specific sets according to

index.

We construct a new set of training examples by tak-

ing only the images with the appropriate model index:

Lk = {Ii|Ii ∈ L,mi = k} with annotated points Xk =
{Xi|Xi ∈ X,mi = k}, where k = {1, ...,M} and M is the

number of regions in the division strategy. These data sub-

sets can then be used to train our response maps and shape
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Algorithm 1 MV-CLM search algorithm.

Require: rmin, rmin, radius reduction parameter, γ, and initial shape

parameters, a

Initialise t = I, radius r = rmax, Xi = X̄+Pa, m = g(av , ah)
for each model k ∈ M do

Calculate response maps Ck
j for each point

end for

for each iteration do

while r ≥ rm do

for each point xp in point set Xi do

Search for point, x′, within disk of radius r which gives best

QoF: xp → argmin
x
′ : |x′−xp|<r C

m
j (x′)

end for

Fit shape parameters, a, and transformation, tref , to points.

if aTS
−1
a a > λ then

Set a to nearest point such that aTS
−1
a a = λ

end if

Update model index m → g(av , ah)
Update points according to new parameters: Xi → T (X̄+Pa)
Reduce radius size: r → γr

end while

Update transformation parameters: t → t ◦ tref

Map points to the image frame: Xi → T (Xi)
If pose changes significantly, recalculate Ck

j .

end for

models for pose-specific models. We then train a number

of models, M = {Mk}. Given the training subset for each

model, Mk, training of the point-specific response maps,

Ck
j , proceeds as in the original RFRV-CLMs method [9]

which we summarise here. The response map for a single

feature point is trained by generating samples around the

true position of this point in the reference frame. Features,

fj , are extracted at a set of random displacements, dj , drawn

from a flat distribution around this position. The scale and

orientation of the pose is also randomly perturbed to allow

for inaccuracy of the initial estimate. Randomised decision

trees are then constructed from pairs of {fj ,dj}, choosing

the feature to split the data at each node through minimisa-

tion of mutual entropy at each stage. Haar-like features are

employed, as in the original implementation, as these are

efficient to calculate from integral images.

3.2. Testing

Here we detail the testing procedure for the MV-CLM.

Again, the method is similar to that of a traditional RFRV-

CLM search algorithm, but here the response maps utilised

in each iteration are updated based on the current shape pa-

rameters. This allows at each stage for the appropriate RF

model to be selected based on the current shape parame-

ters, before predicting the most likely position of each point

based on the response maps for that model.

First, we assume that we have an initial estimate of the

pose and shape parameters, either from the previous frame

in a sequence (during tracking), or from initialisation. We

then aim to minimise Equation 2 and thus identify the op-

timal shape parameters. Assuming a flat distribution for

the model parameters, a, within hyper-ellipsoidal bounds,

and that all poses are equally likely, this equation becomes

equivalent to:

f(a) =
∑N

j=1 C
m
j (xj) subject to a

T
S
−1
a

a ≤ λ

(4)

where Sa is the parameter covariance matrix and λ is the

threshold on the Mahalabanobis distance and m = g(a).
The MV-CLM search algorithm then proceeds by resam-

pling using the current pose, to transform the image into

the reference frame, and computing the cost images for all

models, Ck
i . These are then employed to search within the

disks defined in Equation 4. The shape parameters are then

updated by fitting the model to these points, and the model

index m recalculated. If pose changes significantly then the

response maps for all models are recalculated. This algo-

rithm is is summarised in Alg. 1. When there is no prior

knowledge about the shape parameters (e.g. face detection

only), we initialise the shape parameters in multiple con-

figurations, and perform the search in parallel from these

starting points, choosing the initialisation that gives the best

final quality of fit. This ensures that the algorithm does not

get stuck in local minima, and thus fail to switch to the cor-

rect model. This is not required in tracking as the shape

parameters are initialised based on the previous frame.

An added benefit of this method is that the size of the

trees produced is greatly reduced from those of the tradi-

tional RFRV-CLM, due to the specificity of the RFs pro-

duced. Added to the fact that only one set of RFs is em-

ployed for testing in each iteration, our approach thus offers

a marked speed-up over the original RFRV-CLM.

3.3. Shape­Space Division Strategy

We explore a number of strategies for division of the

shape-space defined by the vertical and horizontal shape pa-

rameters, av and ah. Fig. 2 summarises these strategies.

One Dimensional Division Here we divide training ex-

amples according to one parameter only, as shown in Fig.

2a. Taking either the vertical parameter, av , or horizontal

parameter, ah, we define the division by the number of re-

gions, n, a central parameter value, c, that defines the cen-

tre of the middle region, and the width of each shape-space

region, w. Then in the case of vertical division in one di-

mension, we can set m according to the following function:

gv(av) =







0 if av < cv − wv(nv−2)
2

n− 1 if av > cv + wv(nv−2)
2

x otherwise

(5)

where x satisfies av > c − wv(nv−2x)
2 and av < cv −

wv(nv−2(x+1))
2 . gh(ah) is defined similarly. In this paper

we set nv = nh = 3, cv = ch = 0 and wv = wh = 0.1.
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Figure 2: The different shape-space division strategies employed with nv = nh = 3. (a) 1D Horizontal (b) 1D Vertical (c)

2D Grid (d) 2D Grid-Merge Horizontal (e) 2D Grid-Merge Vertical (f) 2D Diagonal.

We now define the two dimensional strategies in terms

of the one dimensional horizontal and vertical functions,

gv(av) and gh(ah), which we now shorten to gv and gh.

2D Grid Division In the two dimensional case, the most

obvious strategy is to divide the space into a grid of rect-

angular regions, as shown in Fig. 2d. The space is split in

each dimension using the 1D method, and a unique index

given to each resulting region. Hence, g(av, ah) is defined

as:

g(av, ah) = gv + nvgh (6)

where nv is the number of regions in the vertical dimension.

2D Grid-Merge Division However, one difficulty with

the grid approach can be that there are often not enough

training examples for the corner cases (e.g. positive yaw

plus positive pitch) of the shape-space to allow for adequate

training of RFs for these models. Hence, we want a strategy

that creates bigger shape-space regions to incorporate more

examples into one model, while still dividing into useful re-

gions. One way to do this is to merge a number of the grid

regions into a single region, in order to collate regions for

which there are not an adequate number of examples for

building accurate RFs, as shown in Fig. 2f.

We can then define g(av, ah) in each of these cases. In

the horizontal case we take g(av, ah) to be defined as only

dependent on the vertical index as long as it is not the cen-

tral index. In this latter case it is defined as the sum of the

vertical and horizontal indices:

g(av, ah) =







gv if gv < n̂v

gv + gh if gv = n̂v

gv + nh − 1 otherwise

(7)

where n̂v = (nv−1)
2 is the central vertical index. The verti-

cal case is similarly defined, except here m is dependent on

the horizontal index only, apart from in the case where it is

equal to the central index.
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2D Diagonal Division The final strategy is to separate the

frontal examples from all other head orientations. This re-

gion is defined as the same as in all other cases - a rect-

angular region defined by (cv, ch), wv and wh. However,

the rest of the space is divided by diagonal lines to create

trapezium-shaped regions that capture the central examples

in all four directions (e.g. no yaw but positive pitch) but

also a portion of the corner cases (e.g. positive pitch plus

positive yaw), as shown in Fig. 2e. This method creates a

more even division strategy which we would expect would

give improved performance. Hence, we define g(av, ah) as:

g(av, ah) =















n̂v + n̂h if gv = n̂v, gh = n̂h

gv if xv > xh, gv < n̂v

gh + n̂v if xh >= xv

gv + n̂h − 1 otherwise

(8)

where xh = |ah−ch|
wh and xv = |av−cv|

wv are the normalised

distances of the horizontal and vertical parameters respec-

tively from the central point.

4. Experiments

We assess the performance of our algorithm by conduct-

ing experiments on two different test sets, constructed from

different databases. For training in both cases we employ a

mixture of two datasets: the Annotated Facial Landmarks in

the Wild (AFLW) database [14], and a set of driver videos

that contain sequences of subjects in a car environment, per-

forming a wide range of expressions and head movements.

The training set is constructed from 970 images from the

AFLW database, as well as 662 images from four driver

video sequences. This allows for a wide range of subjects

and expressions from the AFLW data, as well as a number

of large head orientation training examples from the driver

videos. We train a model on facial points, that cover the

eyes, eyebrows, nose and mouth. Firstly, we construct a test

set by taking the remaining 22 sequences from the driver

videos, each of which contains 160-180 annotated images.

No subject appears in both the training and test sets. Sec-

ondly, we participated in the 300-VW Challenge [16] to ex-

plore our best method when employed on 68 points and on

a wide-range of data, and assess how it compares to a base-

line method in three different categories of test data. Here,

we trained on every 10th frame of the training videos pro-

vided, which totalled 9330 images. The training images in

this challenge were annotated in a semi-automatic fashion

that employed two methods [7, 17].

We are particularly interested in how our approach per-

forms on examples of large head angles, and traditional

face detectors struggle to accurately initialise on data of this

kind. Hence, we perform the driver video experiments by

taking the ground truth eye points, and randomly translating

these by up to 10 pixels in either dimension, scaling by up

to 20%, and rotating by up to 10◦, before applying the facial

point search algorithm. This is done five times for each im-

age. Table 1 summarises the results of all of our approaches

as compared to the traditional RFRV-CLM method. For the

300-VW challenge, a face detector is employed to initialise

the model, thus this experiment demonstrates the perfor-

mance of our algorithm in a real-world scenario. In both

cases, we perform 5 search iterations using each model.

4.1. Discussion

Table 1 shows the overall performance of the different

MV-CLM division strategies, when compared to the origi-

nal RFRV-CLM method trained on the same data. The code

for this baseline method was provided by the authors for

this test. Rows 2-3 display the 1D methods, while rows 4-7

display the 2D methods. The final column in this table also

shows the comparative computational cost, on average, of

a single search run on an Intel Quadcore 3.1GHz machine.

This table demonstrates how an overall increase in perfor-

mance can be achieved when dividing the shape-space us-

ing three of the strategies: 1D Horizontal (1D-H), 2D Grid-

Merge Vertical (2D-GMV), and 2D Diagonal (2D-D). At

the same time a marked improvement in speed is achieved,

particularly in the case of 2D Diagonal strategy in which a

speed-up of more than 25% is observed.

As the majority of our test images are frontal, we can

further investigate the benefits of the optimal 1D and 2D

methods by looking at performance for different ranges of

head angles. We divide the test set automatically, but fitting

the global shape model to the ground truth points and then

taking the first two shape model parameters. Images with

at > 0.1 or at < −0.1, where t = {h, v}, are deemed to

be non-frontal (labelled as +ve/-ve yaw/pitch). Otherwise

they are deemed to be frontal (labelled as 0 yaw/pitch). The

resulting cumulative distribution function (CDF) of average

point errors for these different image types are shown in

Fig. 3. The graphs demonstrate how the improvement is

concentrated into the large positive and negative yaw exam-

ples (subject looking left and right) and the large positive

pitch (subject looking down). The performance on frontal

images and negative pitch (subject looking up) are compar-

ative to the RFRV-CLM method in both cases. These results

highlight the significant improvement achieved by the MV-

CLM approach on large head angles.

Finally, the 300-VW results in Fig. 4 provide further

evaluation of the optimal approach found in the first exper-

iment, the 2D-D MV-CLM. It is clear from the top row,

showing results for the 49 facial points, that our method

is far superior to the baseline method [4]. The baseline

here was trained on the LFPW [6], Helen [15] and Mul-

tiPie Databases [13], rather than the training set for the

challenge, so, though it is not possible to say for certain

that our method significantly outperforms this method, the
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Division Type Method Med Mean Std
Maximum Error

Time (ms)
50% 80% 90%

No Division RFRV-CLM [9] 5.73 7.54 6.82 5.73 9.77 12.50 195

1D Division
1D-V MV-CLM 5.85 7.88 7.34 5.85 10.13 13.29 158

1D-H MV-CLM 5.49 7.25 6.85 5.49 9.17 11.57 179

2D Division

2D-G MV-CLM 5.79 7.84 7.54 5.79 10.00 12.83 172

2D-GMV MV-CLM 5.72 7.50 7.20 5.72 9.49 11.95 161

2D-GMH MV-CLM 5.71 7.67 7.15 5.71 9.81 12.89 169

2D-D MV-CLM 5.68 7.42 7.27 5.68 9.23 11.50 143

Table 1: Driving Video Statistical Results
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Figure 3: Driver video CDF curves for different head orientations. (a) All images. (b) Frontal images. (c) Negative yaw (left

facing) images. (d) Positive yaw (right facing). (e) Negative pitch (up facing). (f) Positive pitch (down facing).

23



(a) (b) (c)

(d) (e) (f)

Figure 4: 300-VW Challenge CDFs of relative average point error. Green - baseline, Blue - our results. Column 1 - Category

1: Well-lit conditions with no occlusions. Column 2 - Category 2: Unconstrained conditions but without large occlusions.

Column 3 - Category 3: Arbitrary conditions including occlusions, make-up and different illuminations. (a-c) Results for 49

facial points only. (d-f) Results for all 68 points included in challenge.

Figure 5: Fitting achieved by our MV-CLM as compared to the RFRV-CLM on a number of examples. Columns 1-2:

Example driver video images. Columns 3-4: Example of Category 2 300-VW test video. First row: RFRV-CLM. Second

row: 2D-D MV-CLM.
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large amount of training data employed suggests that this

is the case. In addition, is it clear that our method performs

very well in all three categories, including the third category

which contains examples of people recording in completely

unconstrained conditions, including different illuminations,

expressions and occlusions. Even in this case, our algorithm

is able to achieve a success rate of more than 80% at an er-

ror of 0.07 or less for the 49 facial points, and this only

increases to 0.075 in the 68 point case (including points

around the face). As further illustration, we also show some

examples of the improved performance of our method over

the RFRV-CLM on driver images and one video from Cate-

gory 2 of the 300-VW Challenge in Fig. 5.

5. Conclusions

In this paper we presented a simple but effective tech-

nique for improving the accuracy of the traditional RFRV-

CLM technique on large head angles, while decreasing

the computational cost. This method works by combin-

ing a global shape model with separate response maps, in-

dexed on the shape model parameters, specifically targeted

at particular head angles. We explored alternative shape-

space division strategies, and identified the two optimal ap-

proaches. The performance improvements of these meth-

ods was demonstrated on two datasets, particularly on large

positive and negative yaw examples. The method was also

shown to give a marked speed-up over the traditional tech-

nique.
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