
Geometric Mining: Scaling Geometric Hashing to Large Datasets

Andrew Gilbert Richard Bowden

University of Surrey, Guildford, GU2 7XH, United Kingdom

{A.Gilbert,R.Bowden}@Surrey.ac.uk

Abstract

It is known that relative feature location is important in

representing objects, but assumptions that make learning

tractable often simplify how structure is encoded e.g. spa-

tial pooling or star models. For example, techniques such

as spatial pyramid matching (SPM), in-conjunction with ma-

chine learning techniques perform well [13]. However, there

are limitations to such spatial encoding schemes which dis-

card important information about the layout of features. In

contrast, we propose to use the object itself to choose the

basis of the features in an object centric approach. In doing

so we return to the early work of geometric hashing [18]

but demonstrate how such approaches can be scaled-up to

modern day object detection challenges in terms of both

the number of examples and their variability. We apply a

two stage process; initially filtering background features to

localise the objects and then hashing the remaining pair-

wise features in an affine invariant model. During learning,

we identify class-wise key feature predictors. We validate

our detection and classification of objects on the PASCAL

VOC’07 and ’11 [6] and CarDb [21] datasets and compare

with state of the art detectors and classifiers. Importantly

we demonstrate how structure in features can be efficiently

identified and how its inclusion can increase performance.

This feature centric learning technique allows us to localise

objects even without object annotation during training and

the resultant segmentation provides accurate state of the art

object localization, without the need for annotations.

1. Introduction

This paper presents an approach to learning geometric

configurations of feature points that represent objects in

weakly supervised data i.e. where no object location or

bounding box is provided. Conceptually this can be thought

of as combining ideas from Geometric Hashing with learn-

ing. The origins of Geometric Hashing can be traced back

to the mid 1980’s [14] and is based on the central premise

that an object, consisting of simple geometric features, can

be efficiently matched against a database of such features

using hashing schemes. However, rather than just encoding

features relative to object location, as is common in object

centric approaches to recognition, we attempt to find patterns

of features that are geometrically consistent and invariant to

affine object transformation.

Given a set of training images containing an object, the

best feature set would be the one that achieves the most con-

sistent layout of features across all examples. Exhaustively

searching all possible basis sets for such features would iden-

tify the subset attributed to the object. However, even if the

location of the object is known, this quickly becomes an in-

tractable search. For example, given dense features, 250,000

features may be extracted from a single image and taking

all triplets of points as possible basis vectors would generate

1.6 x 1016 combinations. We propose a weighted random

search method to efficiently identify key feature subsets. We

identify the features and configurations that are unique to

each class i.e. both representative of the class, but also dis-

criminative against competing classes.

Unlike other feature encoding schemes [16], we propose

a two stage process. Firstly, we encode feature pairs and

use this to suppress background features. This identifies

features largely consistent with the object and reduces the

complexity of the next stage. In the second stage, feature

pairs are combined into candidate constellations by identi-

fying feature triples and encoding all remaining features to

this origin. Even with this two stage process, the number of

combinations remains large. Traditional machine learning

approaches are not suitable hence we propose an efficient

learning method to identify key feature predictors.

This paper shows a number of key contributions: 1) The

use of a two stage geometric encoding of low level feature

collections to provide a fine grain structural awareness of

the foreground description of objects. 2) The introduction of

a learning method to efficiently identify discriminative en-

coded features. 3) The ability to localize objects in images,

without explicitly labelled annotation or previous spatial in-

formation at either training or testing stages.
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2. Related Work

Object recognition is a major research area within com-

puter vision. Intuitively there are two challenges; deciding

what objects are contained in an image and where these ob-

jects are. Object localization is generally deemed a harder

problem and as a result, many state of the art classification

approaches don’t infer object locations [33, 35]. Approaches

that do localize [25, 7, 19] are generally implemented via a

sliding window. To remove the sliding window limitations,

there has been work in identifying the foreground and back-

ground areas, to allow improved training, through negative

mining [29] and object centric pooling of features [27].

Another method related to our approach is through the en-

coding of relationships between the feature points directly.

However, in a fully connected shape model [9], as the num-

ber of combinations increases, the computation increases

relative to the power of the number of features. Therefore

other approximations have been proposed such as star based

models [10], as the reduced dependencies of this model al-

lows for learning in O(N2P ) time instead of O(NP ). More

recently, pairwise features have been used in a number of

ways, including encoding the fixed structure of buildings

to identify connected feature patterns between images [38],

in action recognition [22], or food recognition [36], as they

can simplify the feature space. Mining features from data

was proposed by Quack [24] but limited to a fixed spatial

grid around a feature. Fernando [11] also employed min-

ing to identify frequently reoccurring features but not higher

groupings. Higher order relationships are typically ignored

due to the intractability of the search. We provide a search

mechanism that could be employed in any feature detec-

tion scheme to find triplets of feature points that provide

the affine invariant encoding of an object. Yao [37] modified

Apriori data mining for grouplet based object recognition,

however Apriori association rule mining requires a full pass

over the training data, which limits its use when increasing

numbers of classes or instances are used.

There are approaches to use localization information [8,

29, 5, 23], that use the localization results to boost the overall

classification accuracy. For example, Feng [8] resizes each

image to the same size and using a grid, learn a weight based

location likelihood factor for each class.

Most recent work within the field of object recogni-

tion is exploring the use of deep convolutional neural net-

works [20, 17], with large improvements in recognition tasks.

This includes implementing previous SIFT based localisa-

tion techniques, such as regions and spatial pyramids. R-

CNN [12], extracts and weights around 2000 candidate re-

gion windows per frame via selective search to predict the

location of objects. While the application of spatial pyra-

mid pooling for CNNs has been proposed by He [13], both

provide excellent performance at object detection. These in-

dicate the power of CNNs in conjunction with spatial feature

encoding; however our approach removes the rigid require-

ment of defined regions.

3. Motivation

As the literature has demonstrated, the use of structure

in object recognition provides performance increases, over

unstructured features. However, fixed grid spatial encod-

ing [19, 24, 13] relies on training data to overcome variabil-

ity in pose and appearance. To motivate and illustrate this

limitation, Figure 1 shows two example images of cars from

the PASCAL VOC dataset with interest points detected.

Figure 1. Encoding detected interest points in 2 images from PAS-

CAL, encoded in a 3 way SPM, showing [FG,BG] features

A spatial pyramid could be used to encode the features

(as in Figure 1), but the success of this approach is entirely

dependent on the position and scale of the histogram bins.

For a fixed encoding, the left image of Figure 1 learns that

the car features occur in the middle bin, while the right image

learns that car features occur in the lower bin. If no common

features are found during learning, the classifier will fail

at test time, therefore huge amounts of data are needed to

generalise about the object layout.

In this work, we seek to achieve robustness to transforma-

tions of the spatial layout of features in the image by employ-

ing a spatial encoding process which identifies consistent re-

lationships between feature points. The basic idea is shown

in figure 2(a) where we see two images with constellations

of features under some transformation. By choosing the cor-

rect basis vectors from the objects own set of features (the

squares) and projecting all points onto these basis vectors

(shown by short dotted lines in Fig 2(b)) we see which of the

features are spatially consistent between the two examples

(depicted by solid lines).

To do this we follow a two stage process. Initially

we chose feature pairs and reject inconsistent features to

roughly localise the objects. We then combine feature pairs

to achieve affine invariance in the encoding. Initial pairwise

encoding only provides invariance up to a similarity. How-

ever, at this stage a loose criteria is used to reject impossible

configurations and reduce complexity at the second stage.
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Figure 2. (a) Feature pair encoding for a single feature in two im-

ages. (b) Applying geometric hashing to both images. This trans-

forms the feature space to a basis system, allowing similarity to

be seen between the images, note the grey dashed lines indicate

inconsistent features to be ignored

4. Structural Feature Descriptor

The two stage process results in a geometric hashing of

features for an object class. The first stage is a pairwise

hashing that intelligently filters non object features. Then

in the second stage, the resulting pairs are combined into

triplets to provide affine invariant encoding.

4.1. Stage 1 Encoding

In a weakly supervised setting, we do not know which

features of an image are attributed to the object and which

the background. The first stage therefore seeks to remove

background features to reduce the features passed to the

second stage. We propose to discretise the pairwise geom-

etry of the images, to allow the geometric structure to be

learnt. We define a geometric dictionary for stage 1 as Ω1

of geometric words ω1 ∈ Ω1, where each geometric word

represents a unique range in pairwise image space. The dic-

tionary is formed over a four dimensional space, with each

word defined by four pairwise geometries. The feature pair

is invariant to scale, orientation and translation, based on the

distance and angle between the two feature points. Given

a set of features KI extracted from image I and a feature

pair consisting of feature κi and κj , where κi, κj ∈ KI and

i 6= j. Each feature has a scale κs
i , rotation κθ

i , position κ
xy
i ,

and appearance κ
app
i as a feature histogram. The pairwise

geometry consists of the appearance of feature i, ξi = κ
app
i ,

the appearance of feature j, ξj = κ
app
j , the scale invariant

distance δij =
(κxy

i
−κ

xy

j )
|κs

i
−κs

j
| , and the absolute difference in ro-

tation ϑij = |κθ
i − κθ

j |. The scale invariant distance is made

invariant by being normalised by the feature scales, while

the feature orientation is the absolute difference. Thus each

pair of features κij , is then encoded as

κij = {ξi, ξj , δij , ϑij} (1)

Unlike previous work by Ta [30] who uses only the clos-

est pairs, the feature relationships are formed between all

pairs of interest points within an image. By looking for com-

monality across all examples, it is possible to learn which

features are consistent for a class. This is used as an approx-

imate object detector/filter to identify regions of the image

where the object may be located and its constituent features.

As such a coarse threshold rejects obvious outliers providing

rough object localisation and the features are then passed to

the second stage for more stringent affine encoding.

There have been many region based approaches proposed,

such as objectness [2] and selective search [31]. However,

our approach is able to learn an approximate object detector

that has the ability to remove non object features, resulting in

VI filtered features, instead of a coarse bounding box based

region of interest.

4.2. Stage 2: Building Constellations of Features

Given the initial image feature filtering through the pair-

wise features of section 4.1, a second stage of encoding

is performed to provide affine invariance. This is achieved

through the relative encoding of feature points, with respect

to a coordinate system identified from a triplet of features.

To form a triplet of features, all feature pairs which share

a common node in KI are found, with respect to the filtered

geometric pairs from the first stage VI

VI = {i : (i, j) ∈ KI} ∪ {j : (i, j) ∈ KI} (2)

which gives all possible triplets as shown in equation 3.

YI = {κ(a, i, j) : a, i, j ∈ VI , κ(a, i), κ(a, j) ∈ KI}
(3)

For each triplet κ(a, i, j) in Y, all remaining features r ∈
VI are encoded to the same basis set using κar. The 2nd

stage encoding is visualised in Figure 3. In this example

the interest points a, i, j, r1, r2, r3 are in the set KI , and the

interest point pairs κ(a, i) and κ(a, j) are within VI sharing

the common interest point a. All remaining points r1, r2, r3
are spatially encoded to the basis vectors ~ai and ~aj. This

process is repeated for every feature triplet within VI and

for every image within a class. Once the links between all

features have been encoded, a class wise model is learnt.
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Figure 3. The visualisation of the 2nd stage feature encoding

5. Learning

The size of the feature sets at each stage of encoding

can be prohibitively large; we therefore require an efficient

method to identify the subsets that are both common across

a class and discriminate against other classes.

Instead of modelling all the data, our learner identifies

features that can provide the most impact or change on the

dataset and this generally results in a simple feature set that

is both distinctive and descriptive with respect to a class. In

order to learn this set of features we employ mining. Two

metrics are applied to the candidate features, lift and support.

The objective function or lift of a given feature or com-

pound of features is a measure of change that the given

features will make to the outcome class distribution com-

pared to the baseline class distribution. With a set of training

classes, C = {c1, c2, ..., cα}, and a large set of training ex-

amples E (in this case images), each example, I ∈ E will

contain a set of encoded features,KI . Each image is labelled

with respect to a specific class c from the training data for

example {K1,K20,K24...} −→ c1 etc. Within the training

examples, the frequency of the images labelled to a specific

class is given by {F1, F2, ..., Fα} and is used as a normal-

isation factor. The overall aim of the learner is to identify

the short feature subsets VI that provide the greatest im-

provement in the overall class distribution. To achieve this,

given the set of training classes, the frequency of the subset

V occurring within each class is computed as fV
c . Ideally

the subset will have a high frequency of occurrence in the

positive class and low occurrence elsewhere and this will

provide maximal lift. We define lift as

liftc(V) =

α
∑

c=0

Ucf
T
c

Fc

(4)

where Uc is a class weight, where

Uα =

{

1 c = Positive

−1 otherwise
(5)

If the lift is greater than 0, the subset of features is improving

the input or baseline distribution of the class, i.e. the subset

is more frequent in the positive class and less so in the neg-

ative classes. Ideally it will have a large lift, and this can

achieved by making it more specific. This can cause over

fitting, causing the unwelcome property of the subset of fea-

tures only occurring in a very small selection of the positive

class.

In order to avoid over fitting, the learner uses a threshold

on its minimum support. This is the ratio of the frequency of

occurrence of the subset of features within the positive class,

with respect to the frequency of the occurrence of the subset

in the rest of the dataset as shown in equation 6

support(V) =
fV
cp

∑C

c=0 f
V
c

where c 6= cp (6)

where cp is the positive class label. To avoid over fitting, a

minimum support threshold of 0.2 is used, this ensures the

proposed subset is representative of the input data.

The lift and support assesses the effectiveness of a subset,

but the possible candidate subsets need to be generated. A

naive approach would test all possible feature combinations.

However, even for a single example image, this would be

infeasible. Therefore we use a weighted random sampling to

ensure we select the best single features to combine together

and to reduce training time.

5.1. Generation of Subsets

To form the feature subsets, we propose an intelligent

method that is weighted towards identifying and using sub-

sets made up of single features that already represent the

training class well. This ensures that it is more likely that

when these representative features are joined to form com-

pound subsets of features, that they will represent the train-

ing class well.

Initially, a random subset of individual features is se-

lected, and these are scored by their individual lift. These

lift scores are then converted into a cumulative distribution

function. Λ subsets of the weighted random features are se-

lected, with each containing up to M features (typically 200).

These are scored and sorted with respect to their lift and sup-

port. Then a further Λ random subsets of individual features,

formed of up to M features are then selected and weighted.

This process is repeated for ρ iterations and the top A se-

lected for the class. The learner is run independently for each

class c using the training data, to produce a set of subsets for

each class M(c) = {m(c)1,m(c)2, ...m(c)A}.
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6. Classification

Given the focus of the approach to produce concise rep-

resentative feature subsets, the classification of images is

implemented in a class specific hash table. To classify, the

possible candidate features of a given image are encoded,

and given the learnt model for each stage, each candidate

feature in turn is compared to the entries in the hash table.

The response score of the classifier R to a particular class

label c is given by

R(Ti, c) =
1

K

M(c)K
∑

j=0

1

A
m(Ti,M(c)j) (7)

where

m(Ti,M(c)j) =

{

1 Ti ∈ M(c)j
0 otherwise

(8)

After the 1st stage, the feature pairs that match to the

learnt subsets for a specific class are identified and used to

compute the geometric hash of the 2nd stage. In the case

of the classification of test images, the response score is

repeatedly computed over all class labels, and the maximum

response classifies the unseen image with that class label.

As the learner identifies a small subset of features efficiently

encoded in a hash table, this is very fast to compute for each

image.

7. Detection of Objects

Given the exhaustive nature of the pairwise and geomet-

ric encoding and its inherent spatial awareness, it is possible

to localise the classified object. Figure 4a shows an example

classified feature pairs after the 1st stage of our approach. It

can be seen in Figure 4b and c, that the relationships of the

interest points, encode the structural information of the ob-

ject. We use these spatial locations of the resulting interest

points, from the maximal class label, to provide the initial

seed location of the object within the image. The image is

initially segmented using a water shed algorithm [32], and

the nodes for the graphs are the resultant segmented regions.

The foreground seed locations are given by the centre of

the feature interest points from the classified pairwise re-

lationships. These pixel locations are represented by small

watershed regions and the image segmented via the GrabCut

algorithm [26]. Figure 4d shows the resulting segmentation

of the object. By maximising a rectangular bounding box

to cover the segmented foreground mask, localization of the

object is possible, without the introduction of any explicit

spatial annotation during training.

8. Experiments

We validate our approach on three different sets of

images, the challenging PASCAL07 dataset, PASCAL

Figure 4. a) The detected pairwise relationships, for the object class

horse, b) The structure of the object is visible based on the 1st stage

pairwise relationships, c) After the 2nd stage, the features are able

to encode more of the structure of the horse d) Interest points, are

used as foreground seeds, to solve a graph based segmentation of

the desired object

VOC2011 [6] and fine grained CarDb [21]. The CarDatabase

(CarDb) consists of 13,473 photos of cars labelled with the

model year from 1920 -1999. The dataset is defined using

a 70/30 train and test split as used by [21]. The cars have a

low inter class variation with only small areas of contrasting

features, examples of the images through the years can be

seen in Figure 5.

8.1. Implementation

To represent the images, two feature types are applied and

compared, a colour invariant SIFT descriptor, C-SIFT [1]

and a densely detected region based CNN. This is to indi-

cate the feature agnostic ability of the pairwise encoding.

The densely detected colour invariant SIFT descriptor, C-

SIFT [1], is used in a softly assigned codebook of size 1024,

and for each image around 250,000 pairwise features are

encoded at the 1st stage and 60,000 are generated at the

second 2nd stage. The CNN features are extracted from a

deep CNN model pre-trained with the ImageNet dataset. We

extract features from the sixth layer of the network which

has the same architecture as that proposed by [17], and won

ILSVRC2012. Because deep CNN-based features are ex-

tracted from the network, which is trained for recognition

tasks, we can regard it as a feature that expresses discrimina-

tive information of an image. In our tests, we use the Caffe

implementation [15]. We use this 4096 feature response

rather than a codebook. The CNN regions are 25x25 pix-

els and are densely sampled with a 3 pixel overlap on the

image, with around 220,000 feature pairs per image at the

1st stage and 50,000 pairs at the 2nd.

In order to provide discrete symbols for the encoded fea-

tures, each feature histogram element from both the CNN

response and C-SIFT codebook response is used to form

the same number of new but unique symbols as the fre-

quency. Therefore, given the sample frequency histograms,

H1 = {3; 0; 1} and H2 = {1; 3; 2}, the resulting sym-

bolisation will be H1 = {A1;A2;A3;C1} and H2 =
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{A1;B1;B2;B3;C1;C2}. While computing the encoded

stage 1 pairwise features in equation 1, the scale invariant

distance δij value is rounded to an integer value and in the

case of C-SIFT features, the feature’s rotation used in com-

puting the absolute difference in rotation ϑij , it is quantized

into 1 of 12 equal sized radial polar bins. In the case of the

CNN feature’s, the absolute difference in rotation is set to 1,

as it is unused.

8.2. CarDatabase Year Classification

To indicate the performance of our two stage pairwise

feature encoder, we test on the CarDb dataset with an aim to

indicate the year of a car present. Training data provides 10

year categories for cars, examples of these classes are shown

in Figure 5. The mean error of the classified year for both our

Figure 5. Examples of the CarDb dataset with class label

C-SIFT and CNN Feature Relationship data Mining (FRM)

after stage 2 is compared to a linear SVM (BOW) with and

without SPM spatial pooling (SPM), discriminatively mined

sub patches [28] and visual changes over time [21].

Approach Mean Error (years)

BoW 15.39

SPM 11.81

Singh [28] 9.72

lee [21] 8.56

C-SIFT-FRM Stg 2 8.12

CNN 11.1

CNN-FRM-Stg2 6.5
Table 1. Mean error of classified year on the CarDb dataset.

The table shows the excellent performance of our ap-

proach especially with the CNN features. C-SIFT results

can be compared to other approaches using SIFT features,

with a 2.5 year reduction in the predicted car age error over

SPM and 7 year reduction in error for a BoW approach us-

ing the same C-SIFT features. The CNN features reduce

this error metric a further 2 years to a mean error of just 6.5

years. Most of the other approaches (BoW, SPM, Singh)have

no mechanism to explicitly model the stylistic feature dif-

ferences, instead trying to model the overall image for the

class label and thus resulting in a loss of the fine detail neces-

sary to learn the age of the cars. The work by lee [21], does

model appearance based changes, but an interesting point is

that they don’t use a spatial pyramid on this dataset, despite

using one on other datasets within their paper. This is likely

to be due to the larger variation in the positioning of the cars

in the photos as shown in Figure 5. This indicates the impor-

tance of feature hashing through pairwise relationships.

To provide qualitative results, Figure 6 shows both the

resultant 1st and 2nd stage C-SIFT features that correctly

classified the year of the car. It can be seen that after the

1st stage of the process, there is already far fewer features.

Initially there are around 250,000 densely sampled interest

points in each image, this is reduced to around 50 - 150 after

the 1st stage, and reduces further after the 2nd stage to on av-

erage around 10. Furthermore the features that remain after

the 2nd stage are in the areas that have the greatest contrast

with other ages of cars, for example the wheels and head-

lights. This makes sense as visual features on other areas

of the car or the background will have little discriminatory

information and therefore are rejected by learning due to a

low lift score.

Figure 6. Resultant 1st and 2nd stage classified C-SIFT features for

example images from the CarDB dataset

8.3. PASCAL Image Classification

The PASCAL07 [6] dataset’s 20 object categories still

provide a challenge for recognition and localisation due to

the large amounts of clutter, scale change, viewpoint and en-

vironment variation. Results for a number of CNN and SIFT

based BoW approaches are shown, together with our perfor-

mance for both stages and both feature types in Table 2.

The table shows the use of our proposed approach Feature

Relationship data Mining (FRM), with both CNN and SIFT

features against baseline approaches (SPM), the fisher ker-

nel feature encoding within an SPM and SVM framework,

FK [3], and the recent CNN approaches of Chatfield [4],

Wei [34] and CNN within a SPM framework [13]. It can

be seen that our C-SIFT approaches compares favourably

to other non CNN approaches, however when the densely

sampled CNN features are used, performance improves sig-

nificantly. Our approach, CNN-FRM-Stg2 improves the

classification on 13 out of the 20 object classes. This is

impressive when you consider we do not use the labelled

training annotations. Compared to other approaches, CNN-

FRM-Stg2 achieves improvement on the classes; boat, car,

chair, and sofa, indeed the use of the feature relationships,
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type aero bike bird boat bot bus car cat chr cow tble

SPM sift 71.4 56.8 50.3 63.2 22.4 60.1 76.4 57.5 51.9 42.6 48.2

FK[3] sift 79.0 67.4 51.9 70.9 30.9 72.2 80.0 61.4 56.0 49.6 58.4

SPP [13] cnn - - - - - - - -

Wei [34] cnn 95.1 90.1 92.8 89.9 51.5 80.0 91.7 91.6 57.7 77.8 70.9

Chatfield [4] cnn 95.3 90.4 92.5 89.6 54.4 81.9 91.5 91.9 64.1 76.3 53.8

C-SIFT-FRM Stg 2 sift 77.1 65.3 43.1 67.3 28.8 67.2 80.2 58.3 53.4 48.8 53.8

CNN-FRM-Stg2 cnn 95.6 90.0 92.9 91.3 51.9 82.8 92.9 92.5 64.7 78.7 55.3

type dog hrse mbke pers plnt shp sofa trn TV mAP

SPM sift 36.9 75.3 62.8 82.9 18.2 37.1 43.3 69.4 50.9 53.9

FK[3] sift 44.8 78.8 70.8 85.0 31.7 51.0 56.4 80.2 57.5 61.7

Wei [34] cnn 89.3 89.3 85.2 93.0 64.0 85.7 62.7 94.4 78.3 81.5

SPP [13] cnn - - - - - - - - - 80.1

Chatfield [4] cnn 89.7 92.2 86.9 95.2 60.7 82.9 68.0 95.5 74.4 82.4

C-SIFT-FRM Stg 2 sift 39.8 79.5 69.5 84.6 18.4 46.0 52.3 71.4 51.9 57.9

CNN-FRM-Stg2 cnn 89.7 91.6 87.4 95.1 60.7 86.6 70.8 96.1 76.4 82.3

Table 2. Classification of average precision of the 2 stage our approach (CNN-FRM-Stg2) compared to other approaches on the PASCAL

VOC 2007 dataset

aero bike bird boat bot bus car cat chr cow tble

DPM [7] 33.2 46.5 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7

R-CNN [12] 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5

SPP-net [13] 68.6 69.7 57.1 41.2 40.5 66.3 71.3 72.5 34.4 34.8 61.7

C-SIFT-FRM-Stg2 34.3 41.8 14.2 17.4 28.8 59.2 62.4 25.5 24.2 19.7 30

CNN-FRM-NonTrained 75.9 75.3 54.0 44.3 40.7 67.1 72.4 68.1 29.4 40.0 54.8

CNN-FRM-Stg2 75.5 77.4 58.2 44.8 41.0 67.8 74.9 76.1 38.4 45.7 60.5

dog hrse mbke pers plnt shp sofa trn TV mAP

DPM [7] 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

R-CNN [12] 61.2 69.1 68.6 57.6 33.4 92.9 51.1 62.5 64.8 58.5

SPP-net [13] 62.3 71.0 69.8 57.6 29.7 59.0 50.2 65.2 68.0 59.2

C-SIFT-FRM-Stg2 12.0 65.7 58.6 41.4 15.6 29.9 31.0 46.0 47.2 35.2

CNN-FRM-NonTrained 58.7 73.4 59.9 58.4 29.0 56.1 50.8 60.8 69.9 56.9

CNN-FRM-Stg2 63.2 73.0 71.6 59.2 31.5 56.7 57.5 63.7 72.1 63.3

Table 3. Comparison of detection performance on PASCAL07

increases performance consistently over most classes, espe-

cially where the objects are smaller and often not centred

or in fixed locations. The classes, sofa and chair can be dif-

ficult to classify as they are often heavily occluded and the

improvements for these classes shows good invariance to oc-

clusions due to the use of the encoded feature relationships,

allowing the foreground structural relationships to be learnt

and recognized. There are three class categories that proved

especially difficult for CNN-FRM-Stg2 to improve; bottle,

plant, and table. These are complex classes in PASCAL07,

with a high degree of occlusion and class variation, and these

classes are challenging when even the labelled annotations

are used [7, 13].

A key component of the learning is the weighted com-

bination of encoded features. This allows the underlying

geometric structure of the objects to be efficiently described

in far greater detail, allowing the overall accuracy on the

PASCAL07 dataset to increase from 45.3% (1st stage single

pair relationships) to a maximum of 82.3% (2nd stage with

feature groups containing up to 4 feature relationships) as

shown in Table 5. For the 1st stage, this increasing accuracy

plateaus with a maximum number of feature relationship

of 73.5%. This plateau occurs due to the minimum support

threshold in the learning, ensuring that it does not over fit to

the training set. In the 2nd stage, a single feature relation-

ship will encode the relationship between 4 separate interest

points providing the higher initial accuracy of 56.7% and

also the lower plateau in performance using only up to 4

feature relationships.

CNN- Classification mAP (%)

FRM 1 2 3 4 5 7 9

Stg1 45.3 62.4 65.5 71.3 73.5 73.5 73.5

Stg2 56.7 75.7 80.4 82.3 82.3 82.3 82.3

Table 5. The effect of increasing the maximum treatment size (M)

on the interest point pairwise relationships CNN-FRM
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R-CNN [12] 68.1 63.8 46.1 29.4 27.9 56.6 57.0 65.9 26.5 48.7 39.5

CNN-FRM-Stg2 85.4 72.4 23.4 38.5 60.4 75.4 58.1 58.4 9.1 47.9 35.4

dog hrse mbke pers plnt shp sofa trn TV mAP

R-CNN [12] 66.2 57.3 65.4 53.2 26.2 54.5 38.1 50.6 51.6 49.6

CNN-FRM-Stg2 48.2 39.7 60.4 55.8 33.1 60.1 28.7 55.8 44.9 49.6

Table 4. Performance on PASCAL VOC 2011

Figure 7. Object detections, learnt without any labelled annotation.

Green boxes indicate positive detection, with false positive detec-

tions in red. Seed interest points are shown in purple

8.4. PASCAL Detection Results

The PASCAL07 dataset is challenging for localization,

and our approach is able to both work with and without train-

ing annotation, we use the same localization accuracy crite-

rion as [23], the window intersection over the union ≥ 50%.

For an unseen image, the image is classified, and the fea-

tures used as the seeds for segmentation. The maximum of

the segmentation forms the outer limits of the bounding box,

average classwise detection results for PASCAL VOC07 test

set are shown in Table 3.

Our 2 stage approach using either SIFT and CNN fea-

tures achieves 35.2% and 63.3% detection performance re-

spectively. These are able to outperform the other related

approaches, such as SPP [13] and R-CNN [12] as our ap-

proach uses relative pairwise hashes to encode the relative

geometric structure, which is more invariant to changes in

the object structure than a fixed region or window approach.

Furthermore, we are able to localise the objects without us-

ing the training annotation boxes and this is shown in Ta-

ble 3, as CNN-FRM-NonTrained, 56.9 this is an excellent

result, considering that no annotation detail was provided in

training. It is simply using the learning to identify unique

feature combinations applicable to a particular object class.

This is important for future work, as providing annotation

for training images is expensive. Figure 7 shows examples

of positive and negative detections.

Table 4 provides a breakdown of performance on the val-

idation data of the more recent VOC2011 dataset compared

against the R-CNN approach which uses similar features.

The important point to note is that although the per class per-

formance varies, the overall mAP score is almost identical.

However, our approach uses no bounding box information

during training to achieve this comparable result. It is also

interesting to note that our approach tends to perform better

for rigid objects where an affine assumption is more valid

but less well for deformable objects that obviously break this

assumption.

9. Conclusion

Our geometric feature mining approach is a flexible solu-

tion for the challenge of image detection. It employs a two

stage learning and pairwise encoding of feature relationships

invariant to the affine transformation of feature points and is

agnostic to the features used. The use of a two stage process

allows all interest points to initially be examined and to filter

out background and non-descriptive features. While the 2nd

stage encodes more complex affine invariant relationships

between the remaining features, providing excellent perfor-

mance on several challenging datasets. Importantly, without

the use of any training annotation.
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