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Abstract

Community image and video platforms like FlickR and

Youtube offer large image collections from different per-

spectives. However, the majority of publicly available im-

agery from online communities lack a reasonable exact lo-

cation and orientation information, which is important for

many geo-spatial applications like object geo-referencing,

knowledge transfer or augmented reality. In this work we

exploit publicly available drone videos in order to bridge

the gap between ground and aerial imagery. We propose

a framework for the fast determination of full 6-D geo-

referenced motion trajectories of online community drone

video footage using geo-localized map data. Our method

requires the registration of a single video frame from an

video sequence in order to exactly geo-reference complete

motion trajectories w.r.t. to existing geo-referenced map

data. The method relies on SfM and SLAM techniques in

combination with a simple, yet efficient appearance and

structure matching based on rendered map data (e.g. Li-

DAR) in order to generate geo-registered 3D feature maps.

These maps enable a simple and fast global appearance

based geo-registration of visually overlapping community

videos and images. We evaluate our method on a large set

of community drone videos. Our method produces drift free

geo-data overlays at an average speed of 29.7 frames per

second with an average positional error of 0.4m. In addi-

tion we release a large scale processed LiDAR dataset and

geo-registered feature maps as an extension to the converg-

ing perspectives dataset. This data may provide visual links

from ground based sensors to aerial imagery. Possible ap-

plications are numerous and include autonomous naviga-

tion, map updating/extension, image and video dehazing,

object localisation or augmented reality.

1. Introduction

Previously acquired maps allow for many new exciting

applications. Many computer vision applications need the

exact geometric transformation with respect to the map data

in order to be useful. However, most geo-referenced im-

agery only provides more or less accurate positional infor-

mation. This holds true for most of the data from the par-

tially geo-tagged community photo- and video collections.

This data usually comes with noisy geo-location informa-

tion and completely lacks orientation information w.r.t. to

existing geo-referenced map data. We propose a method

for accurately geo-referencing community photo- and video

collections leveraging large scale LiDAR imagery. LiDAR

(Light Detection And Ranging) scanners are common sen-

sor systems for the rapid acquisition of scene geometry. Re-

cently large LiDAR data sets became publicly available.

However, this data poses a challenge in order to be used

with imagery from community image and video collections.

There exist two main approaches for the registration of im-

Figure 1. Point based rendering of a large scale LiDAR dataset tex-

tured with high resolution ortho-imagery. LiDAR datasets served

as our reference model for the exact geo-referentiation of camera

images from community video and image collections.

age data to 3D LiDAR data: rendering 2D appearance data

(e.g. renderings) from 3D data and performing distance op-

timization in 2D or reconstructing 3D data from the images

(SfM) and optimizing a distance measure in 3D. We propose

a hybrid method in order to leverage advantages of both ap-

proaches: (a) appearance information is usually more dis-

tinctive as geometry and (b) 3D structure allows for an ac-

curate registration by jointly using accumulated information

of multiple image frames. We use the backscattered laser

intensity information or textures from high resolution ortho
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imagery in order to render views which enable an appear-

ance based registration of a single image frame image w.r.t.

to a geo-referenced LiDAR scan coordinate system. The

registered image imposes structure constraints on a vision-

based reconstruction of the input images and allows for aug-

menting the LiDAR data with image features from this data.

This allows for a simple subsequent geo-referencing of vi-

sually overlapping vision data.

1.1. Previous Work and Contribution

We specifically focus on camera pose determination

using heterogeneous data sets e.g. large scale LiDAR

data. Appearance based 2D/3D registration techniques,

e.g., image to map techniques for monocular vision sys-

tems are linked to location recognition systems. Most

approaches employ local feature correspondence methods

[?, ?]. Schindler et. al. [?] proposed a location recogni-

tion method using vocabulary trees. Li and Snavely et. al.

[?] proposed a prioritized feature matching scheme which

exploits additional information from SfM. Zamir and Shah

[?] published a 3DoF location recognition system based on

100,000 geo-tagged Street View images using direct loca-

tion voting. With respect to 2D Image/3D LiDAR Registra-

tion there exists a considerable amount of literature. Vasile

et al. [?] render pseudo-intensity images from LiDAR data

to perform a 2D/3D registration with aerial images. Mastin

et al. [?] use synthetically height color coded 2D renderings

with camera images in combination with Mutual informa-

tion (MI) [?]. Some approaches[?, ?] rely on the detection

and registration of geometrical features like line segments

or planes in the camera image and their projections from

3D data.

To the best knowledge of the authors there is no literature

about using community drone videos for geo-registration

and localization of heterogeneous imagery. Published work

also does not provide a simple method for using only a sin-

gle registered view to exactly geo-register whole image se-

quences in combination with LiDAR data. We also lever-

age large-scale LiDAR data in combination with the drone

videos in order to bridge the gap between airborne and

ground based imagery.

A simple strategy would be the direct 3D/3D-registration

of reconstructed geometry with given LiDAR data using

recently proposed 3D features. However, we explored

this approach using correspondence grouping techniques in

combination with SHOT and FPFH feature descriptors and

failed in establishing correct correspondences between SfM

structure points and airborne LiDAR data. However, we ex-

plore this research direction in future work.

The contribution of the paper can be summarized as fol-

lows:

• First we extend the publicly available converging per-

spectives dataset with textured LiDAR data 1 in or-

der to encourage research concerned with large geo-

referenced 3D data. We also provide frame wise geo-

registration information for publicly available drone

imagery.

• We propose a method for accurately and efficiently

geo-registering video streams to LiDAR data using

only a single registered view of an image sequence. In

this context we additionally propose a multi-rendering

approach for the registration of such keyframes and

robustly finding correspondences between challenging

point based LiDAR renderings and electro-optical im-

agery.

• We point out important details about integrating Li-

DAR data into modern dense visual odometry and

SLAM methods for enhanced robustness and the fast

registration of geo-registered motion trajectories at

video frame rates.

The outline of the paper is as follows: first we describe

the involved data and key components of the system and

discuss specific details for using LiDAR data as an addi-

tional information source. Then we describe our process-

ing pipeline for video trajectory geo-referencing, e.g., view

registration with heterogeneous data and structure align-

ment. The method is then evaluated with various motion

sequences from online community collections. Finally, we

discuss the results and point out further research directions.

2. Method

We focus on the creation and registration of large and

spatially consistent geo-referenced feature maps from on-

line community collections like FlickR and Youtube. Fig.

?? provides a short visual summary of our processing chain.

The outline of the proposed approach can be summarized as

follows:

After LiDAR data preprocessing we extract a small sub-

set of keyframe images from each downloaded commu-

nity drone video. Then we perform SfM on the keyframes

to autocalibrate the cameras and to generate 3D structure

points and corresponding appearance information from fea-

ture tracks (feature maps). Our data structure allows for a

fast registration of 2D and 3D data using a standard feature

matching approach for data association by determining ge-

ometric transformations based on the 2D (feature positions)

and the 3D structure.

The proposed methodology can be decomposed into four

building blocks:

• LiDAR Map Data and Preprocessing: First we pre-

process the raw LiDAR point cloud data. This in-

1Project page http://s.fhg.de/georef
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Figure 2. Visual summary of our 2D/3D processing chain

cludes filtering the pointclouds using a statistical out-

lier methods in order to remove erroneous structure.

When available we additionally texture the pointcloud

data with coincident ortho-imagery. This was done

by sampling in the vertex colors using rendered Nadir

views of the pointcloud. This preprocessing step sub-

stantially improves a visual correspondence search in

some imaging scenarios.

• (A) SfM based 3D Feature Map Creation: We

extract a small subset of keyframe images from each

downloaded community drone video. We perform

SfM[?] on the keyframes assuming a common camera

calibration. This allows for a fast auto-calibration of

the cameras. Then we generate 3D feature maps (3D

structure points and the corresponding appearance in-

formation from the SfM feature tracks). These locally

consistent feature maps usually cover only a small area

and enable a robust and fast appearance based global

registration of camera images and visually overlapping

feature maps (Fig.??c).

• (B) 2D/3D Video Image/LiDAR Registration: We

use multiple rendered LiDAR images for a single

image frame and select putative inlier 2D-2D corre-

spondences using geometric feature constraints on the

jointly determined correspondences. We determine the

depth of the rendered LiDAR image features using the

GPU Depth Buffer in order to solve for a 2D/3D PnP

problem[?, ?] method. This initial registration is then

refined by an intensity based 2D/3D approach. This

registration allows for a pixel-wise overlay of a ren-

dered LiDAR view with the input image. This overlay

image is used for the structure projection stages (e.g.

the 3D/3D feature map registration and for SLAM fea-

ture initialization and relocalisation).

• (C) Structure Projection for 3D/3D Registration

and SLAM Relocalisation: In order to geo-

reference the 3D featuremap we determine the 3D-

transformation from the SfM structure points to the

LiDAR geo-coordinate system (e.g. UTM). Based on

the overlay images from (B) we generate a pixelwise

depth image of the overlaid LiDAR dataset. This regis-

tered view is used to project the visible structure points

onto the rendered map data. Depending on the recon-

structed geometry and the map data we get hundreds of

putative 3D/3D correspondences. Based on these cor-

respondences we solve for a similarity transformation

using RANSAC. Then we transform the 3D feature

map into the geo-coordinate system using the similar-

ity transformation. This structure projection approach

is also used in our visual odometry pipeline. Here we

use a similar approach for feature initialization and im-

age relocalisation.

We briefly introduce the used mathematical notation. This

paper considers 2D/3D camera pose estimation techniques

for heterogeneous data, i.e., estimating the external cam-

era R, t parameters when the internal camera parameters

K are known. The projection of 3D world points Mi to

corresponding 2D image points mi are modeled by a stan-

dard pinhole camera projection P . The intrinsic param-

eters Kj with the parameters skew s, focal length f , as-

pect ratio α and principal point u = [u0 v0]
T are assumed

to be known (e.g. by using calibration patterns or SfM

auto-calibration which assume shared parameters for drone

videos, e.g. Kj = Kk).

mi = PjMi, Pj = Kj [R|t] ,Kj =





f s u0

0 αf v0
0 0 1



 .

(1)

The following sections provide more details concerning

each module of our geo-referencing processing chain.

2.1. LiDAR Map Data and Preprocessing

We use LiDAR scans from USGS covering the San Fran-

cisco Bay Area. We convert the data into our data format

based on the open source PCL library. In order to handle

the visualization of huge datasets we create downsampled

versions of the data using octree methods. After removal of

scanning artefacts using a statistical outlier filter we texture

the LiDAR data using high resolution aerial ortho imagery.

We sample the LiDAR vertex colors from the EO-map data

using rendered nadir views of the LiDAR pointcloud with

overlaid ortho-imagery.

2.2. (A) SfM based 3D Feature Map Creation

Recent progress in SfM methods led to very power-

ful algorithms which fully exploit the sparsity structure of
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the underlying problem [?]. BA techniques [?] are com-

monly applied to simultaneously determine 3D scene struc-

ture and camera motion parameters (SfM) from image data

by jointly minimizing the re-projection error of multiple im-

age frames using non-linear least squares techniques. The

classical approach is based on a simple measurement model

z = f(p,q), e.g., a pinhole projection model with q de-

noting the structure parameters (e.g., 3D points), ẑ the

image observations ,e.g., the measured projections of the

3D points and p the extrinsic (optionally intrinsic) cam-

era parameters. v(p,q) = f(p,q) − ẑ denotes the repro-

jection error. The Bundle Adjustment is then solved us-

ing non-linear least squares optimization techniques, e.g.

Levenberg-Marquardt. We performed SfM reconstructions

on downloaded community drone videos. We extract a

small subset of the video frames with sufficient visual over-

lap and camera baseline distance. We use SIFT[?] and

PBA[?] for the creation of the 3D feature maps. We enforce

a common calibration to determine the intrinsic camera pa-

rameters of the drone videos and to lower perspective dis-

tortions of the reconstructed structure. We additionally filter

spurious structure by keeping only descriptors from reason-

ably long feature tracks (e.g. feature track length ≥ 4). The

robustness of SfM techniques strongly depends on textured

scene geometry and motion trajectories. However, most of

the downloaded drone videos led to good reconstructions

due to their favorable motion trajectories and wide cover-

age of scene geometry.

Figure 3. Feature map example (Coit Tower): For structure points

(white dots) with sufficiently long feature tracks we associate a

corresponding SIFT feature descriptor.

2.3. (B) 2D/3D Video Image/LiDAR Registration

The geo-registration of a query video frame image with

LiDAR datasets based on a 2D approach requires corre-

spondences between the query and rendered LiDAR im-

ages. We utilize a point based rendering approach in or-

der to generate 2D views from the 3D LiDAR data set. Due

to large appearance differences between rendered views and

real camera images we jointly use multiple renderings in or-

der to find a sufficient number of 2D correspondences (see

Fig.??). We render these views using a standardized vir-

tual movement pattern. The images are rendered using a

star-like pattern (e.g. 6 views - sideways motion + motion

in the direction of the optical axis). Based on these im-

ages we extract local image features using standard descrip-

tors (e.g. Surf [?]) and detectors with low contrast thresh-

olds. The 3D-coordinates of the feature positions are de-

termined using the GPU-depth buffer at the feature detector

positions. The feature descriptors L = {d1, d2, ..., dm} are

pooled in a putative correspondence feature data set. We

use KD-Trees for fast nearest neighbor feature association.

We establish 2D/2D point correspondences based on this

feature set. Correct correspondences are robustly identified

by searching for small regions with similar geometric rela-

tionship of local features. The registration is then carried

out using an PnP algorithm. Afterward we minimize the

re-projection error (??) using Levenberg-Marquardt.

minimizeR,t

∑

i

‖K(RMi + t)−mi‖
2
2 . (2)

Fig.?? visualizes determined inlier-correspondences be-

tween a LiDAR rendering and a video frame from the drone

videos. The calculated pose is finally refined with an in-

tensity based approach. A standard approach is to ren-

der pose parametrized 2D views Vren(R, t) from the 3D

dataset which minimize/maximize an intensity based dis-

tance/similarity measure D(Typ), D : RN × R
N → R be-

tween the reference image IR and a rendered view over the

support of the image region A.

minimizeR,t

∫

A

D(Typ)(Vren(R, t), IR). (3)

We maximized an intensity based similarity measure be-

tween rendered views and the query images. Intensity based

similarity optimization allows for subpixel accurate align-

ments but is computationally expensive. However, these

methods rely on good initializations to prevent local op-

tima. The convergence range of intensity methods is usually

small. We use a multi-scale approach (3 octaves) to extend

the convergence range. The local feature based pose usually

provides a sufficiently close starting point. The selection of

an appropriate distance measure is very important. Mutual

Information [?] is still considered the gold standard match-

ing approach for heterogeneous data. It measures the mu-

tual dependence of the underlying intensity distributions:

D(MI)(IR, ITθ
) = H(IR) +H(ITθ

)−H(IR, ITθ
) (4)

where H(IR) and H(ITθ
) are the marginal entropies and

H(IR, ITθ
) =

∑

X∈ITθ

∑

Y ∈IR

p(X,Y )log(
p(X,Y )

p(X)p(Y )
) (5)
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is the joint entropy. p(X,Y ) denotes the joint probability

distribution of image intensities X,Y in IR and ITθ
, and

p(X) and p(Y ) denote the marginal probability distribu-

tions. However, MI usually exhibits many local minima.

For enhanced accuracy and robustness we combine it with

gradient correlation [?]. Intensity based registration is com-

putationally intense (approx. 20s). However, the optimiza-

tion usually starts near to an optimum and needs to be per-

formed only once for a image sequence. As transformation

representation for the extrinsic camera parameters R and t

we employ the minimal encoding of rigid body transforma-

tions SE(3)

T =

[

R t

0 1

]

, with R ∈ SO(3), t ∈ R
3, (6)

based on the Lie algebra representation. Here, SO(3) de-

notes the Lie group of rotations with the matrix multipli-

cation as the group operator. In case of R
3 the Lie al-

gebra se(3) leads to a minimal representation as 6-vectors

(ω, ν)T , where ω is the axis angle representation of the rota-

tion R and ν the translation vector. We use a downhill sim-

plex algorithm for the optimization, which works without

providing analytical derivatives. This allows a fast adapta-

tion of new intricate distance measures.

2.4. (C) Structure Projection for 3D/3D Registration
and SLAM Relocalisation:

The main advantage of using a 3D/3D structure regis-

tration based on overlay images (Fig.??) is the robustness

of the approach regarding a high uncertainty in camera lo-

calization. Camera images with high focal distances usually

exhibit high positional uncertainty in the direction of the op-

tical axis. This is due to the high correlation of translation

and focal distance camera parameters w.r.t. image obser-

vations. However, our approach determines only putative

correspondences along the projections of visible structure

points and their intersection with the LiDAR data. After

projection of the feature locations we get a sufficiently large

set of 3D/3D correspondences for the robust estimation of a

transformation of the structure points. Based on the cor-

respondences we (RANSAC) estimate the transformation

connecting both coordinate systems. We then optimize the

transformation over elements of the Lie group of similarity

transforms SIM(3).

S =

[

sR t

0 1

]

. (7)

The exponential map expSIM(3) and the inverse mapping

logSIM(3) are analogously defined w.r.t. SE(3).

expSIM(3)





σ

ω

ν



 =

[

eσexpSO(3)(ω) Wν

0 1

]

= S.

(8)

with W analogous to the known formula of Rodriguez.

W = eσ(I +
1− cos(θ)

θ2
(ω)x +

θ − sin(θ)

θ3
(ω)2x) (9)

The transformed feature map structure points are then fur-

ther aligned using an ICP[?] method employing an PCL li-

brary implementation. Fig.?? shows a visualization of the

geo-registered structure points of a feature map (depicted

as yellow points) in combination with the underlying 3D

LiDAR data. While the initial registrations (anchor fea-

ture maps) need a supervised initialization, subsequent im-

ages and feature maps can be automatically registered - e.g.

white point cloud Fig.??(c).

The approach of using overlay images is also exploited in

our monocular VO system. First we localize query images

using the descriptors in the feature map in order to create the

overlay image (resp. to determine a relocalisation transfor-

mation). We then generate a sparse depth image. However,

due to the LiDAR data resolution and point cloud structure

not all depth values are valid. Therefore we filter the depth

image and remove invalid depth values (e.g. far clipping

plane depth buffer values). The depth image can then be

used to initialize features or image regions using the struc-

ture projection approach. This is especially useful in case

of recently proposed dense mapping approaches [?].

3. Experiments and Results

We evaluate our geo-referencing method on a large set

of community drone videos. To this end we downloaded

over 115 drone videos and performed the outlined 3D fea-

ture map creation. Except for 17 videos we managed to

create locally consistent 3-D feature maps covering large

parts of San Francisco (e.g. Fig.??f). We downloaded

image collections (ca. 120000 images) from FlickR and

Panoramio around popular landmarks (Coit Tower, Alamo

Park, Golden Gate Bridge, Palace of Fine Arts, Golden Gate

Park, Embarcadero, AT&T Stadion) using a Phyton pro-

gramming interface.

3.1. Results

We performed the 3D feature map creation for reason-

able sized subsets (2000-5000 images) of the unstructured

image collections. However, our feature map pipeline is

not yet optimized for large unstructured image collections.

We managed to create and register small ground based fea-

ture maps for the Palace of Fine Arts (341/4950 regis-

tered/download images) and the Coit Tower (335/1498 im-

ages) sites. A combined ground/airborne registration of the

Palace of Fine Arts dataset is shown in Fig.??b-c).
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(a) (b) (c)

(d) (e) (f)

Figure 5. (a) Geo-localised SLAM trajectory and 3D feature map (yellow points) of the palace of fine arts (a-c). (b) Bundle adjusted camera

positions of the drone video feature map (white points). (c) geo-localised drone frame position and camera positions of a community photo

collection (FlickR) feature map. (d) Geo-localised SLAM trajectory (56 000 frames) and 3D feature map (yellow points) of the coit tower

area. Position (e) and orientation (f) camera trajectory distance (x,y,z) of the geo-referenced visual odometry module and a framewise

feature based geo-referenced trajectory (1200 frames).

3.1.1 LiDAR/Image Correspondences

We registered multiple video sequences to a LiDAR geo-

coordinate system and carefully checked the registration

results by visual inspection (see Fig.??). We determined

the intrinsic parameters of the cameras using auto calibra-

tion. We determined the ground truth projection matrices

(extrinsic and intrinsic parameters) for multiple camera im-

ages. We used a similar evaluation procedure as described

in [?] based on ROC curves by varying the matching thresh-

old (NN-distance ratio). However, we normalize the val-

ues based on the cardinality of the ground truth correspon-

dences. This enables a better comparison of different ap-

proaches w.r.t. standard parameters and low inlier rates.

The determination of True/False-Positives/Negatives was

based on the re-projection error of the projected 3D and 2D

local feature coordinates. In this way we determined cor-

rect correspondences for recall/precision curves (Fig.??).

The observed correspondence inlier rate ranged from 3%

to 7% depending on the evaluated images. Upright de-

scriptors (SURF) worked best in case of heterogeneous im-

age pairs. Rotational invariant feature descriptors showed

significantly lower inlier rates, since invariant descriptors

come usually at the price of reduced discriminance.

Figure 4. Normalized ROC curve for SIFT, SURF, FREAK and

ORB descriptors - LiDAR and optical image correspondences.

3.1.2 Video Trajectory Geo-Referentiation

To evaluate the accuracy of the trajectory optimization mod-

ule we measured the distances of bundle adjusted camera

motion sequences (BA) compared to the motion trajecto-

ries of our geo-referenced visual odometry module. We re-

constructed the motion and structure of 5 sequences (BA

over 1200 video frames) which served as ground truth data.
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We geo-referenced the SfM data according to the described

method and carefully checked the registration. We initial-

ized our VO pipeline by the registration of the first view and

the outlined structure projection. All subsequent frames are

determined by the VO pipeline. We calculate the average

distance of the camera centers in the metric geo-referenced

coordinate system of the LiDAR scans (UTM). W.r.t. the re-

localisation with geo-referenced structure our method pro-

duced drift free geo-data overlays at an average speed of

29.7 frames per second with an average positional error of

0.4m.

3.2. Runtime Experiments

The implementation (C,C++) is based on open source

software libraries (OpenCV,PCL,PBA) from the computer

vision community. Our processing chain is not runtime-

optimized. The measurements provide a rough performance

estimate. Out test system is equipped with a Core i7-980X

with an NVIDIA Titan X GPU with 12GB video mem-

ory. The 3D/3D registration takes around 1s while the fea-

ture based multi-rendering 2D/3D registration ranges be-

tween 15-30s due to the large number of putative 2D/2D

correspondences. Camera trajectory geo-referencing (VO

pipeline) takes around 34ms per frame. While the visual

odometry module is faster, relocalisation with the 3D fea-

ture map requires SIFT feature extraction, matching and

rendering the depth map overlay from the point cloud data.

4. Conclusion and Future Work

We proposed and implemented a video and image geo-
referencing processing chain for community photo and
video collections based on LiDAR data. We leverage com-
munity drone videos in order to bridge the gap between
ground and airborne imagery. The accurate registration of
heterogeneous data (e.g. LiDAR and video data) is still a
difficult vision problem due to strongly differing object ap-
pearances. We augment LiDAR data with appearance in-
formation (3D feature maps) from community video and
image collections in order to simplify subsequent registra-
tions. Given no additional information the system needs
only a minimum amount of supervision for the initial regis-
tration of a few anchor feature maps. After achieving a suf-
ficient visual coverage of the area the approach allows for
the fast automatic 6D geo-referencing of imagery from on-
line community collections. However, many properties of
our appearance based geo-referencing system still remain
open. We focus our work on the integration of metric learn-
ing and descriptor optimization methods in order to scale
our system to very large datasets by jointly leveraging im-
age to image and image to map registration techniques.
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(a) (b) (c)

Figure 6. Visualization of determined inlier-correspondences (a-c) between the 3D LidAR model and a single video frame from community

drone videos of San Francisco. The Multi-Rendering approach enables the generation of precise overlay images (point cloud renderings)

w.r.t. to the video frame by using either raw LiDAR intensity images (a) or textured LiDAR data renderings (b,c).

(a) (b) (c)

Figure 7. Drone camera images overlaid with edge images extracted from LiDAR intensity images generated with the same intrinsic

and extrinsic parameters. The registered overlay images are then used to project the structure and feature descriptors from the SfM

reconstructions of the drone videos onto the 3D LiDAR dataset.

(a) (b) (c)

Figure 8. Visualization of the geo-registered structure and feature maps (depicted as yellow points) with the underlying 3D LiDAR model.

While the initial registrations (anchor feature maps) need a supervised initialization, subsequent images and feature maps can be automat-

ically registered - e.g. white point cloud - (c).
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