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Abstract

Preserving the high dynamic irradiance of a scene is es-

sential for many computer vision algorithms. In this paper,

we develop a technique for high dynamic range (HDR) re-

construction from differently exposed frames captured with

CMOS cameras which use a rolling shutter (RS) to good

effect for reducing power consumption. However, because

these sensors are exposed to the scene row-wise, any un-

intentional handshake poses a challenge for HDR recon-

struction since each row experiences a different motion. We

account for this motion in the irradiance domain by picking

the correct warp for each row within a predefined search

space. The RS effect is rectified and a clean frame is propa-

gated from one exposure to another until we obtain rectified

irradiance corresponding to all the exposures. The rectified

irradiances are finally fused to yield an HDR map that is

free from RS distortions.

1. Introduction

Real world scenes possess a far greater dynamic range

than the images that capture them. The magnitude varies

in the order of 4 on a unit log scale (to the base 10) which

(obviously) cannot be accommodated in our digital frames.

This is due to shortcomings of the camera sensors. When

we capture an image, the camera lens refocuses all the scene

information onto the sensor. This undergoes processing

(both linear and non-linear) followed by quantization into

8 bit pixel values. Depending on the exposure time, the out-

of-range irradiance values result in either underexposed or

saturated intensities. Recovering this lost information (also

referred to as HDR reconstruction) has increasingly drawn

the attention of researchers [2, 3, 9, 11, 13] over the past

decade. A prevalent approach is to extract scene irradiance

by optimally combining information from multiple frames

captured with different exposure times. This also involves

estimating the camera response function (CRF) as part of

the procedure. Another scheme is image fusion [10] that

directly blends differently exposed intensity images. Based

on quality measures such as saturation and contrast, it finds

a weighted average of the input to yield the final output.

Though the above works are a good step forward, they

make the unreasonable assumption that a pixel depicts a

scene point at the same location in every frame. While a

camera can be held still for low exposure frames, camera

motion leading to alignment distortions is inevitable while

capturing a series of differently exposed frames. This issue

has been examined by a few researchers for cameras with

CCD sensors. As these sensors acquire data all at once, a

global motion model is commonly adopted. Lu et al. [8]

discuss the problem of obtaining HDR images from motion

blurred observations and jointly estimate the CRF, blur ker-

nels and latent scene irradiance. Vijay et al. [16] solve for

simultaneous deblurring and HDR imaging of a scene us-

ing a set of differently exposed and non-uniformly blurred

images.

With CCD giving way to CMOS sensors in modern

imaging devices, the focus of our work is on HDR for

CMOS cameras. A major distinction between the two is

in the shutter mechanism: while CCD sensors employ a

global shutter, CMOS sensors systematically use an elec-

tronic rolling shutter (RS) where the rows of the sensor are

scanned and read out at different times. Every row uses

a common read-out circuit which reduces power consump-

tion to less than 1/2 as compared to a CCD sensor of the

same size. However, unlike the CCD, every row of a CMOS

sensor experiences a different motion when there is relative

motion between the camera and the scene. Depending on

the camera path, this can cause RS induced distortions i.e.,

straight lines can appear bent. This renders motion estima-

tion difficult since pixels belonging only to the same row

have similar motion. For higher exposures, this may be ac-

companied by blur too.

The RS effect is a recent phenomenon and has already

been addressed by some researchers. In [1] motion is esti-

mated using L1 regularization by considering row-wise mo-

tion as high frequency and image motion as low frequency.

In [4],[15] motions for key rows are estimated and linearly

interpolated for the rest of the rows. Pichaikuppan et al.
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Figure 1. Multiple exposure frames affected by rolling shutter effect.

[12] model rolling shutter along with motion blur consider-

ing each row of the distorted frame as a weighted average

of warped versions of clean rows. They solve for change

detection in the presence of rolling shutter and motion blur.

It must be mentioned that these works assume identical ex-

posure for all the images. Although there are no works that

perform HDR imaging for RS affected images, there ex-

ists few schemes such as [5] that work at the sensor level.

They control the read-out timing and the exposure length

for each row by altering the logic of the control unit. In

this paper, we address the problem of HDR image construc-

tion for differently exposed RS affected images. We solve

for RS distortion frame-by-frame in the irradiance domain

and simultaneously perform rectification. We use an ex-

isting algorithm to determine the CRF and use the inverse

CRF to map intensity images to their respective irradiances.

Starting with the lowest exposure, we map the first pair of

irradiances to a common range and evaluate the motion be-

tween the two frames. We assume that the low exposure

frames are free from RS distortion since the displacement

of the camera in this short duration will be negligible. The

computed motion is used to rectify the distorted irradiance

so as to build a clean reference for the next higher exposure

frame. This propagation of reference from one exposure

to another yields rectified irradiances which are later fused

together to construct the final HDR map of the scene.

We assume the scene to be distant enough to be consid-

ered as planar. Because the camera motion is small in HDR

scenario, it can be well approximated by inplane transla-

tions with each row exhibiting a unique translation. Using

a high aperture, we can use low exposure times which in

turn results in negligible motion blur in the scene. A set of

differently exposed frames captured using an RS camera is

shown in Fig 1. Note that in the first image (a) and the last

image (d) the region of well-exposed pixels is almost mu-

tually exclusive. zoomed-in images (e-h) clearly depict the

rolling shutter effect across different frames with different

exposure.

The main contribution of this work is that it is the first at-

tempt of its kind for recovering an HDR image from rolling

shutter affected images captured with CMOS cameras. Also

solving for RS distortions between two frames belonging to

different exposures has not been attempted in the literature.

2. Rolling Shutter: Background

In this section, we explain in brief the working princi-

ple of the rolling shutter mechanism. In RS cameras, ex-

posure for each row starts sequentially with a certain delay

Td. Each row is exposed for time Te which is constant for

all the rows but spans different intervals of the total expo-

sure time. Thus each row is read at different times using the

same read-out circuit.

Consider an image with M rows and N columns. If ac-

quisition starts at time t = 0, then the ith row is exposed

during the time interval [(i− 1)Td, (i− 1)Td + Te]. The

total exposure of the frame is (M − 1)Td + Te. The time

delay Td is usually fixed for a camera. Hence, varying the

exposure time changes the duration for which each row is

exposed. If Te is very small, there will be no RS distortion

in the images. This is because the displacement of the cam-

era in such a short duration can be treated as negligible. This

value of Te can provide us with distortion-free low exposure

frames. When Te is increased (say to capture information

from low-lit regions of the scene), the camera motion will

introduce rolling shutter distortions in the image.

Let f be the irradiance corresponding to the clean frame

(without motion) and g be the irradiance obtained while

camera is in motion. In the above mentioned situation, the

ith row of the distorted irradiance g will correspond to the

ith row of the warped version of clean irradiance f . If we

consider the path followed by the camera as u(t), then we

can express each row of the distorted irradiance as

gi = f
(i)
u((i−1)Td)

for i = 1, 2, ...,M (1)

where f
(i)
u((i−1)Td)

is the ith row of the warped version of f

corresponding to the warp at time instant (i−1)Td. Starting

from t = 0, this is the ith sample of continuous camera

path u(t) considering Td as sampling period. As the scene

is distant and camera motion small, we can approximate the

warp during the exposure [(i− 1)Td, (i− 1)Td + Te] by a

single warp u((i− 1)Td)). If Te is made very high, then the

rolling shutter effect will also be accompanied with motion

blur. In this paper we consider exposure times such that

motion blur is minimal.
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3. RS-HDR Imaging

If different exposure images affected by RS are directly

subjected to HDR reconstruction, it will result in an HDR

map with local artifacts due to unaccounted RS distortion.

Hence, it becomes imperative to solve for the RS effect

across the set of images. Starting with the lowest expo-

sure, we consider consecutive pairs of images and evaluate

camera motion for each row. This is then used to rectify

the distorted frames which are subsequently used for final

HDR reconstruction. We are motivated to perform all op-

erations in the irradiance domain since the camera pipeline

does not preserve linearity in the intensity domain. We em-

ploy [2] to estimate the CRF from a carefully chosen set of

aligned images with different exposure settings. This en-

ables us to determine the irradiance values corresponding

to the intensities in an image using the inverse CRF. How-

ever, there are inherent difficulties in using these irradiance

values when estimating motion between frames. This is be-

cause images corresponding to different exposures need not

yield the same irradiance value at a given location. In fact,

the values are preserved only when they fall in an admissi-

ble range as discussed next.

3.1. Irradiance Remapping

When sensors are exposed to a scene, exposure X which

is the product of the irradiance E and exposure time ∆t is

collected on the film. Depending upon the exposure time,

different ranges of irradiances are selected by the CRF and

mapped to the intensity domain. Consider a scene with ir-

radiance having double precision values ranging from 0 to

R. This when multiplied by exposure time ∆t acts as input

to the CRF. Note from Fig. 2 that the CRF maps a definite

range [r1, r2] of X between 0 and 255. All values ≤ r1
are mapped to 0 while values ≥ r2 are mapped to 255. If

we consider two frames captured with exposure times ∆t1
and ∆t2, the first frame when mapped to irradiance domain

(using inverse CRF) will have values ranging from r1

∆t1
to

r2

∆t1
while it will be r1

∆t2
to r2

∆t2
for the second frame. As

the range corresponding to both the frames is different, mo-

tion estimation in rolling shutter affected images becomes

increasingly difficult. One solution to this issue is to in-

dividually pick pixels belonging to the intersection in both

frames and mask the others as zero. But this may lead to

insufficient number of common irradiance values. To per-

form correct motion estimation, we set a function m which

considers values that belong to the intersection of the two

sets and maps all values of the frame within this range.

m(x) =





x k1 ≤ x ≤ k2,

k1 x < k1,

k2 x > k2.

(2)

Here k1 refers to the max
(

r1

∆t1
, r1

∆t2

)
and k2 refers to

Figure 2. Irradiance to image mapping for different exposures.

min
(

r2

∆t1
, r2

∆t2

)
. Mapping all the values to a common range

[k1, k2] allows us to use these pixels for motion estimation.

In the above scheme, the only pixels we neglect are the sat-

urated pixels. Notice that in the common range [k1, k2]

these pixels are present only in the distorted frame i.e., the

frames with higher exposures. We discard these values us-

ing a partial Tukey window. We create a 512 point Tukey

window [16] and consider the second half as our mask to

select the useful pixels in the distorted frame while giving

low weights to the saturated pixels. To evaluate the warp,

the values in g must be compared with the warped versions

of f row-wise. Since f does not possess saturated pixels

post-mapping, m(x) helps in arriving at a correct estimate

of the motion between f and g. The pixels of g which pos-

sess a higher weight when passed through the partial Tukey

window are termed as ’useful pixels’.

3.2. Warp Estimation

We consider a block of rows around each row to ensure

that an adequate number of useful pixels are employed to

estimate the warp. Let this block be represented as Bi. Let

gi
b
∈ R

PiX1 be the useful pixels in Bi (stacked as a column

vector) where Pi is the number of useful pixels in Bi. We

consider a search space S and construct a matrix Hi

b where

each column of Hi

b contains the corresponding pixels in Bi

of the warped version of the clean irradiance f for a pose

τk ∈ S. S is the discrete pose space that we define, and

k ranges from 1 to |S| where |S| represents the number of

poses. Thus, Eq. 1 can be represented as
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Figure 3. Irradiance estimation for different exposures of RS affected images.

g
(i)
b = H

(i)
b ω

i such that ‖ω(i)‖0 = 1. (3)

Here, ω(i) is a vector with a single non-zero entry that se-

lects the correct warp in the search space defined by H
(i)
b .

To pick the warp in the search space with least error, we

perform

arg min
k

‖g(i) − f
(i)
k

‖22 (4)

Here f
(i)
k

is the kth column of H
(i)
b with k ranging from 1

to |S| representing all the poses in the search space.

For the blocks in the distorted frame which possess the

saturated region, very few useful pixels will be available for

estimation of the warp. The pose chosen in this case by

Eq. 3 may not be correct. We set a threshold to determine

such blocks and ensure correct estimation by resorting to

the following.

ω̃
(i) = argmin

ω(i)

{
‖gb

(i) −Hb
(i)
ω

(i)‖22 + λ1‖ω
(i)‖1

}

subject to ω
(i) � 0

(5)

Instead of picking a single warp we allow ωi to select mul-

tiple warps. This is done using least squares which forms

the data term in Eq. 5. In addition to this, we impose an

L1 prior on ω to ensure sparsity in the search space. The

regularization parameter corresponding to this prior is cho-

sen high enough so that it picks a single warp or utmost few

warps to yield a centroid which is equivalent to the correct

warp. When it selects multiple warps, the centroid pose is

calculated as

τc
i =

∑
ω

(i)
τk

τk
i

∑
ω

(i)
τk

(6)

In order to ensure continuity of motion through the rows,

we build a search space for each block considering a neigh-

borhood around the estimated pose of the previous block.

For every pair of frames we start with a block around the

middle row since the first and last rows may yield wrong

estimates due to loss of information at the boundaries. Con-

sider Nb = {τc + ns : τc − l < τc + ns < τc + l, n ∈ Z}
where τc is the estimated pose from the previous block, l

is the bound considered around the pose, and s is the step

size. We initialize a large pose space for the block around

the middle row and consider neighborhood Nb for the rest

of the blocks.

3.3. Irradiance Rectification

Once the motion for each row has been estimated, we

rectify the distorted frame using scattered interpolation in

conjunction with the estimated camera motion. We apply

inverse motion on every pixel of the RS image. As forward

mapping from RS image can leave holes, we define a

triangular mesh over this grid and resample over the regular

grid using bicubic interpolation. The rectified irradiances

are converted into images using the known CRF and given

as input for irradiance estimation. Using Debevec and

Malik’s method [2] the different exposure rectified images

are optimally combined to extract the scene irradiance.

This is then remapped to match the low dynamic range of

the display by tone mapping [14].

Summary of our algorithm: We begin by setting a

threshold Tu for the exposure time. All frames with ex-

posure duration less than or equal to Tu are considered to

be free from rolling shutter distortion. Any frame from this

set can be considered as clean reference for the next frame

in the set. We consider frame 1 as clean frame and frame

2 as distorted frame. Both frames are converted to their

respective irradiances using the known CRF. These irradi-

ances are then mapped to a common range using Eq. 2 to

yield new irradiance maps (say) fr and gr, respectively. In

order to determine the useful region of the distorted frame

gr we consider overlapping blocks containing b (predefined
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(a)

(A)

(b)

(B)

Figure 4. (a) Images captured with exposure times 0.05s, 0.08s, 0.1s and 0.2s. (A) Magnified portions of images in (a). (b) Rectified images

corresponding to images in (a). (B) Close-up of corresponding regions from images in Fig.4(b).

number) rows around each row and pass it through a partial

Tukey window. Starting with the block closest to the middle

row, we consider a search space and find the corresponding

block of warped versions of clean frame for every pose in

the search space. The correct pose is estimated using Eq. 4.

We use Eq. 5 when number of useful pixels is insufficient

in the block. We set a threshold and evaluate warp for a

block only if number of useful pixels in the block is greater

than the threshold. Warps for the rest of the blocks are in-

terpolated using the warps evaluated for these blocks. Once

the warps are estimated for each row, the distorted frame is

rectified using inverse warping to yield the reference for the

successive frame in the set.

4. Experiments

To validate our algorithm we show results on both syn-

thetic and real data. For the synthetic case, we begin by

assuming a still camera to capture different exposure im-

ages without distortions. We then simulate the RS effect on

the higher exposure frames for a given camera path. In the

case of real experiments we use a Google Nexus 4 mobile

camera to capture the desired images of different exposures

affected by RS distortions.

4.1. Synthetic Experiments

We capture frames with different exposure times using

Canon E60. We set up a scene containing a stack of books

illuminated on the side using a table lamp. The CRF for

this camera is derived using the code of [2]. The same cam-

era settings were used in our experiments too. This also

provides us with a clean irradiance of the scene. Using dif-

ferent camera paths for different images, we simulate the

rolling shutter effect on the irradiance of the scene. We gen-

erate a camera path u(t) and fix a time delay that is used in

order to yield samples u((i − 1)td) for i = 1..N (N corre-

sponds to the number of rows in the image). The distorted

frame is generated by considering the ith row of the irradi-

ance warped in accordance with the pose u(itd) following

Eq. 1. This is multiplied with the exposure time and con-

verted into an image using the known CRF. Fig. 4(a) depicts

the synthetically generated RS affected frames for different

exposure times. We consider exposure times varying from

0.02 to 0.2 seconds. We set threshold as 0.02 seconds below

which all frames are clean with no visible RS distortions.

Fig. 4(A) contains the magnified portions of the images in
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(b2) (c2) (d2) (e2)

Figure 5. (b2-e2) These plots display the actual and estimated camera trajectories of frames in Fig.4(b) with respect to clean images in

Fig.4(a).

(a) (b) (c) (d) (e) (f)

Figure 6. (a) Irradiance obtained without RS rectification. (b) Result of [6]. (c) Irradiance obtained using our method. (d-f) Maginified

regions of Fig.6(a-c) respectively.

Fig. 4(a) to reveal the presence of RS effect in the observa-

tions.

We set the size of block as 3 rows and initialise the search

space for the middle block in each image. We then in-

put these images to our algorithm that estimates the correct

camera pose for each row and each image. The estimated

camera trajectories are compared with the actual paths as

shown in Fig.5. These warps are used to rectify the distorted

frames to get clean images with different exposures in Fig.

4(b). We can clearly observe from Fig.4(B) that the curved

lines have been correctly rectified (the edge of the book ap-

pears the same and straight in all the zoomed-in patches).

The rectified images are used for irradiance estimation and

displayed after tone mapping.

In contrast, if we give RS affected images as input for

irradiance reconstruction using [2] we get the result in Fig.

6(a). Notice in Fig. 6(d) that the RS effect results in mul-

tiple curved edges or artifacts around a single edge. Fig.

6(b) shows results obtained with [6] but without applying

the ghosting effect since our scene is static. This method

aligns the images using SIFT and constructs HDR using a

generalized weighted filtering technique. Even though SIFT

is used, note that it is unable to remove the RS distortion

completely. This is understandable as [6] is not designed to

solve for RS distortions. Our result is displayed in Fig.6(c)

after tone mapping while corresponding zoomed-in patch is

shown in Fig. 6(f) which clearly reveals the strength of our

method in rectifying the RS effect. This serves to underline

the importance of our work.

4.2. Real Experiments

Fig.7 shows results on two different real data captured

using Google nexus 4 with exposure values ranging from

-2 to 2 with -2 being the lowest exposure (without any

distortion). The RS distortion can be clearly seen in the

close-up of patches in Fig. 7 (A) and Fig. 7(C) for the

first and second example, respectively. The lower exposure

value frames contain information which appear saturated in

the higher exposures. On the other hand, high exposures

contain information not visible in the low exposure frames.

These images were given as input to our algorithm for HDR

reconstruction. The intermediate results which are the rec-

ified images are displayed in Fig. 7(b) and Fig. 7(d). The

close-up patches in Fig. 7(B) and Fig. 7(D) display the

rectification results obtained for each exposure frame. We

can clearly observe in these images that all the edges are

correctly aligned. These rectified images are then used to

obtain the irradiance of the scene which is displayed in Fig.

8(c1) and Fig. 8(c2). In both cases, we observe the result

is devoid of saturation effects and the intensities are propor-

tional to the actual irradiance values in the scene.

We also compare our results with the methods in [2] and

[6]. Using [2] we obtain the results shown in Fig. 8(a1) and

Fig. 8(a2). These images show significant artifacts. In Fig.

8(b1) and Fig. 8(b2) we display the results obtained using

[6]. When we compare these outputs, we observe that our

scheme consistently outperforms these competing methods

by delivering rectified irradiances that are free from RS dis-

tortions.
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(a) (A)

(b) (B)

(c) (C)

(d) (D)
Figure 7. (a) Input for the first real example. (b) Rectified images for (A). (A) and (B) Close-up of patches in (a) and (b), respectively. (c)

Input for second real example. (d) Rectified images for (C). (C) and (D) zoomed-in patches of (c) and (d), respectively.

(a1) (b1) (c1) (d1) (e1) (f1)

(a2) (b2) (c2) (d2) (e2) (f2)

Figure 8. First real example: (a1) Irradiance obtained without RS rectification (b1) Result of [6]. (c1) Irradiance obtained using our

algorithm. (d1-f1) Maginified regions of (a-c), respectively. Second real example:(a2) Irradiance obtained without RS rectification. (b2)

Result of [6]. (c2) Irradiance obtained using our method. (d2-f2) Maginified regions of (a2-c2) respectively.
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4.3. Algorithm complexity and runtime

For each block of rows in the image we get the correct

warp either using Eq. 4 or Eq. 5 dependng upon the num-

ber of useful pixels present. We pick the correct warp in a

single iteration for Eq. 4 whereas we use a gradient projec-

tion based approach to solve the L1-minimisation problem

in Eq. 5 using SLEP [7]. It requires a sparse matrix-vector

multiplication with order less than O(Pi|S|) and projection

into a subspace with dimension Pi in each iteration. Here

Pi is the number of useful pixels whereas |S| is the number

of poses. Running time for (single image) using an unop-

timised MATLAB code without any parallel programming

on a 3.3GHz PC with 16GB RAM is 932 seconds of which

evaluating motion requires 725 seconds whereas rectifying

the RS affected image requires 207 seconds.

5. Conclusions

In this paper, we developed an HDR technique that com-

bines information from different exposure frames captured

using CMOS cameras. Due to row-wise acquisition, the

higher exposure frames tend to exhibit RS distortion due

to incidental camera motion. We solved for RS distortions

on a frame-by-frame basis by bringing different exposure

frames within the same region of scene irradiance and es-

timating the motion for each row of a distorted frame with

respect to a previously derived clean frame. This involved

rectification and propagation of clean frames from one ex-

posure to another. The rectified irradiances were fused to

get an RS-free HDR image. The method was validated on

real as well as synthetic examples. Scope exists to extend

this work to include the effect of motion blur too.
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