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Abstract

Commercial Light-Field cameras provide spatial and an-

gular information, but its limited resolution becomes an im-

portant problem in practical use. In this paper, we present

a novel method for Light-Field image super-resolution (SR)

via a deep convolutional neural network. Rather than the

conventional optimization framework, we adopt a data-

driven learning method to simultaneously up-sample the

angular resolution as well as the spatial resolution of a

Light-Field image. We first augment the spatial resolution of

each sub-aperture image to enhance details by a spatial SR

network. Then, novel views between the sub-aperture im-

ages are generated by an angular super-resolution network.

These networks are trained independently but finally fine-

tuned via end-to-end training. The proposed method shows

the state-of-the-art performance on HCI synthetic dataset,

and is further evaluated by challenging real-world applica-

tions including refocusing and depth map estimation.

1. Introduction

Recently, light-Field (LF) imaging introduced by Adel-

son and Bergen [1] has come into the spotlight as the next

generation camera. A LF camera is able to acquire spatial

and angular information of light ray distribution in space,

therefore it can capture a scene from multiple views in a

single photographic exposure.

Starting from Lytro [19] and Raytrix [21], commercial

LF cameras have demonstrated their capabilities to exhibit

refocusing and 3D parallax from a single shot. With richer

angular information in a LF image, many studies have

shown the potential to improve the performance of many

computer vision applications such as alpha matting [6],

saliency detection [17], LF panorama [3], and depth recon-

struction [27, 33, 13].

Along with such advantages of the LF imaging, several

researches also have pointed out that the low spatial and

angular resolution of LF images becomes the main diffi-

culty in exploiting its advantage. The LF imaging has a

trade-off between a spatial and an angular resolution in a

restricted sensor resolution. A micro-lens array, placed be-

tween a sensor and a main lens, is used to encode angular

information of light rays. Therefore, enhancing LF images

resolution is crucial to take full advantage of LF imaging.

For image super-resolution (SR), most conventional way

is to perform optimizations with prior information [16, 26].

The optimization-based approach shows many promising

results, however it generally requires parameter tuning to

adjust the weight between a data fidelity term and a prior

term (e.g., local patch sizes, color consistency parame-

ters, etc.). Away from the optimization paradigm, recently

data-driven learning methods based on deep neural network

models has been successfully applied to image SR [8, 11].

One major benefit of these learning approaches is their gen-

eralization ability. If training data is sufficiently large to fit

a model and the data covers a wide range of distributions

of expected test images, we can expect generalized perfor-

mance even without careful engineering to control the dis-

tributions.

The goal of this paper is to obtain a set of high-resolution

LF images with a data-driven supervised learning approach.

Here, the SR target includes the number of sub-aperture im-

ages as well as the number of spatial pixels. Similar to the

CNN-based SR method, proposed by Dong et al. [11], we

also adopt a deep convolutional neural network (CNN) [9]

and solve this problem by CNN-based regression with an

Euclidean cost.

There are different lines of work that adopt deep learning

frameworks to solve image restoration problems, including

SR [11, 8], denoising [12] and deblurring [32, 25]. Com-

pared to them, our major focus lies on LF imaging, which

is the specific domain having different restoration problems

and applications. While the previous learning approaches

deal with the images captured from standard cameras, this

paper is, to our knowledge, the first successful trial that ap-

plies the CNN framework to the domain of LF images. Our

method, named Light-Field Convolutional Neural Network

(LFCNN), augments the number of views as well as spatial

resolutions for further benefits in accurate depth estimation

and refocusing.
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Figure 1. (a) Ground-truth sub-aperture image. (b) An averaged

image of adjacent sub-aperture images. (c) Each of sub-aperture

images in (b) is upsampled by SRCNN [11], then averaged. (d)

Our result.

2. Related Work

Deep learning for image restoration Recently, the deep

learning approach has been successfully applied to the

image restoration problems such as SR [8, 11], denois-

ing [2, 12, 22] and image deblurring [25, 32]. Schuler et

al. [22] show that a multi-layer perceptron can solve an im-

age deconvolution problem. Agostinelli et al. [2] combine

multiple denoising autoencoders to handle various types of

noise. Several CNN models also have been addressed to

solve image restoration. Eigen et al. [12] propose a CNN

to remove raindrops and lens dirts. Xu et al. [32] propose a

cascaded CNN for non-blind deblurring. The first network

is for deconvolution and the second network is built based

on [12] to remove outliers. Sun et al. [25] design a CNN for

non-uniform motion blur estimation with Markov Random

Field.

Our framework is motivated by Dong et al. [11] who re-

late the sparse representation to the stacked nonlinear oper-

ations to design a CNN for a single image SR. Compared to

[11], our LFCNN jointly solves the spatial and angular SR

specialized for LF imaging. Therefore, our method presents

much accurate high-resolution novel views than the tra-

ditional multi-dimension interpolations and optimization-

based methods as shown in Fig. 1.

SR for Light-Field imaging Since hand-held LF cam-

eras are released, LF images suffer from a lack of spa-

tial and angular resolution due to a limited sensor reso-

lution. Bishop and Favaro [4] present a Bayesian infer-

ence technique based on a depth map for a LFSR. Cho et

al. [7] present a method for Lytro image decoding and sub-

aperture images generation. They also propose a dictio-

nary learning based sub-aperture image SR. Shi et al. [24]

present LF signals reconstruction using sparsity in con-

tinuous frequency domain. The sparse signal can be re-

covered by optimizing frequency coefficients using a 2D

sparse Fourier transform reconstruction algorithm. These

approaches only up-sample either spatial or angular reso-

lution of a LF image, which limits the performance of LF

applications such as a realistic digital refocusing and depth

estimation.

There are recent studies to achieve spatial and angular

SR simultaneously. Wanner and Goldluecke [29] intro-

duce a variational LFSR framework by utilizing the esti-

mated depth map from Epipolar plane image. Mitra and

Veeraraghavan [20] propose a patch-based approach using

a Gaussian Mixture Model prior and a inference model ac-

cording to disparity of a scene. However, the low quality

LF images captured by commercial LF cameras degrade the

performance of these approaches.

We refer readers to [18] for a detailed description about

theoretical analysis on the source of the achievable reso-

lution given by micro-lens LF cameras. In [18], the au-

thors mention that a prefilter kernel for LF rendering should

vary as depth-dependent and spatially-variant. The unique-

ness of our network is that specific networks for angular

and spatial resolution enhancement have the merit of sub-

aperture images recovery regardless of scene depth and spa-

tial variance. As will be demonstrated in our experiments,

our framework is highly effective and has outperformed the

state-of-the-art algorithms in LFSR from a lenslet LF im-

age.

3. Limitations of EPI Processing

One major benefit of LF images over conventional im-

ages is access to Epipolar plane image (EPI) which is 2D

slices of constant angular (vertical resolution) and spatial

direction (horizontal resolution). As the EPI is only con-

sisted of lines with various slopes, it makes image process-

ing and optimization tractable and previous work [30] per-

formed LFSR on the EPI. However, we have found two

practical problems that we cannot use EPIs for LFSR using

CNN frameworks, especially when we consider commercial

LF cameras.

While the resolution to the spatial axis is sufficient, the

number of sub-aperture images are too few (e.g. 9×9 or

5×5) to suitably apply multiple convolutional layers for

sub-aperture SR. This becomes a serious problem because

we aim to enhance both angular and spatial resolution of a

LF simultaneously. Performing convolutions across such a

small axis results in loss of substantial portion of angular in-

formation in both ends edge, whereas this loss in the spatial

axis is minor due to their enough resolution.
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Figure 2. Overview of our LFSR framework. Stacked input images are up-scaled to a target resolution by the bicubic interpolation, and are

fed to the spatial SR network. Each color box represents a horizontal, a vertical and a surrounding input pair, respectively. The output of

the spatial SR network is used as the input of the angular SR network. The angular SR network produces high-resolution novel views.

The other problem is that LF images captured by com-

mercial LF cameras suffer from severe artifacts such as lens

aberration, microlens distortion and vignetting as discussed

in [14]. The artifacts have a negative impact on EPIs. When

we capture a planar scene, we observe spatially-variant EPI

slopes due to the artifacts. The degree of the distortion ad-

ditionally varies for each sub-aperture image. A micro-lens

array, placed between sensor and main lens, to encode an-

gular information of rays also raise the problem. The micro-

lens array occludes lights and leads to a reduced signal-to-

noise ratio. Even with only a few pixels near EPI slopes

which are corrupted by the noise, processing on EPIs may

fail to show promising results. Therefore, a practical way

to super-resolve LF images should be considered to solve

the issue which we should address now in order to take full

advantage of LF images.

4. Joint SR for Light-Field imaging

4.1. Overview

We propose a new deep learning structure, which jointly

increases the resolution in both the spatial domain and the

angular domain. Fig. 2 is an overview of our LFCNN model

composed of a spatial SR network and an angular SR net-

work. The spatial SR network, which is similar to [11], en-

hances spatial resolution, and the angular SR network aug-

ments the number of sub-aperture images. A pair of neigh-

boring sub-aperture images is initially interpolated by a de-

sired up-scaling factor, then is fed to the spatial SR network

to recover high-frequency details. The output of the spatial

SR network is fed to the angular SR network which produce

a novel view between the input sub-aperture images. The

reason why we first place the spatial SR network followed

by the angular SR network will be discussed in Sec. 4.4. In

the example shown in Fig. 2, we obtain three up-sampled

images where one of them is a novel view generated from

the pair of input sub-aperture images.

4.2. Spatial SR network

Our spatial SR network is similar to [11] but takes and

outputs dual-images (n = 2) or quad-images (n = 4), be-

cause multiple images are required to generate a novel view

between them. As illustrated in Fig. 2, the spatial SR net-

work is composed of three convolution layers, and the lay-

ers are composed of 64 filters of 9 × 9 × n size, 32 filters

of 1× 1× 64 size, and n filters of 5× 5× 32 respectively.

The first two layers are followed by ReLU layer. We feed

input images to the network after we initially interpolate the

images by a desired upsampling factor (×2 in this paper).

4.3. Angular SR network

A simple way to produce a novel view between two

neighboring sub-aperture images is to apply the bilinear in-

terpolation to the sub-aperture images. Such simple interpo-

lation introduces the loss in high-frequency information and

results in blurred edges. Wanner and Goldluecke [29] addi-

tionally use an accurate depth map as a geometric guidance

and perform angular SR. However, in practice, LF images

26



from commercial LF cameras have very narrow baseline,

therefore it is very difficult to estimate a reliable depth map

and to utilize the estimated depth map as a guidance.

To tackle these difficulties, we employ a data-driven su-

pervised learning approach because numerous training sam-

ples can be easily formed. For example, let us consider a

row of a LF image array. The i-th sub-aperture image can

be regarded as a ground truth of a novel view between the

(i−1)-th and (i+1)-th images. We then can train a mapping

function from sub-aperture images to a novel view between

them via stacked non-linear operations. As the mapping

function, we adopt a CNN composed of three convolution

layers, named angular SR network, as depicted in Fig. 2.

This network takes n images and produces one novel view.

The first, second and third convolution layers are composed

of 64 filters of 9× 9× n size, 32 filters of 5× 5× 64 size,

and a filter of 5× 5× 32, respectively. The first and second

layers are followed by ReLU layer.

To fully augment a given (M × M)-view array into a

(2M − 1) × (2M − 1)-view array, we compose three an-

gular SR networks taking three different types of input: a

horizontal pair (n = 2), a vertical pair (n = 2) and sur-

roundings (n = 4). The surrounding type takes four sub-

aperture images located in each corner of a target view. The

three networks has the same architecture except the depth n

of filters in the first convolution layer.

4.4. Spatial­angular SR vs angular­spatial SR

In our cascaded SR strategy, we are able to consider the

angular-spatial SR scheme as well as the spatial-angular

scheme of Fig. 2. These two options also show quite simi-

lar performances according to the evaluation (Table 1) on

the synthetic HCI dataset. However, we empirically ob-

serve that, in the real-world experiment, the spatial-angular

SR shows better performance in general compared to the

angular-spatial SR. As shown in Fig. 4, the spatial-angular

SR produces much shaper results, while the angular-spatial

SR produces blurred images. Since low-resolution sub-

aperture images are fed into the angular SR network first

in case of the angular-spatial scheme, the details in low res-

olution images may not be well-localized in a novel view,

therefore the details in the novel view result in inaccurate

edges and points through the spatial SR network. On the

other hand, the spatial-angular SR scheme produces clean

images in general because the localization ambiguity is re-

duced.

5. Training LFCNN

To train the spatial SR network, we need a bunch of pairs

of blurred input and sharp ground-truth patches. Following

[11], we synthesize blurred images from original images.

We first down-sample original images and up-sample them

again using bicubic interpolation to produce the blurred ver-

(a) Ground-truth

(b) Angular-spatial SR + FT (PSNR: 36.94dB, 37.48dB)

(c) Spatial-angular SR + FT (PSNR: 36.92dB, 37.64dB)

Figure 3. Qualitative comparison according to the order of SR net-

works on synthetic images.

sion of original images. Then, the patch from an original

image is regarded as a ground-truth and the patch from the

corresponding blurred image becomes an input. From the

pairs of blurred and sharp LF images, we randomly crop

44 × 44 × n size patches in the same region of n neigh-

boring sub-aperture images. The output patch is reduced

to 32× 32× n dimensions because of stacked convolution

operations with spatial filters.

In the angular SR network, the size of an input patch

should be same to the output dimension (32 × 32 × n) of

the previous spatial SR network. We therefore randomly

crop 32 × 32 × 1 size patches in the same region from n

surrounding sub-aperture images for input patches and from

the corresponding central sub-aperture images for ground-

truth patches.

We use Caffe[15] to implement and train our LFCNN.

The spatial and angular SR networks are initialized by ran-

dom weights with a Gaussian distribution of a zero mean

and a standard deviation of 10−3. With an Euclidean cost,

these networks are trained independently but finally fine-

tuned in an end-to-end manner. For end-to-end fine-tuning,

we simply connect the last layer of the spatial SR network
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(a) A high-resolved novel view from the spatial-angular SR network

(b) A high-resolved novel view from the angular-spatial SR network

Figure 4. Qualitative comparison according to the order of SR net-

works on a real-world SR image.

to the first layer of the angular SR network. In this case,

44× 44×n-dimensional input is fed to the whole network,

and the network is supervised with 32×32×1-dimensional

ground-truth patches. Following [11], the learning rate is

set to 10−4 for the first two layers and 10−5 for the last

layer in each network. For the end-to-end fine-tuning, we

decrease the learning rates to 10−5 and 10−6.

6. Experiments

We evaluate our LFCNN on both synthetic real-world

datasets. We also apply our LFCNN to the challenging real-

world applications such as refocusing and depth-map esti-

mation.

6.1. Synthetic dataset

To compare our method with the state-of-the-art LFSR

approaches [20, 29], we select “Buddha” and “Mona” in

the HCI dataset [31] as test images because these two im-

ages have fine structures and large depth variations. The

remaining 10 images in the HCI dataset are used for gen-

erating patches to train LFCNN. Given this small dataset

having only 12 images, it is the best choice for us to secure

10 images as training data since it is preferred to have large

numbers of training data for the best performance of our

CNN-based approach.

We train and test our LFCNN in the following SR set-

ting: spatial SR from a 384×384 size image to a 768×768
size image, and angular SR from a 5 × 5 size LF array to

a 9 × 9 size LF array. For training, we extract 1,200,000

patches of 44 × 44 size from the training images. We train

each network by 108 iterations and fine-tune the whole net-

work by 25,000 iterations.

Table 1 shows the result of quantitative evaluation on the

HCI dataset. For the evaluation, we compare our method

with the state-of-the-art methods [20, 29] as well as the stan-

dard interpolation methods as baselines (4D bilinear and 4D

bicubic). The results of [20, 29] are obtained by the source

codes provided by the authors 1, where we carefully tune

the parameters to maximize performance. To analyze the

performance according to the architectural schemes of our

method, we place the angular SR network at first followed

by the spatial SR network, and vise versa. For each scheme,

we also fine-tune the whole networks in an end-to-end train-

ing manner, which is noted by “FT”.

The peak signal-to-noise ratio (PSNR) and the gray-scale

structural similarity (SSIM) [28] are used as the evaluation

metrics. To examine robustness to scene dependency, we

measure the PSNR and SSIM scores of all the estimated

novel views and report the minimum, average, and max-

imum values of them for each dataset. As shown in Ta-

ble 1, our method consistently yields higher PSNR and

SSIM scores than the other methods even without fine-

tuning. Before end-to-end fine-tuning, the angular-spatial

scheme shows the best performance. The end-to-end fine-

tuning consistently improves the performance of our ap-

proach in general. After fine-tuning, two schemes of our

approach show negligible difference and largely outperform

the state-of-the-art methods [20, 29]. Fig. 3 shows our re-

sults according to the different architectural schemes for

qualitative comparison.

6.2. Real­world dataset

Due to the numerous number of parameters in CNN,

many previous image restorations methods based on CNN

[8, 11, 12, 25, 32] generate training samples from Ima-

geNet after the task-specific image processing. However,

in our case, there are insufficient number of public LF im-

ages. In addition, the public LF datasets have different an-

gular resolutions, which result in different depth variations

across the datasets. Thus, combining these datasets to make

one large set of LF images for training is impossible. We

therefore took more than 300 scenes having various tex-

1The authors of [20] provided their source code to us. For [29],

the source code was downloaded at http://hci.iwr.uni-heidelberg.de/HCI/

Research/LightField/old page/
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PNSR(dB) SSIM

Methods Buddha Mona Buddha Mona

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Bilinear 33.57 33.66 33.78 34.14 34.25 34.32 0.9036 0.9151 0.9242 0.9242 0.9291 0.9320

Bicubic 34.22 34.63 35.14 34.10 34.20 34.25 0.9251 0.9334 0.9466 0.9484 0.9496 0.9512

SpatialSR(Bicubic)+AngularSR(ours) 35.68 35.79 35.87 35.80 35.91 35.99 0.9284 0.9293 0.9300 0.9362 0.9364 0.9367

AngularSR(ours)+SpatialSR(ours) 36.54 36.64 36.71 37.10 37.20 37.28 0.9550 0.9557 0.9565 0.9657 0.9659 0.9662

AngularSR(ours)+SpatialSR(ours)+FT 36.78 36.86 36.94 37.31 37.40 37.48 0.9571 0.9580 0.9589 0.9667 0.9669 0.9671

SpatialSR(ours)+AngularSR(ours) 35.76 35.87 35.93 36.25 36.33 36.39 0.9466 0.9475 0.9481 0.9575 0.9578 0.9580

SpatialSR(ours)+AngularSR(ours)+FT 36.71 36.84 36.92 37.46 37.56 37.64 0.9549 0.9558 0.9565 0.9637 0.9640 0.9644

Mitra and Veeraraghavan [20] 22.61 26.76 32.37 24.36 28.11 34.53 0.6105 0.7764 0.9126 0.6328 0.7728 0.9563

Wanner and Goldluecke [29] 21.77 25.50 33.83 25.46 29.62 36.84 0.5251 0.6502 0.9107 0.5977 0.7432 0.9441

Table 1. Quantitative evaluation on the synthetic HCI dataset. Our approach significantly outperforms the state-of-the-art methods.

(a) Bilinear (b) Bicubic (c) Mitra and Veeraraghavan [20] (d) Our spatial-angular SR.

Figure 5. Qualitative comparisons on real-world datasets. Input images are enhanced by a factor of 2.

tures and depth with a Lytro Illum camera for training over

real-word LF images. We extract 5×5 sub-aperture images

with 383×583 spatial resolution from the real LF images

using the LF geometric toolbox provided by [5]. We extract

2,000,000 patches of 44× 44 and train each network in the

same manner as stated in the synthetic experiment.

In Fig. 5, we demonstrate the upsampling results for

qualitative evaluation on the real-world dataset because our

real-word dataset does not have ground-truth data. The scal-

ing factor is 2 for both of spatial SR and angular SR. For

comparison, we also demonstrate the results of the state-of-

the-art method [20] and two standard interpolation methods

including 4D bilinear and 4D bicubic. For [20], we rig-

orously tuned the parameters to gain the maximum perfor-

mance2. Both 4D bilinear and 4D bicubic produce blurred

2This method is based on EPIs and is sensitive to the disparity pattern

which depends on the depth of the scene. There is difficulty in handling LF

images captured by LF cameras since the EPIs are noisy and inaccurate.
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(a) Bilinear (b) Bicubic (c) Mitra and Veeraraghavan [20] (d) Our spatial-angular SR.

Figure 6. Refocused images after applying different upsampling methods. The images in the first and third row are focused on a nearby

object. The images in the second and fourth row are focused on a distant object.

results because these methods fail to interpolate a novel

view with a large depth variation. Especially, the nearby

regions of the images having larger disparity between adja-

cent views suffer from inaccurate angular SR. On the other

hand, our method produces much sharper results. These re-

sults clearly demonstrate that our cascaded learning frame-

work works as well on real-world data.

It is worth to mention that the method proposed by Wan-

ner and Goldluecke [30] completely fail to work on our real-

world dataset. The performance of the method [30] highly

depends on the quality of estimated disparity maps. As dis-

cussed in [27, 14], the EPI-based approach may fail to gen-

erate reliable depth maps due to very narrow baseline and

severe noise of LF images from a Lytro camera.

6.3. Applications

In this section, we demonstrate that the proposed method

can enhance real-word LF imaging applications such as re-

focusing and depth estimation. Fig. 6 shows the refocusing

results after applying different upsampling methods. We

used the Light Field Toolbox [10] to generate refocusing re-

sults and tuned the user-controllable parameters of the tool-

box to maximize the visual quality of the results. The fo-

cused regions of our method have sharper details than that

of the other methods.

We also apply our method for depth estimation from a

LF image. We used a stereo matching-based depth estima-

tion algorithm [14] to find correspondences between sub-

aperture images. As stated in [14], a LF image with high

spatial and angular resolution is preferred to obtain accurate

correspondences. In Fig. 7, we compare the estimated depth

maps before and after applying our upsampling. The depth

map from the upsampled image preserves fine details well

as the high resolution image is more accurately discretized

than the original image.

7. Conclusion

In this paper, we have presented the deep convolutional

network for light-field image super-resolution. Our network

has been concatenated with the spatial SR network and the
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(a) A sub-aperture image

(b) Depth estimation from an original LF image

(c) Depth estimation after applying our upsampling method

Figure 7. Comparison of depth estimation before and after apply-

ing our upsampling.

angular SR network to enhance the spatial and angular reso-

lution together. Therefore, our method can produce a high-

resolution sub-aperture image in the novel view between ad-

jacent sub-aperture views. We have demonstrated the effec-

tiveness of our method through synthetic and real-world ex-

periments compared to state-of-the-art LFSR methods. We

also have applied our method to various applications such

as image refocusing and depth estimation, and have shown

promising results. In the future, we expect to extend our

approach into temporal SR of light-field image sequences

similar to [23].
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