
 

 

 

 

 

 

Abstract 

 

Metamer mismatching (the phenomena that two objects 

matching in color under one illuminant may not match 

under a different illuminant) potentially has important 

consequences for color-based machine vision.  Logvinenko 

et al. [1] show that in theory the extent of metamer 

mismatching can be very significant. This paper examines 

metamer mismatching in practice by computing empirical 

metamer mismatch volumes. A set of more than 20 million 

unique reflectance spectra is assembled using datasets 

from several sources. For a given color signal (i.e., RGB 

or CIE XYZ) recorded under a given first illuminant, its 

empirical metamer mismatch volume for a change to a 

second illuminant is computed as follows: the reflectances 

having the same color signal when lit by the first illuminant 

(i.e., that are metamers) are computationally relit by the 

second illuminant and the convex hull of the resulting color 

signals then defines the empirical metamer mismatch 

volume. The volume of these volumes is shown to vary 

systematically with Munsell value and chroma. The 

centroid of the empirical metamer mismatch volume is also 

tested as a predictor of what a given color signal might 

become under a specified illuminant. 

 

1. Introduction 

Metamer mismatching [2] refers to the fact that two 

objects reflecting metameric light under one illumination 

may reflect non-metameric light under a second; so two 

objects appearing as having the same colour under one 

illuminant may have different colours under a second. 

Metamer mismatching has important consequences for 

computer vision since the light illuminating an object is 

frequently changing, for example as it moves from direct 

sun to shadow, or when the lights are turned on in a room, 

or the image is taken at a different time of day, or the 

object is viewed under fluorescent light at one moment 

and tungsten light at another.  

As Logvinenko et al. [3] argues, metamer mismatching 

imposes limits on color constancy since even when the full 

spectra of the two illuminants are known there is an 

inherent ambiguity in terms what a given colour signal 

(i.e., camera RGB or CIE XYZ coordinates) under a first 

illuminant will become under a second illuminant.  

In the computer vision and color constancy fields, it is 

generally assumed that the color of an object is an intrinsic 

property of the object and hence the focus is on 

discounting the effects of the illuminant in order to 

recover the intrinsic color of the object. The intrinsic color 

is frequently expressed as the color signal that would be 

obtained from the object under some standard, “canonical” 

illuminant.  However, Logvinenko [3] proves that color 

cannot be an intrinsic property of an object. His argument 

is straightforward: If two objects, A and B, are metameric 

matches (i.e., reflect light that generates an identical color 

signal) under the first illuminant, but do not match under 

the second illuminant then which is to be considered the 

carrier of the ‘intrinsic’ color? However, one might 

consider mapping the colors to some canonical coordinate 

system, a single color that becomes two different colors 

cannot possibly map to some unique ‘intrinsic color’ 

coordinate. 

Metamer mismatching means that a color signal under a 

first light can become any one of an infinite convex set of 

different color signals under a second light. This convex 

set is usually called the metamer mismatch volume. 

Logvinenko et al. [1] provide an algorithm for computing 

the theoretical metamer mismatch volume of a given color 

signal and illuminant pair and show that these volumes 

can be surprisingly large. 

Given a color signal arising from an object under a first 

illuminant, what can be said about its color signal under a 

second illuminant? Unfortunately, all that can be said 

definitively is that it could be any one of the color signals 

within the metamer mismatch volume. The metamer 

mismatch volume therefore represents the unpredictability 

we have in knowing what the color signal of an object will 

be under the second light. For computer vision 

applications it is important to know what the degree of this 

unpredictability is in practice.  We will show that the 

degree of uncertainty varies with the type of color signal 

involved. In particular, the more a color signal differs 

from mid-grey, the smaller its metamer mismatch volume, 
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and hence, the less the uncertainty. This has important 

implications for color-based object recognition or any 

other color-based analysis (e.g., dermatological imaging, 

dentistry) whenever more than one illumination condition 

is expected. 

The theoretical metamer mismatch volumes are based 

on the fact that the reflectances generating color signals on 

the boundary of the object color solid are special 

2-transition reflectances [1]. Such 2-transition reflectances 

are either zero or one and make at most two transitions 

from zero to one or vice-versa across the visible spectrum. 

Clearly, we do not expect such reflectances to arise in 

practice, but there is no clear, non-arbitrary way to 

constrain the set of reflectances. 

To establish the extent of metamer mismatching in 

practice, we examine empirically the metamer mismatch 

volumes arising under several typical illumination changes 

for a large set of reflectance spectra obtained from 

multispectral images and other data sets of reflectances. 

Foster et al. [4] performed a related analysis in which they 

evaluate the frequency with which metameric matches are 

likely to occur in a typical scene. They do not evaluate 

metamer mismatching or the consequences of metamer 

mismatching for color-based analysis.  

Despite the unpredictability that results from metamer 

mismatching, it is nonetheless the case that we frequently 

wish to predict what the object’s color signal is most likely 

to be under a second illuminant. Of course, any prediction 

can only be a guess since any of the color signals within 

the metamer mismatch volume is a plausible answer. 

However, when forced to choose, what is a good choice to 

make? We explore this issue by making predictions based 

on several different measures (e.g., mean, median, 

centroid) of the metamer mismatch volume and compare 

the mean prediction error to that obtained using the 

CAT02 [5] chromatic adaptation transform that underlies 

the CIECAM02 [6] color appearance model and to 

Mirzaei’s [7] Gaussian Metamer method of color signal 

prediction. 

2. Reflectance and Illuminant Spectra 

In order to analyze the effects of metamer mismatching 

in practice, we construct a large dataset of reflectance 

spectra along with some illuminant spectra. The 

reflectance data are divided into disjoint training and test 

sets. Even though there is no machine learning involved, 

we use the term ‘training set’ since we will be predicting 

results for the test data based on a prior set of reflectance 

data. 

2.1. Large Dataset of Training Reflectances 

A large dataset of spectral reflectances was created by 

gathering spectra from various sources in order to create a 

representative dataset of the spectral reflectances of 

natural and man-made objects that are likely to occur in 

practice. All the spectral reflectances are sampled from 

400nm to 700nm at a 10nm sampling interval.  

The dataset is assembled from four main sources. The 

first group includes eight multispectral images [4] 

consisting of rocks, trees, leaves, grass, earth and urban 

scenes. The second group includes thirty-two multispectral 

images [8] containing scenes of faces, hair, paints, food, 

drinks and some other natural and man-made items. The 

third group includes thirteen multispectral images [9] 

containing scenes of people, houses, hands, fruits, flowers 

and other natural and man-made items. These three groups 

of images were all acquired with multispectral imaging 

systems. The fourth group mainly includes spectral 

reflectances of man-made, natural and industrial objects 

[10], which were measured by spectral photometers. The 

details of the fourth group are shown in Table 1.  

 

 
Since many of the reflectance spectra are from 

multi-spectral images, it is likely that there will be many 

Table 1: Spectral reflectances in group 4. 
Dataset Label  No. of samples 

DuPont spectra-master 672 

Din 981 

Sun Chemical 26784 

Foliage 21 

Calibration Data (ISO SOCS) 136 

Skin (ISO SOCS) 8570 

Flowers (ISO SOCS) 148 

Graphics (ISO SOCS) 30624 

Krinov (ISO SOCS) 346 

Leaves (ISO SOCS) 92 

Paint (ISO SOCS) 505 

Photos (ISO SOCS) 2304 

Printer (ISO SOCS) 7856 

Textile (ISO SOCS) 2832 

Oulu African 24 

Oulu Caucasian 303 

Oulu Oriental 30 

RIT African 70 

RIT Caucasian 78 

RIT Oriental 112 

RIT SubAsian 60 

RIT Hispanic 20 

Industry Cotton SPI 4028 

Industry Plastic SPI 5338 

Industry Pantone Polyester SPI 1925 

Industry Pantone Cotton SPI 1925 

PCC SPI 1063 
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extremely similar or duplicate spectra in the datasets. To 

eliminate these similar/duplicate spectra, the numerical 

precision of the spectral data is first reduced to integer 

values 0-50 (i.e., multiplied by 50 and rounded), and then 

any spectra that are identical at that level of precision are 

removed. This brings the initial set of 27,061,874 spectra 

down to 17,873,556 distinct spectra.  

2.2. Dataset of Test Reflectances 

For testing, a second, smaller set of reflectance spectra 

is created by combining the 1600 reflectances of the 

Munsell glossy edition [11] papers, the 1950 reflectances 

of the Natural Color System [12] samples, along with the 

218 reflectances from the “Natural Colors” subset of the 

University of Eastern Finland’s spectral database [13], and 

1301 reflectances of natural objects in the ASTER 

Spectral Library from the Jet Propulsion Laboratory [14]. 

2.3. Chromaticities of the Reflectances 

As an indicator of how complete the set of reflectances 

is we computed CIE1931XYZ values under CIE D65 

(daylight) of all the spectral reflectances in the training 

and test sets and plotted them in xy-chromaticity (i.e., x = 

X/(X+Y+Z), y = Y/(X+Y+Z)) space as shown  in Figure 1. 

The plot shows that the training set (black dots) covers 

most of the xy-chromaticity diagram. 

 
Figure 1: xy-chromaticity distribution of the reflectance datasets  

 

Note that we will report results in CIE XYZ coordinates 

since they are well defined. The sRGB standard for color 

imaging devices formally defines a unique mapping from 

non-linear camera sRGB to CIE XYZ so our results apply 

equally well to an sRGB camera.  The only difficulty is 

that most sRGB cameras conform only approximately to 

the sRGB standard. 

2.4. Illuminant spectra 

Seven illuminants, namely, the CIE standard 

illuminants A, D65 (6504K), D200 (20000K), F4, F8 and 

F11, along with a cell phone LED are used in evaluating 

the metamer mismatch volumes and color signal 

prediction results. They were chosen as a representative 

test set since A is a typical tungsten light bulb, D65 is 

typical daylight, F4, F8 and F11 are typical fluorescents 

with varying degrees of spikiness in their spectra. The 

spectral power distributions of these illuminants are shown 

in Figure 2.  

 
Figure 2: Spectral power distributions of the seven illuminants 

3. Empirical Metamer Mismatch Volumes 

While large, the training set of reflectances is still 

limited and hence it is unlikely that there will be many 

exact metameric matches to a given color signal. As a 

result, we consider any nearby color signal within a 

threshold distance T to be a metameric match. In other 

words, two color signals (Xc, Yc, Zc) and (Xi, Yi, Zi) will be 

consider metameric matches whenever  

 

X!-X!

!

+ Y!-Y!

!

+ Z!-Z!

!

< T.       (1) 

 

All the results reported below are based on T = 0.3. 

Using this definition of metameric matching, given a 

color signal (Xc, Yc, Zc), we find all the reflectances in the 

training set generating metameric color signals under the 

first illuminant. Using this set of reflectances, the 

empirical metameric mismatch volume is then determined 

as the convex hull of the colour signals generated by these 

reflectances under the second illuminant. 

Since the range of possible color signals an initial color 

signal under the first illuminant can become under the 

second illuminant is only limited by the metamer 

mismatch volume, an interesting questions is: How does 

the volume of the empirical metameric mismatch volume 

vary with the initial color signal? To address this question, 

we computed the empirical metameric mismatch volume 
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for each of the 1600 reflectances from the Munsell color 

atlas for a change in illuminant from A to D65. 

Figure 3 shows how the volume varies with the value 

and chroma of the Munsell samples. The red dots denote 

the volume averaged over all hues of samples having fixed 

value and chroma. The volume clearly peaks in the 

achromatic (chroma zero) samples and decreases with 

increasing chroma. In terms of value, it peaks at value 5 

and decreases for values larger or smaller than 5. The 

relationship between volume and value is clearer in Figure 

4 in which the volumes of the 37 Munsell neutral grays 

(chroma zero) are plotted as a function of their value. 

 

 
Figure 3: Volume (averaged across all Munsell hues) of the 

empirical metamer mismatch volume as a function of Munsell 

chroma and value for a change from A to D65. Red dots indicate 

the actual data points. The surface is interpolated through the 

data points to aid in visualization. The plots for the other 

illuminant pairs are qualitatively similar. 

 

 
Figure 4: Volume of the metamer mismatch volumes of the 37 

neutral gray Munsell papers as a function of Munsell value.  

 

Logvinenko, loosely speaking, defines chromatic purity 

in his object color atlas [15] in terms of how far a color 

signal is from ideal grey. Figure 5 shows the relationship 

between average volume and Euclidean distance from 

mid-gray (chroma zero, value 5). The distance measure is 

based on assuming that all unit steps in either value or 

chroma in the Munsell color atlas are equal. Although this 

may be a questionable assumption, the qualitative trend in 

Figure 5 is clear—the further a sample is from mid-grey 

the smaller the volume of its empirical metamer mismatch 

volume. 

 

 
Figure 5: Average volume of the empirical metamer mismatch 

volume as a function of the Euclidean distance in Munsell space 

from the Munsell mid-grey neutral (chroma 0, value 5).  

4. Color Signal Prediction Methods and Results 

   As mentioned above, given a color signal under one 

illuminant, all that can be definitively determined about 

what the color signal will become under a second 

illuminant is that it will lie within the theoretical metamer 

mismatch volume. Of course, if the reflectance that led to 

the given color signal is known then the new color signal 

can be simply calculated. However, in color imaging and 

human vision the reflectance is not available and any 

prediction must be made based on the color signal alone. 

We describe a new method of making such a prediction 

based on the properties of the empirical metamer 

mismatch volume and compare it to existing methods of 

color-signal prediction. For the tests described below, the 

training set described in Section 2.1 was augmented with 

reflectance spectra from two other multispectral image 

datasets [16, 17]. These datasets include nine 

hyperspectral images containing scenes of textile, wood, 

leaves, painting, paper and skin [16] and  twenty-one 

multispectral images mainly composed of different 

man-made items [17].  

4.1. Metamer-Based Prediction Method 

Mirzaei et al. [7] propose a method of color-signal 

prediction based on relighting a ‘wraparound Gaussian 

metamer’. Given a color signal under a first illuminant, the 

idea is to find a Gaussian-like (the precise details are 

irrelevant for the present discussion) reflectance function 
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producing that same color signal under the first illuminant 

and then to calculate what that reflectance’s color signal 

would be under the second illuminant. They report 

excellent results using this Gaussian Metamer (GM) 

method. 

The GM method would appear to be limited in that the 

form of the metameric reflectance is fixed as something 

Gaussian-like. In comparison, the empirical metamer 

mismatch volume is based on relighting the many 

reflectances from the training set producing color signals 

that are approximately metameric to the given color signal 

under the first illuminant. The training set also contains 

only real reflectances, in other words, ones measured in 

practice rather than an idealized Gaussian-like reflectance 

function. We hypothesize that basing the color signal 

prediction on the properties of the empirical metamer 

mismatch volume rather than a single idealized reflectance 

will lead to better results. 

The empirical metamer mismatch volume represents the 

range of possible color signals that might arise under the 

second illuminant so the centroid of the volume’s convex 

hull is one method of predicting the color signal under the 

second illuminant. Other choices we investigate are the 

mean of the color signals under the second illuminant, or 

similarly, the median color signal. In all cases, we remove 

all color signals that are more than three standard 

deviations from the mean as being outliers. 

4.2. Prediction Results 

The spectral reflectances of Munsell, NCS, UEF Natural 

and JPL data sets described above are used for testing. 

These datasets are distinct from the training set. 

Predictions are made for a change from each of 

illuminants A, F4, F8, F11, D200 and LED to D65 as the 

‘canonical’ illuminant. The centroid, mean and median 

methods were all tested. The results for all three are 

comparable, but the centroid method generally 

outperforms the others so only the results for it are 

reported here. 

For comparison, the Gaussian metamer method and the 

von-Kries-based CAT02 chromatic adaptation transform 

are tested as well. CAT02 is the chromatic adaptation step 

underlying the CIECAM02 color appearance model. 

CAT02 includes a spectral sharpening transform [18]. 

Chong et al. [19] propose a tensor-based method of 

choosing the basis for the diagonal transform. The 

prediction error is measured using the CIEDE2000 [20] 

color difference measure. The results for each reflectance 

data set and illuminant are listed in Table 2. Table 3 lists 

the results averaged over all the test reflectances and the 6 

illuminant pairings (A to D65, F4 to D65, F8 to D65, F11 

to D65, D200 to D65, and LED to D65). Overall, the 

centroid method outperforms the other methods. 

 

 

Table 2: CIEDE2000 prediction error statistics (mean, median, 95
th

 percentile) for the different prediction methods on 

different reflectance test sets for a change from A, F4, F8, F11, D200, LED to D65. 

   
A 

 
F4 

 
F8 

 
F11 

 
D200 

 
LED 

   
avg med 95

th
 

 
avg med 95

th
 

 
avg med 95

th
 

 
avg med 95

th
 

 
avg med 95

th
 

 
avg Med 95

th
 

Centroid 

Munsell 
 

1.27 0.94 3.42 
 

2.00 1.64 4.98 
 

0.52 0.39 1.34 
 

1.82 1.36 4.99 
 

0.63 0.51 1.57 
 

0.82 0.67 2.05 

NCS 
 

1.08 0.90 2.64 
 

1.67 1.32 4.20 
 

0.43 0.35 1.06 
 

1.69 1.29 4.69 
 

0.61 0.51 1.45 
 

0.66 0.55 1.55 

Nature 
 

0.91 0.77 2.39 
 

1.47 1.17 3.80 
 

0.48 0.34 1.14 
 

1.59 1.07 3.75 
 

0.60 0.52 1.48 
 

0.80 0.62 1.83 

JPL 
 

0.77 0.51 2.31 
 

1.13 0.76 3.36 
 

0.52 0.33 1.37 
 

1.00 0.68 2.83 
 

0.54 0.37 1.49 
 

0.78 0.50 1.86 

GM 

Munsell 
 

1.37 1.02 3.74 
 

2.05 1.59 5.28 
 

0.65 0.44 2.03 
 

1.88 1.56 4.68 
 

0.81 0.55 2.42 
 

1.22 1.06 2.68 

NCS 
 

1.49 1.10 3.87 
 

2.10 1.71 4.83 
 

0.74 0.49 2.13 
 

1.92 1.66 4.46 
 

0.87 0.59 2.45 
 

1.20 1.07 2.45 

Nature 
 

2.01 1.48 4.70 
 

2.60 2.54 5.15 
 

1.00 0.88 2.40 
 

2.25 2.07 4.22 
 

1.22 1.17 2.67 
 

1.66 1.76 2.76 

JPL 
 

1.19 0.77 3.58 
 

0.79 0.44 2.68 
 

0.57 0.39 1.72 
 

0.68 0.38 2.65 
 

0.65 0.40 2.00 
 

0.57 0.44 1.46 

CAT02 

Munsell 
 

2.06 1.77 4.74 
 

4.36 3.33 10.80 
 

0.73 0.63 1.66 
 

1.87 1.51 4.67 
 

1.03 0.89 2.23 
 

2.42 2.20 5.27 

NCS 
 

2.16 1.82 4.95 
 

4.65 3.71 11.46 
 

0.80 0.69 1.73 
 

2.08 1.63 5.60 
 

1.09 0.94 2.40 
 

2.54 2.29 5.29 

Nature 
 

2.53 2.48 4.11 
 

3.48 2.98 7.32 
 

0.89 0.85 1.56 
 

2.62 2.40 4.83 
 

1.17 1.07 2.28 
 

2.68 2.54 4.83 

JPL 
 

1.04 0.79 2.75 
 

1.68 0.92 6.07 
 

0.57 0.50 1.33 
 

0.49 0.28 1.60 
 

0.84 0.75 1.92 
 

1.09 0.69 3.31 
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Table 3: CIEDE2000 prediction error statistics (mean, median and 95
th

 percentile) across the combined set of test 

reflectances and all 6 illuminant pairs 

 

 
 mean median 95

th
 

Centroid  1.09 0.71 3.41 

GM  1.21 0.82 3.59 

CAT02  1.85 1.19 5.78 

 

For the Munsell reflectances, the prediction error varies 

with the value and chroma of the Munsell sample. Figure 

6 shows that the mean color difference generally is lowest 

for high chroma combined with low or high value — 

similar to the trend found in Figure 3 for the volume of the 

empirical metamer mismatch volumes. The trend is noisy 

since each point is based on a very limited number of 

samples so by chance some predictions may be 

significantly better or worse than average, but clear 

nonetheless. 

 
Figure 6 : Red dots represent the CIEDE2000 color difference at 

a given chroma and value averaged over all hues. The surface is 

interpolated through the data points to aid in visualization. 

5. Conclusions 

Metamer mismatching imposes a limit on the accuracy 

with which it is possible to predict the effect a change in 

illumination will have on a given color signal. Starting 

with a large set of unique reflectance spectra, the volume 

of the empirical metamer mismatch volumes is shown to 

decrease with increasing distanceof the color signal from 

mid-grey. This result means that for color-based 

recognition conducted under multiple illuminants these 

colors should generally be given priority. Studying how 

important this effect is in the context of object recognition 

is a topic of our ongoing research. In terms of predicting 

what a given color signal may become under a new 

illuminant, the centroid of the empirical metamer 

mismatch volume performs better overall than the 

Gaussian Metamer method, which in turn outperforms 

CAT02. 
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