
Anatomical landmark detection in medical applications driven by synthetic data

Gernot Riegler1 Martin Urschler2 Matthias Rüther1 Horst Bischof1 Darko Stern1
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Abstract

An important initial step in many medical image anal-

ysis applications is the accurate detection of anatomical

landmarks. Most successful methods for this task rely on

data-driven machine learning algorithms. However, mod-

ern machine learning techniques, e.g. convolutional neu-

ral networks, need a large corpus of training data, which

is often an unrealistic setting for medical datasets. In this

work, we investigate how to adapt synthetic image datasets

from other computer vision tasks to overcome the under-

representation of the anatomical pose and shape variations

in medical image datasets. We transform both data do-

mains to a common one in such a way that a convolutional

neural network can be trained on the larger synthetic im-

age dataset and fine-tuned on the smaller medical image

dataset. Our evaluations on data of MR hand and whole

body CT images demonstrate that this approach improves

the detection results compared to training a convolutional

neural network only on the medical data. The proposed ap-

proach may also be usable in other medical applications,

where training data is scarce.

1. Introduction

Reliable anatomical landmark detection is an important

first step for many medical image algorithms. Since man-

ual labeling of anatomical locations is often tedious and

time consuming to be performed by medical experts, es-

pecially in three-dimensional (3D) computer tomography

(CT) and magnetic resonance (MR) images, different auto-

matic methods were developed for localization of anatom-

ical structures in medical data [3]. Most reliable land-

mark detection algorithms are based on machine learning

approaches that are highly dependable on the quality of the

training data [4, 5]. Unlike for other computer vision ap-

plications, where images are ”cheap” to obtain with e.g. a

personal photo camera, or available on the Internet for free,

building a representative medical image database is expen-

sive and a time consuming process. Thus, acquisition of

a single 3D MR or CT image may last more than half an

Figure 1. Adaptation of body pose estimation data for anatomical

landmark detection in medical data. We transform both image do-

mains to a common domain, i.e. a binarization of the data. Then

we can use the large training datasets to optimize the parameters of

a CNN. Finally, we fine-tune and evaluate the method on binarized

MR or CT data.

hour on a highly expensive scanner and is only available to

specially qualified personnel in the facilities designated to

provide such a service. Under-representation in the medi-

cal image datasets is also caused by large variation of the

human anatomy. Increasing the number of seen anatomical

structures could be made by scanning healthy volunteers,

but in case of e.g. radiographic or CT scans, it is forbidden

in most countries due to the harmful ionizing radiation. The

patient privacy rights are another important issue that have

to be taken into account when creating a publicly available

dataset. To make datasets available to institutions without

clinical imaging systems, the patient has to give its written

consent and his personal information has to be hidden be-

fore making the image publicly available.

2. Anatomical Landmark Detection

To significantly increase the size of training datasets

without the additional costs of collecting medical im-

ages, synthetic images have been introduced into learning

paradigms [6]. Used to train machine learning algorithms,

the large quantity of synthetic images can be quickly gener-

ated and made freely available. An additional advantage of

synthetic images that make them very attractive for the med-

ical community is having an exact knowledge of the ground-
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8

conv5-32 maxpool2 conv5-32 maxpool2 conv3-32 fc2048 fc2048 fck

Table 1. Network architecture for anatomical landmark detection

for hand and whole body images. convw-c stands for a con-

volutional layer with filter size w × w and c output channels,

maxpoolp for max-pooling with pooling-width p, and fco for a

fully-connected layer with o outputs. The number of outputs in

the last layer depends on the number of anatomical landmarks.

truth positions of the represented structure. Nevertheless,

capturing the position and variation of under-investigated

anatomies, as well as its image intensity variation in dif-

ferent image modalities still remains the main challenge in

building realistic synthetic images.

When talking about detection of human or hand pose,

synthetic images have been successfully applied in com-

puter vision applications. In [18] and [19] the authors used

video-game images to train a holistic and a deformable part-

based model, respectively. Most famous is the work by

Shotton et al. [12], where the authors train a Random Forest

with a huge amount of synthetic and real training data for

the purpose of human pose estimation. Recently, such data-

driven approaches got also popular for articulated hand pose

estimation. Tang et al. [14] and Tompson et al. [16] utilized

a semi-automatic method to label a corpus of real depth-

sensor data to train their models. In contrast, Riegler et al.

[11] showed that convolution neural networks (CNN) [9]

can also successfully be trained on synthetic depth images

of the hand for articulated hand pose estimation.

The latter work was our inspiration to use synthetic im-

ages to overcome the limitation in the number of images,

especially labeled ones that are used in training an algo-

rithm for detection of body and hand pose in medical im-

ages. Similarly as in [11], we used a MakeHuman [1] model

and Blender [2] to generate a depth image training data set,

while casting the 3D medical image, such as MR or CT

data, to a depth image is straight forward. However, we can

further simplify the problem of mapping the different data

domains in training and testing by thresholding the image

data for both domains to obtain binary image data. With

this simple processing step, we can learn anatomical land-

mark estimators for medical images from synthetic data that

belong to a different training domain (see Fig. 1). Follow-

ing the idea in [20] we further adapt the trained CNN to the

medical image data set by performing a fine-tuning of the

network on a subset of the medical data.

2.1. Data Generation

The success of state-of-the-art CNN based approaches

for computer vision tasks depends on the depth of the CNN

(i.e. the number of layers) [13] and the amount of train-

ing data to avoid over-fitting. In the original work of [11]

a Blender model of a hand is articulated to sample from a

large space of different poses. For each pose a depth im-

age is rendered where the depth is measured relative to a

predefined camera and also the perfect ground-truth anno-

tation can be obtained in 3D. This avoids the cumbersome

and error-prone manual annotation process.

We modified the publicly available model in two ways to

fit our needs: First, we created new pose and shape spaces

for the anatomical landmark detection in hand and whole

body images. The key difference is that we need less varia-

tion in the articulation, but much more shape variation, es-

pecially for the whole body images. This is due to the fact

that the pose of the hand and body is relatively fixed dur-

ing a medical scan, but the shape of different people can

vary significantly, especially for the whole body scans (due

to differences in e.g. gender, weight and size). The sec-

ond modification to the model is the rendering itself, as we

render the binary image of the object along with the depth

image. We expect that the silhouette contains already suffi-

cient shape information for the detection of the anatomical

landmarks of interest in 2D. For the depth coordinate we

can train the regression model on a common depth domain,

as we will show in the experiments. Alternatively, we could

determine the depth information later with i.e. the mean po-

sition over the data set, because the depth coordinate varies

the least in 3D medical images In Fig. 1 we visualize one

example of our binary renderings for the whole body.

By marking the position in 2D binary image where im-

age intensity value is above the air threshold along the depth

direction of the 3D medical image, the 3D medical images

were mapped to the same domain as the 2D synthetic im-

ages in the training data set. Represented in 3D CT image

as two thin plates normal to the depth direction, CT scan-

ner tables were eliminated while generating the 2D binary

images by accumulating the number of high image intensity

values along the depth direction. Namely, the body in a 3D

CT image has more constant high intensity values than the

scanner table in the depth direction.

2.2. Inference Method

Provided with enough data, we can train a CNN for

anatomical landmark detection. We follow recent work in

body pose estimation [15, 17] and hand pose estimation

[11, 16] and formulate the task as a regression problem.

For each training image sn, we have an associated anno-

tation vector yn = (x1, y1, . . . , xk, yk)
T that contains the k

ground-truth landmark locations. To aid generalization, we

scale the input image of the hand or whole body to a unit

size of ph × pw. Additionally, we also transform the anno-

tation vector similar to [17], such that the coordinates are in

the interval of [−1, 1]:

y
p =

(

x1−

pw

2

pw

,
y1−

ph

2

ph

, ...

)T

. (1)

We train a network φ with parameters w using stochas-

tic gradient descent with a mini-batch size of 100 that min-
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Figure 2. Anatomical landmark detection results on MR hand data (left) and CT scans of the whole body (right). We report the mean and

standard deviation of the root mean squared error (RMSE) between estimated and ground-truth anatomical landmark location in pixel (px).

The different colors depict the various methods.

imizes the L2 loss over the N training samples:

w = argmin
w

1

2

N
∑

n=1

||φ(sn;w)− y
P
n ||

2 . (2)

The architecture of the network φ is listed in Table 1. We

use a ReLU [10] as activation after each convolutional and

fully-connected layer. Further, in the fully-connected layers

we use Dropout [8] to regularize the network.

Although we created the synthetic dataset with attention

to the pose variations in the MR data, we observed that fine-

tuning the model [7, 20] gives a significant performance im-

provement. Therefore, we use the small subset of binarized

MR/CT data to adapt the network weights to the original

domain, i.e. we use a new set of training data and re-train

the network on it. This follows the intuition that the syn-

thetic data is used to learn a rich feature representation and

the real data is used to re-parameterize the output space.

3. Experimental Set-Up

Datasets We evaluated our approach on two different

medical datasets, one of left hands from MR scans and one

of whole body CT scans. The left hand T1-weighted 3D

gradient echo MR images consists of scans from N = 132
healthy male volunteers with an age between 13 and 24

years. The volunteers were asked to put their hand into the

MR scanner with slightly spread fingers and a half-kilo bag

of sand was placed on the top of their hand. In most of the

images, contraction of the fingers could be ignored, never-

theless the distances between the fingers, especially to the

thumb, varies among the volunteers. In the hand dataset,

five landmarks are located at the top the fingers.

The whole body dataset consists of N = 20 CT images

of cancer patients, of which 14 are female and 6 are male.

All patients are in a lying position with hands close to the

body and have slightly spread legs. Legs have the highest

variation in articulation and also the feet could be in an arbi-

trary position. The nine landmarks estimated in this dataset

are located at the top of the head, and at the left and right

shoulder, middle finger, knee and big toe, respectively.

Anatomical Landmark Detection of the Hand For the

landmark detection in MR images of the left hand we gen-

erated around 2.2M synthetic images. We scale the images

to a patch size of pw = ph = 96 and transform the annota-

tions accordingly such that they are in the range of [−1, 1].
We train the network for 30 epochs with a learning rate

of 0.01 and a momentum term of 0.9. The learning rate

is decreased after each epoch by a factor of 0.7943. After

the training on the synthetic data, we fine-tune the network

on the binary MR images by performing a three-fold cross-

validation. Therefore, we train the network for 700 epochs

on this data (note that the number of training instances is

much smaller for fine-tuning). The learning rate and mo-

mentum term stay the same, but instead of a continuous de-

crease of the learning rate, we decrease the learning rate

once after 500 iterations by a factor of 0.1.

Anatomical Landmark Detection of the Whole Body

For the landmark detection in CT images of the whole body

we generated 600, 000 synthetic images, where the human

model varies in age, gender, size, body weight and pose. We

scale the images to a patch size with pw = 76, ph = 160
and transform the annotations accordingly such that they are

in the range of [−1, 1].
The network is also trained for 30 epochs with a learning

rate of 0.01 and a momentum term of 0.9. After each epoch

we decrease the learning rate by a factor of 0.7943. After

the training on the synthetic data, we again fine-tune the

network on the binarized CT data by performing a leave-

one-out cross-validation. Therefore, we train the network

for 700 epochs on 19 out of the 20 images and keep the

remaining one for testing. The learning rate and momentum

term stay the same, but instead a continuous decrease of the

learning rate, we decrease the learning rate once after 500
iterations by a factor of 0.1.

Infer Depth of Anatomical Landmark Detections On

binarized input data one can only expect to determine the

2D location of anatomical landmarks. However, the vari-

ation in the depth coordinate can be expected to be rather

small, because the hand for example is always in the same

resting position when scanned in the MR. In fact, if we an-

alyze the depth of the individual landmarks for the hand

dataset, we observe a standard deviation from the mean

depth in the range from 3.137 voxels to 3.183 voxels for

the pinky and the thumb, respectively.

To refine these results, we can train a CNN on normal-

ized depth images, instead of binarized images. We nor-

malize the depth values of pixels that belong to the hand to

a zero mean and a unit standard deviation and set the back-
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ground pixels to 3. In the same way we normalize the depth

annotation for the training samples. We do this for the syn-

thetic data to pre-train the CNN, as well as for the MR data

to fine-tune the network. The rest of the training follows the

same steps as described in the previous experiments.

4. Results and Discussion

The results of the MR hand landmark detection are de-

picted in Fig. 2. We compute for each landmark of the 263
images the root mean squared error (rmse). The plot shows

the mean and standard deviation of each landmark for all

methods. We compare the fine-tuned network (CNN(ft)) to

the network trained solely on the synthetic data (CNN(syn))

and the binarized MR data (CNN(MR)). Further, we use a

nearest neighbor approach as baseline, where we compute

the location estimates by taking the mean annotation of the

three nearest patches. We denote the methods as NN(syn)

and NN(MR) if the nearest neighbour search is performed

on the synthetic data or the MR data, respectively. Finally,

we compare our method to the random regression forest RF

based state-of-the-art approach of [3].

First, we can observe that the NN(syn) approach per-

forms much worse than NN(MR). We assume that this is

due to the modeling of the synthetic data. Although we took

care to replicate the poses and shapes of the MR data, they

are still far off. The same explanation might hold for the

jump from CNN(syn) to CNN(ft). However, the fine-tuning

is still better than training the network on binary MR im-

ages only. The reason for the improvement is that the CNN

needs a lot of training data to tune all parameters, which

is performed with the synthetic data. The output parame-

ters are then adjusted with the fine-tuning of the network.

Finally, the method based on the random regression forest

[3] is inferior to the NN(MR), CNN(MR) and CNN(ft) meth-

ods. This is especially emphasized on the landmark with

the most variation, the thumb. Our explanation is that the

RF has the tendency to regress towards the mean anatomi-

cal landmark locations.

We visualize the results of the CT whole body cross-

validation in Fig. 2. The results are similar, but not as

pronounced as in the first evaluation. The NN(syn) is not

as good as the NN(CT). However, the NN(CT) fails for the

shoulder and head landmarks. This may be due to the small

dataset. What remains as an open question is why the RF

outperforms other approaches for the same three landmarks.

Qualitative results of our approach are depicted in Fig. 3.

One can observe for the whole body estimates that for the

landmarks left and right shoulder and hand the CNN learns

a certain offset from the ground-truth location that causes

the most increase in the error. Additionally, palms and fin-

gers are often not clearly visible in the images due to move-

ment artifacts. For the other landmarks, the detections are

centered around the ground-truth location.

Figure 3. Qualitative results for binarized MR hand (left) and CT

whole body (right) images. The estimated anatomical landmark

localizations are projected into one common image.
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Figure 4. Mean error of the estimated depth coordinate if we just

use the mean depth of the training samples in green, or if we train

a CNN on the depth representation of the data.

The results for the depth estimations for the hand dataset

are depicted in Fig. 4. We compare the mean absolute error

of the estimated depth to the ground-truth for all five fin-

gertips. In the first method we simple take the mean depth

of all training MR annotations. As expected we get a mean

error of ∼ 3 voxels, which correspondence to the ∼ 3 vox-

els standard deviation present in the dataset, as we stated

in the previous section. However, the CNN trained on the

depth representation of the data can reduce the mean error

to 1 voxel in the mean. We speculate that this can mainly at-

tributed to the consideration of the mean depth of the hand.

5. Conclusion

We demonstrated in this work that we can facilitate the

training of state-of-the-art machine learning methods for

medical landmark localisation by exploiting larger datasets

from a different domain. This is achieved by transform-

ing the training data from a different training domain and

the one from medical MR and CT images to one common

domain, e.g. thresholding the depth values and MR/CT vol-

ume data to create binary images. Such a simple transfor-

mation is already sufficient to train a feature representation

of a CNN. In future work we want to explore more com-

plex common domains, so we can train even richer feature

representations (e.g. deeper CNNs).
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