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Abstract

The motion of a driving car is highly constrained and we

claim that powerful predictors can be built that ’learn’ the

typical egomotion statistics, and support the typical tasks of

feature matching, tracking, and egomotion estimation. We

analyze the statistics of the ’ground truth’ data given in the

KITTI odometry benchmark sequences and confirm that a

coordinated turn motion model, overlaid by moderate vi-

brations, is a very realistic model. We develop a predictor

that is able to significantly reduce the uncertainty about the

relative motion when a new image frame comes in. Such

predictors can be used to steer the matching process from

frame n to frame n+ 1. We show that they can also be em-

ployed to detect outliers in the temporal sequence of ego-

motion parameters.

1. Introduction

The motion of typical road vehicles is much more re-

stricted than general motion, as it appears e.g. for a hand-

held camera. A vehicle has a large mass, thus a substantial

inertial moment both for translation and for rotation, and

even though absolute speed may be very high, the overall

motion is very smooth. This smoothness of motion can be

expressed in terms of a dynamic model (as this is standard

procedure for functions such as ABS, ESP, etc.), and is pre-

dictable to a very high degree. Predictability and motion

constraints are the key to transform the very ill-posed prob-

lems of visual motion estimation and structure-from-motion

(SFM) into a scheme that is both more efficient and more

robust than it can be achieved in the general motion case.

In the following section, we summarize well-known

findings from vehicle dynamics [6]; we will later see in sec-

tion 3 how these facts relate to statistical characteristics of

measured car trajectories.

Obviously, most of the translational motion that a car

performs is in the forward direction (aligned with the longi-

tudinal symmetry axis of the car) and, depending on steer-

ing angle, also slightly sideways. For an idealized car, the

rotational motion occurs mostly in the lateral direction (yaw

motion, rotation around the vertical axis). Rotation around

the longitudinal axis (roll) occurs only as a (deterministic)

side effect of sharp turns and pitch motion (rotation around

the transversal horizontal axis) is mostly the result of ac-

celeration or braking. We will denote these motions as the

nominal motion of the car, and discriminate it from the ran-

dom exogenous vibrations which are mostly due to devia-

tions of the road surface from a plane. Physical models of

car dynamics include the effects of the suspension, of the

tire friction, etc. [4]. Here, we will abstract from these ef-

fects (even though they might be worthwhile including in

further, more elaborated models) and concentrate on a basic

vehicle model which is usually denoted as the coordinated

turn model [1]. This model couples yaw rotation and the

change of the translation in the lateral direction.

1.1. The role of vehicle egomotion

The importance of egomotion for efficiently and robustly

estimating the motion field cannot be overestimated. Let us

regard that point in time when the information from video

frame n has been completely processed. As a result of this,

we have the 3D egomotion of the car from time n − 1 to

time n, we have motion vectors (dense or sparse), and we

have an estimate of the depth structure of the scene at time

n (again: dense or sparse). Obviously, we want to know the

next motion from time n to time n+1. Very reasonable es-

timates for all of these entities can be made by information

propagation, that means: given an interpretation of frame

n, a very good prediction of frame n+ 1 can be obtained –

even before actually having seen frame n+1. Many typical

applications, e.g. tracking feature points or tracking surface

patches, can be stabilized and robustified by making predic-

tions on the basis of the so far only assumed motion from n
to n+ 1.

As any estimate, the estimate of the next motion will be

afflicted by errors. These errors can be characterized by co-
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variance matrices. Given these covariance matrices of the

motion parameters, the uncertainty reflected in the predic-

tion of e.g. point positions or surface element parameters

can be computed using nonlinear covariance propagation.

From a Bayesian perspective, these covariance matrices

represent prior knowledge before a measurement has been

made, and the actual measurement, including its own uncer-

tainty, will be fused with the prior using standard Bayesian

techniques. We stress here that the result of a measurement

taken in the image (e.g. a point-to-point match, or a patch-

to-patch match) should always be considered as an uncer-

tain result and explicit attention should be directed onto the

uncertainty of this measurement.

2. Fundamentals for building statistical ego-

motion models

In the remainder of this paper, we will first briefly present

the theoretical basis for building predictors for time se-

ries of random vectors. We will then describe the motion

parametrization we use, and point out some characteristics

of the KITTI ’ground truth’ egomotion sequences. On the

basis of measured statistics on that data, a predictor is built

which is subsequently evaluated. We conclude with describ-

ing an outlier detection scheme based on that predictor, and

briefly sketch applications of the predictor in a visual ego-

motion estimation system.

2.1. Fundamentals of prediction in vector­valued
time series

If we examine a sequence of random vectors ~p and in-

tend to build a linear predictor that predicts ~p[n + 1] from

~p[n] optimally in the sense of a minimum mean square pre-

diction error, we can apply a well-known result from es-

timation theory that builds on the assumption that the 1st

and 2nd order statistical moments of the random vectors are

known [7, p.300].

Let ~p and ~q be random vectors which are distributed ac-

cording to a multivariate distribution with the mean vector

E

[(

~p
~q

)]

=

(

~mp

~mq

)

(1)

and the joint covariance matrix

Cov

[(

~p
~q

)]

=

(

Cpp Cpq

Cqp Cqq

)

(2)

Then the conditional distribution of ~p, given ~q, has the con-

ditional mean

E [~p | ~q] = ~mp +Cpq ·C
−1
qq · (~q − ~mq) (3)

and covariance matrix of the difference vector ~p− ~q

Cov [~p− ~q] = Cpp −CpqC
−1
qq Cqp . (4)

Note that for these relations to hold, it is not necessary that

any of the involved distributions is Gaussian.

What is presented here is the distribution of a random

vector ~p which is statistically dependent on some measur-

able random vector ~q. If the correlation matrices Cpq and

Cqq and the mean vectors ~mp and ~mq are known, the condi-

tional expectation E [~p | ~q] can be determined from the mea-

sured vector ~q. If additionally Cpp is known, the conditional

covariance matrix Cov [~p− ~q] can de determined by using

equation 4.

For the application of these general results to the predic-

tion of the pose change, given a temporal series {~p[n]} of

pose changes, we just replace ~q by ~p[n] and ~p by ~p[n+ 1].

2.2. Parametrization of the motion

We parameterize motion as shown in figure 1. We use

the camera coordinate system as reference system for the

motion calculations, with the camera being mounted on the

top of the car as described in [2]. The z-axis coincides with

the viewing direction of the camera (optical axis). The x-

axis points straight to the right and the y-axis towards the

ground.

The angles θ, ψ and φ specify the rotation about the x-,

y- and z-axis respectively, in mathematically positive sense.

This means that θ denotes the pitch, ψ the yaw and φ the

roll of the camera. It is important to note here that driv-

x

y

z

t

chosen

polar

axis

Figure 1: The parametrization for the camera egomotion,

showing the camera coordinate system, the 3 rotation an-

gles, and the translation vector ~t which is represented in

spherical coordinates by angles α and β, and a length v. In

real driving situations, vector ~t is very close to the z-axis

(α ≈ π/2, β ≈ π/2)

ing straight ahead into the direction of the optical axis of

the mounted camera means that the environment is moving

towards the camera, resulting in an observation of a move-

ment in negative z direction. To retrieve the direction of the
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car or camera egomotion, all angles have to be flipped to the

opposite direction1.

Now let ~x[n] and ~x[n+1] be the coordinates of two cor-

responding points in the camera coordinate system in two

consecutive frames. The rigid transformation between these

points using a rotation matrix n
Rn+1 and a translation vec-

tor n~tn+1 is, by convention, defined as follows:

~x[n+ 1] = n
Rn+1 · ~x[n] +

n ~tn+1, (5)

n~tn+1 = v ·





cosβ
sinβ cosα
sinβ sinα



 (6)

n
Rn+1 = Rz(φ) ·Ry(ψ) ·Rx(θ) (7)

Rx(θ) =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 (8)

Ry(ψ) =





cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ



 (9)

Rz(φ) =





cosφ − sinφ 0
sinφ cosφ 0
0 0 1



 (10)

The angles α and β describe the direction of the translation

vector in spherical coordinates. β is the polar angle relative

to the x-axis (our polar axis), and α is the azimuth angle

measured relative to the y-axis in the y-z-plane. We chose

this constellation in order to obtain an operation point of

the parameters which is far from a ’gimbal lock’ situation

when moving roughly along the optical axis. For cameras

looking into strongly different directions (e.g. sideways),

the parametrization has to be adapted, of course.

A movement that perfectly follows the optical axis re-

sults in α = −π/2 and β = π/2, as the environment moves

directly towards the viewer when moving forward.

These parameters are stacked into a combined (relative)

motion parameter vector as follows:

~p
def
=

















pitch θ
yaw ψ
roll φ

translation length v
spherical angle α
spherical angle β

















(11)

We explicitly separate the length of the translation vector

‖~t‖ = v, measured in meters, from the translation direc-

tion, since this entity is not observable (in the control theory

sense [1, 4]) for a monocular camera. If we know the frame

rate, we can easily determine the velocity. In order to sup-

port intuitive interpretation of numerical values, we convert

this into km/h when applicable.

1(θ, ψ, φ, α, β) → (−θ,−ψ,−φ, α+ π, π − β)

The conversion from v and the spherical coordinates of

the translation, α and β, to Euclidean coordinates and vice

versa is straightforward. The separation between direction

and translation length also allows to see the correlations be-

tween certain parameters that would otherwise not be as

easily identifiable: The yaw angle ψ correlates with β, the

spherical angle caused by horizontal displacement of the

translation. We expect a clear correlation between these two

parameters. Weaker, but still noticeable correlations should

be visible between the two aforementioned entities and the

integral of the roll angle φ (much better visible in a car with

an elevated center of mass), as well as between the acceler-

ation (the derivative of the velocity), the pitch angle θ and

α, the spherical angle that denotes the vertical portion of the

movement.

An additional benefit of this parameterization exists

when applying it to a monocular setup, where the scale can-

not be determined: As v is the only dimension influenced by

the scale at all, and fully determined by it, it can just be ig-

nored as long as no depth information is available, resulting

in a five dimensional parameterization.

The only problem that spherical angles produce is their

uncertainty for very slow motion. We observed unstable

behavior in the ground truth data for velocities below ap-

proximately 3 km/h and therefore had to include vehicle

halt detection to stabilize them, as described next.

2.3. Data problems in original KITTI ground truth

While working on the KITTI sequences [2, 3] and com-

paring image data and egomotion ground truth data coming

with KITTI, we occasionally discovered strange and unex-

pected behavior of the ground truth parameters θ, ψ, φ, v, α
and β. We identified the following categories:

• vehicle halt (cf. figure 2)

• ’IMU freeze’ (cf. figure 3)

• oscillation (cf. figure 4)

The first category (vehicle halt) does not necessarily lead

to problematic situations, but for our spherical represen-

tation of the translation it does. When the car is driving

very slowly (< 3 km/h), the direction of the inter-frame

translation (velocity) is very hard to estimate correctly. To

prevent this effect from influencing our statistic model, we

correct the KITTI ground truth by manually setting the

direction of the translation to a straight forward direction

(α
!
= −π/2, β

!
= π/2)2 when velocities below 3 km/h are

observed. The effect of situations of this type on the motion

parameters can be seen in figure 2.

2 We emphasize that driving straight ahead into the direction of the op-

tical axis of the mounted camera means that the environment is moving to-

wards the camera, thus into the opposite direction of the optical axis. This

direction is encoded by (α, β) = (−π/2, π/2) in our parameterization.
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The second category occurs only in the first sequence

(KITTI sequence 0) and looks like a linear interpolation be-

tween two time steps when the IMU was unable to deliver

ground truth for the values in between (cf. figure 3).

We were also able to observe a strange behavior of the

KITTI ground truth when the car is making a turn. The

third category (oscillation) is characterized by a noticeable

oscillation of the velocity v and the horizontal direction of

the translation β. This behavior can not be explained by

looking at the images: The car is driving smoothly and we

would expect smoothly varying motion parameters as well.

The effect on the motion parameters can be seen in figure 4.

3. Setting up the dynamic model

In this section we will construct a linear predictor for

the motion parameters based on the statistics of the mo-

tion ground truth provided by KITTI and by doing so,

we will also analyze auto-correlation and temporal cross-

correlation of the motion parameters. The goal is to find the

best prediction of the motion parameters for the next image

(~p[n + 1]), given the values for the current image (~p[n]).
It would of course be possible to use a higher order model

which could then account for the change of the parameters,

e.g. the acceleration, but for the course of this paper, we

focus on the first order model.

3.1. Learning the motion statistics

In section 3.2, we will use equation 3 to build a one-step

linear predictor for the motion parameter vector ~p[n + 1]
given the previous one: ~p[n]

~̂p[n+ 1]
def
= E [~p[n+ 1] | ~p[n]] . (12)

In order to evaluate this expression, we need to mea-

sure/estimate the motion parameter mean ~mp, ~mq and

cross- and autocorrelation Cn+1,n, Cn,n. In this case ~p and

~q are the same observation (motion parameters). The only

difference is that ~q is delayed by one time step (∆n = 1)

with respect to ~p. We calculated these statistical moments

on a set of all motion parameters of KITTI sequences 0 -

10. This results in a statistic based on more than 23,000

motion parameter vectors that cover a wide range of driving

scenarios (city, highway, rural road, etc.), which gives us

the advantage of being able to treat ~p[n] as a stationary pro-

cess (i.e. its statistics are independent of the current frame

number n). For the KITTI ground truth we obtained

~mp =

















5.554 e-05

−4.428 e-04

−1.732 e-06

0.000 e+00

−1.551 e+00

1.569 e+00

















, (13)

where we forced the mean of the velocity (4th component)

to be zero3. We did so because any stable predictor must

exhibit a trend to the mean (beside the correlation to the

old value), and in a realistic setting this trend should be to

decreasing velocity due to friction, but not to the random

mean speed observed in the KITTI sequences. We present

the autocovariance matrix Cn,n, here in normalized form,

that is, in terms of a variance vector Var [~p] and a normal-

ized covariance matrix Cn,n:

Cn,n =

















1.00 0.08 0.03 0.01 0.04 −0.05

0.08 1.00 0.13 −0.04 0.03 -0.60

0.03 0.13 1.00 −0.01 0.01 −0.27
0.01 −0.04 −0.01 1.00 −0.05 0.05
0.04 0.03 0.01 −0.05 1.00 −0.06

−0.05 -0.60 −0.27 0.05 −0.06 1.00

















,

(14)

Var [~p] =

















9.118 e-06

2.989 e-04

6.935 e-06

1.896 e-01

2.535 e-03

1.362 e-03

















. (15)

The only strong intra-vector correlation which is visible at

first glance is the one between the yaw angle ψ and the hor-

izontal angle of translation β. In addition to that, but much

weaker, there is also a correlation between the roll angle φ
and the mentioned two entities.

The cross-covariance Cn+1,n is represented by the nor-

malized covariance matrix Cn+1,n

Cn+1,n =



















0.61 0.08 0 0.01 −0.01 −0.05

0.08 1.00 0.12 −0.04 0.03 0.60

0.01 0.15 0.64 −0.01 0 −0.22

0.01 −0.04 −0.01 1.00 −0.05 0.05

0.05 0.03 0 −0.05 0.98 −0.05

−0.04 -0.60 −0.23 0.05 −0.06 0.78



















,

(16)

and the cross-covariance vector diag(Cn+1,n)

diag(Cn+1,n) =

















5.522 e-06

2.978 e-04

4.423 e-06

1.894 e-01

2.489 e-03

1.068 e-03

















. (17)

These statistics show that during normal driving the yaw an-

gle ψ and the velocity v (length of translation vector) only

change very slowly, which leads to an excellent predictabil-

ity from their temporally preceding values. The significant

non-zero off-diagonal elements reflect the restricted motion

3Cf. definition 11 for the kinematic meaning of the vector elements.
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Figure 2: Typical behavior of motion parameters during a vehicle halt (red line). This example is from KITTI sequence 7,

frames 660 − 730, but similar effects can also be observed e.g. in sequence 0, frames 540 − 560 and sequence 5, frames

2330− 2400.

of a car, which can very well be described by a coordinated

turn model [1, 4], and the influence of a lateral turn on the

roll angle.

3.2. The one­step linear predictor

Now we can finally instantiate the predictor matrix A

according to

A
def
= Cn+1,n ·C−1

n,n (18)

which defines the predictor as

~̂p[n+ 1] = A · (~p[n]− ~mp) + ~mp, (19)

with

A =



















0.60 0.01 −0.03 0 0 0

0.01 0.99 −0.12 0 0 0

−0.01 0.01 0.63 0 0 0

−0.40 0.05 0.04 1.00 −0.02 0.01

0.21 0 −0.10 0 0.98 0

0.06 −0.43 −0.27 0 −0.01 0.66



















.

(20)

4. Experiments

4.1. Experimental evaluation of the predictor

Before trying the predictor on the KITTI odometry data,

we have a look at the theoretical gain obtained from the pre-

dictor. Table 1 lists the variances of the motion parameters

and the residuals of their one-step estimates vs. ground truth

for KITTI sequences 0 – 10. From these results we obtain

the following insights:

• The motion parameters of driving scenes are strongly

constrained in terms of the value range that typically

appears in the vast majority of driving situations. Their

first order distribution is described by statistical 1st and

2nd order moments (equation 13 and 14).

• For typical driving scenarios, a linear predictor like

given in equation 18 – 20 provides a very substantial

reduction of motion uncertainty before the next image

even has been acquired. The parameters yaw ψ, trans-

lation length v, and spherical angle α are particularly

well predictable.

• Simply taking the previous motion as a predictor for
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Figure 3: Behavior of motion parameters during ’IMU freeze’ (red line). Example taken from KITTI sequence 0, frames

345− 360. Similar effects can also be observed in e.g. frames 1915− 1930 and frames 2275− 2290 of the same sequence.

~p Var [~p] Var

[

~̂p− ~p
]

ratio

θ 9.118e-06 5.751e-06 0.631

ψ 2.989e-04 2.224e-06 0.007

φ 6.935e-06 4.081e-06 0.588

v 1.896e-01 4.518e-04 0.002

α 2.535e-03 9.076e-05 0.036

β 1.362e-03 4.885e-04 0.359

Table 1: Variances of motion parameters without prediction

(col.1), predictor residuals (col 2), and the resulting vari-

ance ratio (col 3). Small ratios → good predictability.

the next motion is not bad, but inferior to a trained pre-

dictor as presented here.

4.2. Using the predictor to flag outliers in egomotion

Plotting the predictor output vs. the true motion parame-

ters does not show any significant visual difference, except

in those situations when the actual value deviates strongly

from the prediction. This property can be used to flag ego-

motion estimation errors both in the ground truth as well as

when egomotion is computed from visual data.

The recipe for outlier detection is as simple as it is ef-

fective: From the predictor equations, we obtain the covari-

ance matrix of the predictor residual. Each time a new mo-

tion vector has been computed (or read in from ground truth

data), it is compared against the predicted value, and the re-

sulting residual is processed using the residual covariance

matrix as a metric. In other words, we compute the Ma-

halanobis distance of the regarded motion vector w.r.t. the

predicted motion value. If this value is too high, the motion

vector is considered as questionable.

4.3. Using statistics from state­of­the­art egomotion
estimators

We have seen that the KITTI ground truth does actually

contain occasional outliers. It remains to be seen whether

this has a significant influence on the learnt statistics, and

subsequently also on the predictor and the capability to ex-

ploit the predictor as a detector for probable outliers.

When going beyond using the KITTI egomotion ground

truth data, and using egomotion data from a good state of

the art method, we see that smooth and realistic behavior

can also be achieved for the horizontal part of the translation

vector, angle β in our parametrization. Performing the same

statistical analysis on such egomotion data leads to stronger

correlation between ψ, φ and β and a much stronger tempo-
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Figure 4: Oscillating behavior of motion parameters while cornering (red line). This example is taken from KITTI sequence 1
frames 890−980 but can also be observed i.a. in sequence 6 frames 280−320 and 680−720 and sequence 10 frame 850−880.

ral correlation and thus predictability.

In order to evaluate which results can be expected if a

state of the art method is used for visual egomotion esti-

mation, we considered the work of Persson et al. [5]. The

authors of this paper kindly provided the pose data com-

puted with their method such that we can directly compare

against KITTI ground truth. Both curves are shown in fig-

ure 5. Additionally, we felt free to also overlay the results

from a very recent, yet unpublished, method from our own

lab drawn in the same figure (’OurOwn’).

In figure 5 we see that significantly less spurious oscilla-

tions occur for the employed methods for visual egomotion

estimation. This leads to more realistic statistics, which in

return allows for a much better detection of outliers. This

even works if statistics are calculated on the motion param-

eters of these methods and then used to detect outliers in the

motion parameters of other methods (e.g. KITTI), cf. figure

6.

These results indicate that it is possible to reduce outliers

even below the level provided by [5], which is today (Sep

2015) ranking high on the KITTI odometry benchmark. We

used the statistics learnt on the [5] pose data to train a pre-

dictor, and applied it to the KITTI ground truth data. We

used the error covariance matrix from this new predictor as

a metric to rate the (vector-valued) residuals obtained for

this predictor. Figure 6 shows the temporal course of the

motion data for a critical section of the drive. The lower left

graph shows the course of the Mahalanobis distance based

on the predictor trained on KITTI ground truth, whereas the

lower right graph shows the Mahalanobis distance when us-

ing the statistics learnt from the [5] pose data. The con-

clusion is that advanced methods like [5] provide ’cleaner’

statistics for training an egomotion predictor.

5. Conclusions

We have shown how to build a frame-to-frame predic-

tor for the egomotion of a typical road vehicle on the ba-

sis of ground truth data obtained (in the present case) from

the renowned KITTI benchmark data base. We showed that

typical characteristics of vehicle motion are reflected in the

statistics of egomotion data, and also represented in pre-

dictors which are based on these statistics. The presented

scheme can be used to monitor the credibility of individ-

ual egomotion estimates, and also can be employed to steer

matching and tracking approaches.
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Figure 5: Comparison of the motion parameters provided by KITTI ground truth, versus Persson et al. 2015 (PPFM2015)

and a very new method from our own group (’Our Own’), which has not been published yet. Best viewed in color.
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Figure 6: Motion parameter sequence (top 3 rows) and Mahalanobis-weighted predictor residuals (4th row) for a critical

section from the KITTI sequences. The detection of unreliable sections (marked in red) based on the predictor residuals uses

the statistics from KITTI ground truth (lower left) and from [5] (lower right).
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