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Abstract

Periodic inspections are necessary to keep railroad

tracks in state of good repair and prevent train accidents.

Automatic track inspection using machine vision technology

has become a very effective inspection tool. Because of its

non-contact nature, this technology can be deployed on vir-

tually any railway vehicle to continuously survey the tracks

and send exception reports to track maintenance person-

nel. However, as appearance and imaging conditions vary,

false alarm rates can dramatically change, making it diffi-

cult to select a good operating point. In this paper, we use

extreme value theory (EVT) within a Bayesian framework

to optimally adjust the sensitivity of anomaly detectors. We

show that by approximating the lower tail of the probabil-

ity density function (PDF) of the scores with an Exponential

distribution (a special case of the Generalized Pareto distri-

bution), and using the Gamma conjugate prior learned from

the training data, it is possible to reduce the variability in

false alarm rate and improve the overall performance. This

method has shown an increase in the defect detection rate

of rail fasteners in the presence of clutter (at PFA 0.1%)

from 95.40% to 99.26% on the 85-mile Northeast Corridor

(NEC) 2012-2013 concrete tie dataset.

1. Introduction

In sequential inspection problems, such as visual rail-

way track inspection, a video feed is streamed from one or

more cameras to a detection system, and we are interested

in designing a detector that can find abnormal patterns in

such data. There is a limit to the number of false alarms

that the operator can handle, so it is necessary to select the

optimal operating point at which the false alarm rate does

not exceed such limit. Indeed, most of the data that an au-

tonomous inspection vehicle will collect will be discarded

without anyone ever looking at it. Therefore, an excessively

high false alarm rate will result in a waste of storage space
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Figure 1. Definition of basic track elements.

and bandwidth. The only relevant images are the ones that

correspond to unexpected patterns, so we are actually inter-

ested in finding such anomalous patterns.

Anomaly detection is a hypotheses testing problem in

which the null hypothesis is that an image is normal and the

alternative hypothesis is that it is anomalous. Due to the

complexity of the scene and image formation process, both

hypothesis are composite, with nuisance parameters arising

from changes in illumination, occlusion, background clut-

ter, and many other uncontrollable factors. Rather than try-

ing to model each of these variables individually, in this

paper we adapt the detection scores with the objective of

reducing the variability in type I error rate. The is known

as constant false alarm rate (CFAR) detection. We adopt

the Bayesian view that such parameters are random vari-

ables with one realization per image. The images have a

natural order based on the time they were captured at, so

the sequence of these random parameters forms a random

process. A key observation is that this random process has

strong long-term dependencies. The effect of such slowly

varying nuisance parameters is that false alarms are con-

centrated in small segments of the image sequence.
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Figure 2. Examples of fastener scores (a) Good fasteners with

high scores (b) Good fasteners with low scores (c) Defective fas-

teners with high scores (d) Defective fasteners with low scores

Figure 1 shows the definitions of several track compo-

nents. In this paper, we focus on fastener inspection. Fig-

ure 2 shows examples of good and defective fasteners and

their detection scores generated by the multi-task learning

method [3] of Gibert et al. Although most fasteners have

high scores and most defective ones have low scores, when

good fasteners have low scores, there is an underlying phe-

nomenon that causes scores of nearby images to also be low.

The rest of the paper is organized as follows. In Sec-

tion 2 we review related works. The algorithm is described

in Section 3. Experimental results are described in Sec-

tion 4. Section 5 concludes the paper with a brief summary

and discussion.

2. Background

2.1. Robust Anomaly Detection

The presence of outliers is a challenge that many com-

puter vision systems have to deal with. The RANdom

SAmple Consensus (RANSAC) algorithm [2] has been used

in many applications for removing outliers when fitting a

model to data. This method is specially useful when most of

the samples follow a linear model plus additive i.i.d. Gaus-

sian noise, but a few samples with gross errors do not fol-

low this model. However, in many applications, it not clear

which samples should be treated as inliers and which of

them are outliers. For instance, in big data applications,

the data just appears to have a distribution with long tails

that decay at slower rate than the corresponding Gaussian

distribution that best fits the data in the least squares sense.

Indeed, what appears to be an outlier in feature space may

just be a normal sample that has been subject to some kind

of degradation for which the feature extractor was not de-

signed for. These degradation modes may include impulse

noise, partial occlusion, and in some cases, changes in ap-

pearance due to blur, shadows, or pose. In anomaly detec-

tion problems, the samples of interest are those in the tail

of such data distribution. Therefore, any method that dis-

cards outliers have the potential of discarding anomalies, so

in order to successfully find anomalies in such images it is

necessary to use other methods.

The field of robust statistics [7, 10] provides the tools

for estimation of unknown quantities when the underlying

probability distribution is non-Gaussian and it is not known

exactly. In practice, the data can be modeled as the mix-

ture of a Gaussian distribution and a heavy-tailed distribu-

tion (the contaminated Gaussian model). In this case, it is

desirable to design an estimator whose performance is min-

imax over a family of distributions that includes the Gaus-

sian as a special case. There are basically three types of ro-

bust estimates: M-estimates[6] (Maximum likelihood type),

L-estimates (Linear combination of order statistics), and R-

estimates (Estimates derived from rank tests).

In supervised learning problems, there is a distinction on

how to handle outliers at training time vs. testing time. Su-

pervision at training time usually mitigates the problem of

outliers as it is possible to manually select the inliers. The

use of the ℓ1 minimization promotes a sparse representation

of the data. The solution of the ℓ1 minimization is the Max-

imum Likelihood Estimate of the location parameter when

the data follows a Laplacian distribution, and a straightfor-

ward way of robustifying a regression procedure is by re-

placing the ℓ2 norm in the cost function by the ℓ1 norm. A

related L-estimator that results from such ℓ1 optimization is

the Least Median of Squares (LMS), which was introduced

in the computer vision field by Kim et al. [8]. The draw-

back of the LMS is that the median estimator’s efficiency is

only 2
π = 0.637 when the true distribution is Gaussian. The

M-estimator based on the Huber loss function[6]

ρ(t) =





1

2
t2 for |t| < k

k|t| − 1

2
k2 for |t| ≥ k

(1)

is more flexible because it has the sample mean (k = ∞)

and sample median (k = 0) as special cases and it can be

tuned to handle different degrees of contamination in the

contaminated Gaussian model. However, since this estima-

tor depends on a scale parameter k (unlike L-estimators,
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which are scale-invariant), it is necessary to first estimate

this parameter using a robust scale estimator.

2.2. Extreme Value Theory for Adaptive Anomaly
Detection

Due to illumination and viewpoint changes, clutter dis-

tribution, and other image degradation, the distribution of

features extracted from images at test time, does not match

what was observed during training. Moreover, such distri-

bution may not be stationary, but slowly changes over time,

so a fixed threshold would result in large variability in the

false alarm rate. Broadwater and Chellappa[1] proposed

a technique to find adaptive thresholds for Constant False

Alarm Rate (CFAR) detectors based on Extreme Value The-

ory (EVT) [5] that can be used even when limited training

data is available. EVT is applicable to problems where the

probability of a rare event must be estimated even if such a

rare event has never occurred. Scheirer et al. [12, 13] also

used EVT for score normalization and showed its applica-

bility to sensor fusion problems.

For completeness, we recall the EVT basic results below.

Let X1, . . . , Xn be i.i.d. samples from an unknown distri-

bution F and Mn = max(X1, . . . , Xn), the maximum of n
i.i.d. variables. The fundamental EVT theorem, the Fisher-

Tippett-Gnedenko theorem[5], states that if there exist a se-

quence of pairs of real numbers (an, bn) such that an > 0
for all n and a distribution function Λ(x) such that

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= Λ(x), (2)

for all x at which Λ(x) is continuous, then the limit distribu-

tion Λ(x) belongs to either the Gumbel, the Fréchet or the

Weibull family. These three families can be grouped into

the Generalized Extreme Value Distribution (GEVD)

Λ(x;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ
}
, (3)

where µ ∈ R is the location parameter, σ > 0 the scale

parameter and ξ ∈ R the shape parameter. The Gumbel

distribution is a special case of the GEVD when ξ = 0, the

Fréchet when ξ > 0, and the Weibull when ξ < 0. When

the limiting distribution exists, we say that F (x) lies in the

“domain of attraction” of Λ(x).

In many practical applications, we are interested in the

tail distribution of the distribution F . Given an upper

threshold u, we select the Nn samples that exceed such

threshold and define the excesses Y1, . . . , YNn
as Yi =

Xj −n, where i is the excess index and j is the index of the

original sample. The probability of exceeding the thresh-

old is λ = 1 − F (u). For sufficiently large u, the upper

tail distribution function Fu(y) (the conditional distribution

function of the excesses),

Fu(y) =
F (u+ y)− F (u)

1− F (u)
(4)

can be approximated by a Generalized Pareto Distribution

G(y;σ, ξ) = 1−
(
1 +

ξy

σ

)−1/ξ

+

, y > 0. (5)

where σ > 0, ξ ∈ R, and x+ = max(x, 0). This ap-

proximation is justified by the Pickands theorem[11], which

states that

inf
ξ

lim
u↑ωF

inf
σ

sup
y>0
|Fu(y)−G(y;σ, ξ)| = 0 (6)

if and only if F is in the domain of attraction of the GEVD.

Note that the exponential distribution is a special case of the

GPD for ξ = 0, i.e. G(y;σ, 0) = 1− e−y/σ.

These results can be extended to the multivariate case,

for example to model the tail distribution of the maximum

of a cluster of observations. Under stationarity of observa-

tions, this can be achieved by incorporating both the tail of

the marginal distribution and the so-called extremal index.

Let {Xn : n ≥ 1} be a (strictly) stationary sequence of r.v.’s

with marginal distribution F . Then, for sufficiently large n

P{Mn ≤ un} ≈ Fnθ(un), (7)

where un is any high threshold such that n(1−F (un)) con-

verges to a positive number as n → ∞ and θ is a fixed

number in [0, 1]. θ is the extremal index that measures the

strength of dependence of {Xn}. If {Xn} are independent,

then θ = 1. On the other hand, if {Xn} are highly depen-

dent, then θ ≈ 0. A method for estimating the extremal

index for a real-valued Markov chain was proposed by Yun

[15].

3. Proposed Approach

In this section we describe our approach for normalizing

the scores of an anomaly detector deployed in an application

in which the distribution of the normal samples gradually

changes over time. This may be caused by changes in illu-

mination, change in view-point, addition or removal of clut-

ter, or other uncontrollable factors. The approach is similar

to the method proposed by Broadwater and Chellappa[1] in

which an adaptive threshold is estimated from the GPD fit

to the upper tail of the distribution after removing the out-

liers or targets using a Kolmogorov-Smirnov statistical test.

The difference is that our method is Bayesian and we work

with sequential data and estimate the adaptive threshold for

each sample.
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3.1. Bayesian Model

We want to adapt the scores of an anomaly detector ap-

plied to a sequence of images so that, when we apply a given

threshold, we get an approximate CFAR. The images have

been collected from a moving vehicle, so the environmen-

tal conditions and clutter distribution are not stationary, but

slowly change over time. In EVT-based threshold estima-

tion, it is necessary to estimate the parameters σ and ξ of

the GPD from the upper- or lower-tail of the empirical dis-

tribution. For the rest of this paper we will refer to the up-

per tail of the distribution of the random variable X , but the

same applies to the lower tail since the lower tail of X is

the upper tail of Z = −X . The threshold u needs to be

set high enough so that the tail of F (x) converges in dis-

tribution to the GPD. However, since we are dealing with a

non-stationary random process, we need to work on a small

window centered at the sample of interest. This window

needs to be long enough so that we can fit the parameters of

the GPD to its tail (for example the largest 5% of the sam-

ples), but short enough that the distribution has not changed

much. In applications in which the dynamics of the pro-

cess change quickly, our options are rather limited. If we

fit a GPD to the extreme samples of a short window, the

estimated threshold has so much variance that the resulting

performance is worse than using a fixed threshold. On the

other hand, if the window is too long, the threshold does not

adapt at all. For example, if we use a window of 100 sam-

ples and select the upper threshold to the 95th percentile,

we would only have 5 samples to estimate the 2 parameters

of the GPD, resulting in severe overfitting.

To overcome this limitation, we will make one simpli-

fication by fixing ξ = 0, so we only need to estimate one

parameter instead of two. Under ξ = 0, the GPD reduces to

the exponential distribution

G(y;σ, ξ = 0) = 1− e−y/σ. (8)

For convenience, we apply the parameterization λ = 1/σ
and write the Exponential in its canonical form

G(y;λ) = 1− e−λy (9)

g(y;λ) = λe−λy. (10)

As opposed to the general case of the GPD, the Exponen-

tial distribution is a member of the exponential family, so it

has a non-trivial sufficient statistic from which we can eas-

ily compute the maximum likelihood estimate (MLE) of its

parameter. Its conjugate prior is the Gamma distribution,

π(λ;α, β) =
βα

Γ(α)
λα−1e−βλ, (11)

the non-informative (improper) prior is given by α = 1,

β = 0, and the parameters of the Gamma posterior under a

Algorithm 1 EVT training algorithm.

1: procedure TRAIN(T , pu, w0)

2: n← 0, s← 0 ⊲ Initialize sufficient statistics

3: for all (x,y) ∈ T do ⊲ Training set T contains x

scores, y labels

4: g← {xi | yi = 0} ⊲ Select negative samples

5: u← u | #{gi > u} = #g pu ⊲ Find upper

threshold

6: t← {gi | gi > u} - u ⊲ Extract upper tail

7: n← n+#t ⊲ Update counts

8: s← s+
∑

t ⊲ Update sum

9: end for

10: α0 ← 1 + w0

11: β0 ← w0 s
n

12: return α0, β0 ⊲ Parameters of the Gamma prior

13: end procedure

Gamma(λ;α0, β0) prior can be computed as

α1 = α0 + n (12)

β1 = β0 +

n∑

i=1

yi. (13)

Moreover, the maximum a posteriori (MAP) estimate has

the closed from λ̂ = β
α−1 . This simplified model allows us

to derive a very fast adaptation algorithm that we describe

in the following section. This approximation works well

in practice, especially when the scores are trained with a

sparsity promoting loss function such as the hinge loss.

3.2. Training

Our training set T contains a number of sequences of

scores x with their corresponding sequences of labels y.

During training, we compute the sufficient statistics n and

s for all the samples that are not labeled as anomalies (the

sufficient statistic is all we need to characterize the Gamma

prior distribution). We then re-scale them to limit the ef-

fect of this prior. Effectively, we use w0 pseudo-samples

instead n (the number of samples in the training set). This

is necessary because n is usually a very large number, and

computing α0 and β0 with it would result in a very strong

prior that would introduce too much bias in the MAP esti-

mate.

The steps of the training procedure are described in Al-

gorithm 1. The parameter pu is the probability of the tail,

and w0 is the weight in sample counts that we assign to the

training set. In our experiments we used pu = 0.05 and

w0 = 400.

3.3. Proposed Adaptive Thresholding Algorithm

During testing, we first perform a series of Kolmogorov-

Smirnov (KS) tests [14] to find and remove anomalies. The
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Algorithm 2 EVT adaptive thresholding algorithm

1: procedure ADAPTSCORES(x, α0, β0, pu, pf , w1, L,

na)

2: λ̂0 ← β0

α0−1 ⊲ MLE in training set

3: y← sort desc(x) ⊲ Sort scores in descending

order

4: k ← #y pu
5: for i← 1, na do ⊲ Training set T contains x

scores, y labels

6: u← yi+k ⊲ Find upper threshold

7: t← {yi, . . . , yi+k} − u ⊲ Extract upper tail

8: Dn,i = supx∈t

∣∣∣Ĝn(x)−G(x;λ)
∣∣∣ ⊲ Compute

KS statistic

9: end for

10: î← mini{Dn,i} ⊲ Estimate number of outliers

11: u′ ← yî ⊲ Set outlier rejection threshold

12: t← {yî, . . . , yî+k} − u ⊲ Extract upper tail

13: α1 ← α0 + w1

14: β1 ← β0 +
w1

∑
t

#t

15: for i← 1, n do

16: w← xi−(L−1)/2:i+(L−1)/2 ⊲ Window

centered at sample xi

17: u← u | #{wi > u} = #w pu ⊲ Find upper

threshold

18: t← {wi | wi > u} - u ⊲ Extract upper tail

19: α← α1 +#t ⊲ Posterior

20: β ← β1 +
∑

t ⊲ Posterior

21: λ̂← β
α−1 ⊲ MAP estimate

22: yi ← xi + u− λ̂ log(pf/pu) ⊲ Adapt score

23: end for

24: return y ⊲ Adapted scores

25: end procedure

KS statistic

Dn = sup
x

∣∣∣Ĝn(x)−G(x; λ̂)
∣∣∣ (14)

measures the dissimilarity between distributions G(x; λ̂)

and Ĝn(x). G(x; λ̂) is the GPD in (9) and

Ĝn(x) = 1− 1

n

n∑

i=1

I(Xi ≤ x) (15)

where I(x) is a standard indicator function, is the empirical

tail CDF. The KS test requires estimating a threshold Kα

for rejecting (with confidence 1 − α) the hypothesis that

the observed data does not fit G with the test
√
nDn > Kα.

The result from Lilliefors[9] shows that the KS test is biased

when the reference distribution G is not precisely known (in

this case, λ̂ is estimated from the training data). However,

as noted in [1], it is not necessary to identify the exact value

of α for the purpose of removing anomalies and outliers.

Instead, we first compute Dn with all the samples in the tail.

We call this Dn,1. We then remove the largest sample and

we compute Dn,2 using the remaining samples. We keep

iterating until we get Dn,na
. Finally, we select the value of

i that minimizes Dn,i.

After removing the anomalies, we use the prior estimated

during training to compute the posterior for the whole se-

quence. This posterior is used as the prior for estimating the

tail distribution on each shift of a window centered on each

of the samples. The details of the adaptation procedure are

described in Algorithm 2. The input to the adaptation pro-

cedure is a sequence of scores x, the parameters of the prior

Gamma distribution α0 and β0, the size of the upper tail pu,

the target false alarm rate pf , the weight w1 that we assign

to the the prior contribution of the whole sequence, the win-

dow length L, and the maximum number of anomalies na

in the sequence. The output sequence y has been adapted

so that when it is thresholded at 0, the false alarm rate is pf .

In our experiments, we have used pu = 0.05, pf = 0.001,

w1 = 100, L = 101, and na = 12.

4. Experimental Results

To validate the effectiveness of the proposed approach,

we have used the 340 sequences of fastener detections cor-

responding to each of the 4 cameras in each of the 85 miles

of the Amtrak NEC concrete tie dataset introduced in [4].

This dataset contains a total of 203,287 ties and each tie is

divided in 4 regions (left field, left gage, right gage, and

right field), so the total number of images is 813,148. The

detection problem consists in determining whether an im-

age contains a fastener attached to one of the rails. The

dataset contains bounding boxes for all the images that are

known to contain a defect. The total number of defects is

1,087 (0.13% of all the fasteners). The defective fastener

class contains two subclasses: broken fastener and missing

fastener.

We have used the scores generated by the multi-task

learning (MTL) detector described in [3]. This detector

uses deep learning with multiple tasks that are trained in

parallel. The reason for using multiple tasks is to prevent

overfitting. By sharing a common low-level representation

between the fastener inspection task and a separate mate-

rial classification task, there is a data amplification effect

that results in better generalization for both classifiers. We

also compare the performance with the baseline single-task

learning (STL) method in [4]. The raw data was provided

by Amtrak, and the authors of [3, 4] provided the output

of their detectors as well as the codes to evaluate the per-

formance. This detector produces a scalar-valued score for

each image by spatially pooling all the detections in the im-

age. Scores are high when the image contains a good fas-

tener, and low when the fastener is either missing or broken.
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Figure 2 shows several detection examples of the MTL de-

tector.

To facilitate the evaluation of fastener detection perfor-

mance under difficult scenarios, whenever the fastener is not

directly attached to the rail or tie, or when for some reason

a fastener is not visible at all, those ties are marked as unin-

spectable with a special label. Depending on the value of

such label, the dataset is divided into 3 subsets:

• Clear ties: 200,763 ties (1,037 ties with at least one

defect).

• Clear ties plus switches: 201,856 ties (1,045 ties with

at least one defect). See Figure 3 for an example of a

switch section.

• All ties: 203,287 ties (1,052 ties with at least one de-

fect). This includes switches, and ties for which some

fasteners are not visible because they are covered by

ballast or a lubricator. See Figures 4 and 5 for exam-

ples of high ballast and lubricator sections.

Figure 3. Example of section marked as switch.

For training, we use all the available data after setting

aside the sequence being tested. Table 1 and Figure 6 show

the detection results on the normalized scores. The overall

improvement is significant. The detection rate on the whole

dataset at PFA = 0.1% increases from 95.40% to 99.26%.

This is a 6× reduction in the missed rate. Moreover, the per-

formance on the clear tie subset does not degrade at all. The

running time of our EVT adaptation algorithm implemented

in MATLAB1 for adapting all 813,148 scores is only of 17

seconds on a Mid-2012 MacBook Pro with a 2.5 GHz Intel

Core i5 processor, so this dramatic improvement comes at

negligible computational cost (running the detector process

takes several hours).

1The code and data used in this section is available at

https://github.com/xavigibert/EvtTrack

Figure 4. Example of section marked as ballast.

Figure 5. Example of section marked as lubricator.

5. Conclusions

In this paper, we presented a new algorithm that nor-

malizes scores from a sequential anomaly detector with

the objective of harmonizing its false alarm rate. Extreme

value theory provides a solid foundation from which adap-

tive thresholding algorithms can be derived. When working

with sequences of images, we need to take advantage of the

statistical dependencies of nuisance parameters of nearby

images. If we discard such dependencies and treat each im-

age in the sequence independently, the performance suffers.

The CFAR detection approach proposed in this paper

has applicability beyond railway track inspection from a

moving vehicle. It could be used, for example, in surveil-

lance video to remove bursts of false alarms caused by sun

glare, insects, rain or fog. Its computational cost is negligi-

ble compared to that of the underlying detector, so this ap-

proach can be easily retrofitted to existing detectors already
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Condition PFA MTL + EVT MTL[3] STL[4]

Fastener (only clear ties)
0.1% 99.91% 99.91% 98.41%

0.02% 97.20% 96.74% 93.19%

Fastener (clear + switch)
0.1% 99.54% 98.43% 94.54%

0.02% 93.80% 89.35% 88.70%

Fastener (all ties)
0.1% 99.26% 95.40% 87.38%

0.02% 93.47% 87.76% –

Table 1. Fastener detection results before and after score normalization.

in operation.
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(c)

Figure 6. ROC curves comparing defective fastener detection performance on the 85-mile testing set using normalized vs. unnormalized

scores (a) on the clear ties subset (b) on the clear with with switches subset (c) on all ties. Detections are per image (each tie has 4 images).
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