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Abstract

Vehicle ego-localization is a critical task not only for in-

car navigation systems, but also for emerging intelligent

and autonomous vehicle technologies. Visual localization

methods that determine current location by performing im-

age matching against a pre-constructed database have an

accuracy limited by the spatial distance between database

images. In this paper we propose a method that uses the

scale of feature points to interpolate the position of the

query image between two database images. We show how

this simple contribution offers an appreciable improvement

in localization accuracy with an extremely minimal increase

in processing time, especially when used in conjunction

with image matching methods that already monitor feature

scale. Our experiments showed an increase of up to 33% in

average localization accuracy when compared to a method

without any interpolation.

1. Introduction

Ego-localization is a central part of vehicle and robotic

navigation systems. For automotive use, standard localiza-

tion systems utilize a Global Navigation Satellite System

(GNSS). Production vehicles typically incorporate a single

frequency Global Positioning System (GPS) receiver for an

in-car navigation system. While suitable for approximate

positioning, these systems are not capable of the decimeter-

level localization accuracy required for emerging intelligent

vehicle systems and automated driving tasks. Particularly in

city environments, the “urban canyon” situation, together

with tunnels and road structures, can cause large localiza-

tion inaccuracies. That is, signal shadowing, where GPS

satellites are not in a direct line of sight from the receiver

can lead to localization failure or poor position triangula-

tion performance. The multi-path effect, where the GPS

signals are reflected off buildings, can lead to apparent rapid

motion or jumping of the receiver’s output. These issues

can cause average errors of 15 m or more in urban envi-

ronments [16]. Therefore, more accurate localization can

be achieved by using dual frequency GNSS systems, RTK

(Real Time Kinematic) GPS systems where a reference sta-

tion provides real-time corrections, or Inertial Navigation

Systems (INS) which include high precision GPS together

with an Inertial Measurement Unit (IMU). While these sys-

tems can provide highly accurate localization, they still may

fail in heavily built up areas and are also too expensive and

complex for consumer vehicles. They also may fail to rec-

ognize common road situations such as parallel, multi-level

roads where raised highways run above secondary roads.

Altitude error of GNSS systems is significantly higher than

horizontal error, so it can be difficult for GNSS systems

to determine which of the parallel stacked roads is being

traversed. Alternatively, localization methods using laser

scanners such as the popular Velodyne [17] have been pro-

posed. However, laser scanners are still typically too ex-

pensive and difficult to integrate into standard vehicles for

production automobile localization systems.

There are a number of methods that use computer

vision for map-relative localization. Visual localization

methods typically use a pre-built database of image de-

scriptors or features captured by a vehicle-mounted cam-

era. Localization can either be performed using extracted

feature points [11], [12], [23], or by matching query

images to database images using whole image similar-

ity [2], [6], [22], [24]. The correct database image match

can be determined either using Dynamic Time Warping

(DTW) with an image similarity measure [11], [22], [23] or

a Bayes filter [2], [6], [24]. Methods using feature points

have the advantage of robustness to occlusions and lane

changes, but also come with increased complexity. Most

techniques employing feature points calculate the camera

pose relative to the matched database frame [10], [12]. This

requires calculation of the essential matrix, usually together

with iterative processes such as Random Sample Consen-

sus (RANSAC) [8] and bundle adjustment. In addition, the

feature matching process of comparing many feature de-
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scriptors is a computationally intensive process. In order

to overcome these performance bottlenecks, feature-based

localization methods which avoid calculation of image ge-

ometry [2], [23] use either descriptor distance [2] or feature

scale [23] to determine the closest database image directly.

For visual localization methods which calculate the clos-

est database image to the a query image, accuracy is limited

by the spacing of the database images. There is a trade-off

between reasonable database size and localization perfor-

mance. A database with spatially close images will provide

better localization accuracy but the localization process may

be slower and the database size can become unwieldy.

In this paper we introduce a method for improving the

localization accuracy of image-matching based systems,

specifically those that already make use of feature points.

The proposed method uses the known scale of database fea-

ture points, and the scale of matched query image points,

to interpolate the query image position between the two

closest database image frames. The observation that this

technique makes use of is the fact that feature point scale

increases approximately linearly with the inverse of dis-

tance to the camera. Change in feature scales is continuous,

so can be used directly for position interpolation between

database frames. We demonstrate the improvement in lo-

calization accuracy when using a recent image matching

method for localization with a precise ground truth. The

proposed method is simple so adds nearly no overhead to

localization computation time.

This paper is organized as follows: In Section 2 we give

a brief overview of related research. We describe our novel

contributions in Section 3 and the overall localization pro-

cess in Section 4. Experimental results are presented in Sec-

tion 5 followed by a discussion in Section 6 and the paper

is concluded in Section 7.

2. Related Work

The method proposed by this paper is an extension of

visual ego-localization systems that determine the current

vehicle localization by matching an image captured by an

in-vehicle camera to a pre-constructed database of known

capture locations. While there are many ego-localization

methods using a variety of sensors or combinations of sen-

sors, we limit our discussion to vision-only methods.

2.1. Visual Localization

The problem of visual ego-localization for automotive

applications is closely related to the Simultaneous Local-

ization and Mapping (SLAM) [7] field in robotics. In

SLAM, visual methods typically use feature points ex-

tracted from images to calculate camera poses and build

a map of the environment being explored, with modern

methods often using a pose graph approach [4], [9]. A

challenging problem in SLAM is scaling to large envi-

ronments, which is necessary in automotive applications.

For vehicle localization on a road network, a reasonable

assumption is that a pre-constructed map is available for

all possible roadways. Large on-line databases such as

Google Street View have demonstrated the feasibility of

creating such databases. Where a pre-constructed map or

database is available, the localization problem resembles

the loop closure, or place recognition component of visual

SLAM [4], [6] where the current location must be found

within the existing map. In vehicle ego-localization, this has

been achieved using dense feature maps and pose estimation

from matched features [12]. While excellent localization re-

sults were achieved, database sizes were quoted as approx-

imately 5 GB for 7 km of road. Simpler approaches match

whole images, using simplified image representations such

as Euclidean distance of dimension reduced images [22]

or a descriptor based on a Whole Image SURF feature,

WISURF [2]. These methods create manageable databases

of manageable size for large- scale mapping, and can run in

real time. The image matching process can be performed

using Dynamic Time Warping (DTW) [15], [19], [22], or

using a Bayesian filter [2], [6], [24].

2.2. Feature­based Methods

The above image matching methods for localization

use a whole image descriptor for comparing the query

and database images. Feature-based image matching ap-

proaches can overcome some of the limitations of using

whole image similarity, providing stability in situations

where occlusions obscure the camera view, or when the

scene appearance changes, for example in lane changes.

Techniques for image matching using features include mon-

itoring the epipole position of features matched between

query and database images [11]. When two images were

captured from similar locations, the epipole position of

matched features moves towards the outside of the image,

and this can be used as a similarity measure within a DTW

method. This system does however still require calcula-

tion of the essential matrix. Alternatively, the scale change

between matched features can be compared and used as a

similarity measure [23]. Feature points that have a size or

scale property, such as the Scale Invariant Feature Trans-

form (SIFT) [14], will vary in size depending on the dis-

tance from which they are captured by the camera. As the

query image capture location becomes close to the corre-

sponding database image, the scale of matched features will

also become closer. The scale difference can be used as a

cost measure in DTW [23].

2.3. Feature Detection and Description

Feature point detection and description in vehicle local-

ization methods is most commonly based on the Scale In-
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Figure 1. A simplified depiction of how a query image feature’s

scale can fall between corresponding feature scales in two database

images. The basic concept in this paper is to interpolate the posi-

tion between the database frames by using the relative difference

in scale of corresponding features in the query image and each

database image.

variant Feature Transform (SIFT) [14] or related methods.

Speeded Up Robust Features (SURF) [3] offers some per-

formance advantages in the detection and description of fea-

tures. There have been an increasing number of feature

point detection and description methods, each with various

advantages in processing efficiency or robustness. Popu-

lar recent methods use a binary descriptor for fast detec-

tion and description. BRIEF [5], ORB [21], BRISK [13]

and FREAK [1] are some modern binary descriptor meth-

ods, typically used with a FAST [20] type detection method,

which incorporates machine learning into the corner detec-

tion process for determining good feature locations.

3. Concept of the Proposed Method

In this paper, we describe a method that extends localiza-

tion methods that use image matching to a database. This

process makes use of feature scale, so is most easily ap-

plicable to methods which already use scale-invariant fea-

tures [11], [23] (and also a variant of the method presented

by Badino et al. [2] which uses features instead of WISURF,

as introduced in the same paper). In particular it is applica-

ble to systems using feature scale [23]. The size, or scale,

of extracted feature points is related to the distance between

the capture location and the real-world position of the fea-

ture. As the camera moves towards the observed feature,

the observed scale increases approximately linearly with the

inverse of distance to the camera. This property is used

in image matching methods, but here we make use of the

continuous nature of feature scale change with distance to

predict query image location without being bounded by the

accuracy limitations of discrete image matching.

We present two methods: in Section 3.1 a very simple

interpolation method for sub-database resolution accuracy

applicable to all feature-based image matching systems, and

in Section 3.2 a more sophisticated method which integrates

with a feature scale based image matching method [23] to

model scale change over database features.

3.1. Position Interpolation using Feature Scale

In most image matching methods for localization, when

a query image is matched to a database image, the localiza-

tion information from the selected database image is used

directly. However, it is very unlikely that the actual location

of the query image capture will correspond exactly to the se-

lected database image. Even if the image match is correct,

the true location will be somewhere between the selected

database image and the next closest database image. This

means that localization errors of half of the database spac-

ing will always be potentially present, even with an ideal

system that can perform perfect image matching.

The proposed method predicts the location of the query

image by calculating the relative scale difference between

features in the query image and two database images. Es-

sentially, the position is linearly interpolated between the

two known database image locations using feature scale.

This basic concept is shown in Fig. 1. The predicted po-

sition is averaged over all features with correspondences in

all three images.

3.2. Scale Modeling

The position interpolation using feature scale is extended

by modeling feature scale changes within the database. This

method is easiest to apply to an image matching method

that pre-matches database features as it requires informa-

tion about a database feature’s appearance in preceding and

succeeding database frames.

If consecutive database images have their features

matched in the database construction process, the relative

scales of the features is known and corresponding database

features (together with their scale) can be arranged into the

order of the database images they originated from. In the

database construction phase, the vehicle is constantly mov-

ing forward so feature scales will also increase approxi-

mately linearly. Position interpolation using feature scale

performs a linear fitting between two database points. Fea-

ture scale is not always completely stable, and the addi-

tional information provided by the corresponding features

from adjacent database frames can be also useful for rec-

ognizing outliers. We model the error in scale change with

forward motion as Gaussian, and perform a linear regres-

sion of database frame positions using feature scale. This

allows more reliable position interpolation, and rejection of

features of unstable scale from the position estimation.

3



Image matching 

method

Proposed scale 

interpolation 

method

Database images Query image

Two closest 

database images
Predicted location

Figure 2. Overview of the processes in the proposed system.

4. Localization Method

In this section the proposed method is described in more

detail. In Section 4.1 we explain the basic position inter-

polation method using feature scale, and the extension em-

ploying linear regression of database feature scales is de-

scribed in Section 4.2.

4.1. Basic Position Interpolation

The basic interpolation method can be used in conjunc-

tion with any image matching method for localization. Af-

ter the closest database image has been selected by the im-

age matching method of choice, the adjacent database im-

age is also selected such that the query image is between

the two. Feature points with a scale property (SIFT, SURF,

MSER, and so on) are detected, together with descriptors

for the feature points (any of SIFT, SURF, BRISK, FREAK,

and so on), if this has not already been performed by the

image matching method. The query image features are

then matched to each of the two database images using de-

scriptor distance. Again, this step may have already been

performed by the image matching method, so can be re-

purposed here. Only matches that are consistent in both

database images are considered. The result is a set of N

matched features, with the query image features denoted qi,

where i = 1, 2, ..., N . The database image features are de-

noted ai and bi for the frames behind and in front of the

query image respectively. The position of the database im-

ages are given as xa behind the query image, and xb in

front of the query image, with x containing the x and y

co-ordinates on the horizontal plane. We can predict the

position of the query image xq by averaging the results of

interpolation using feature scale over all the features as fol-

lows:

xq =
1

N

N
∑

i=1

(s(qi)− s(ai))(xb − xa)

s(bi)− s(ai)
+ xa. (1)

Here the scale of a feature f is given by s(f).
In this research we used a simple averaging of the lo-

cations predicted by the features. The result of the aver-

aging process may be affected by features that have unsta-

ble scale change with capture distance. However, this prob-

lem can be avoided by employing a pruning method as pro-

posed in [23]. For automotive localization, we know that

the camera height is fixed, and vehicle motion is primarily

in the forward direction. This allows the search for fea-

ture matches to be constrained in position and scale, help-

ing to maintain an inlier feature set. When used with a set

of un-pruned features, rather than averaging for predicted

position, an outlier rejection method such as RANSAC [8]

would improve results. Even over many features, the cal-

culations in Eq. (1) are computationally inexpensive so an

iterative process such as RANSAC would not be expensive.

An overview of the proposed method and how it relates

to the image matching process is shown in Fig. 2.

4.2. Linear Regression using Feature Scale

By finding correspondences between features of consec-

utive database images, we can determine the ordered scale

and positions of a particular feature of interest. For the ba-

sic interpolation method we used the feature scales of the

closest database image and it’s adjacent frame only; where

feature scales do not vary constantly with capture distance,

an inaccurate position prediction can result. If we model

the scale error as Gaussian, we can perform a a multivari-

ate linear regression for position given feature scale over all

instances of the feature in the database. The interpolation

then takes place on this regression line rather than between

two points. This process includes the information from all

corresponding feature points in the database rather than just

the two adjacent database images, so is more robust to scale

errors. If X is the M×2 matrix of capture coordinates x (in

the horizontal plane) of M consecutively matched database

features, and S is the M × 2 design matrix containing the

corresponding feature scale row vectors s =
[

1 s
]

, then

the coefficients for the linear regression Θ can be calculated

by ordinary least squares as follows:

Θ = (STS)−1STX. (2)
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Additionally the sample variance, σ2 of the set of feature

positions with respect to scale can be estimated as:

σ2 =

∑M

j=1
||sjΘ− xj ||

2

M
. (3)

The sample variance to mean ratio varies depending on fea-

ture position. However, in order to classify the feature as

a suitable contributor to the localization prediction, we can

approximate a variance-to-mean ratio, VMR, using the po-

sition mean at the center of the regression line:

VMR =
σ2

µm

, where µm =
||s1Θ+ sMΘ||

2
. (4)

Feature sets with a VMR below a threshold are used for

the interpolation process, and others are discarded. Follow-

ing pruning, the predicted position of the query image can

be found by averaging the results of individual feature set

predictions on their regression lines:

xq =
1

N

N
∑

i=1

[

1 s(qi)
]

Θi. (5)

The inter-matching of features between consecutive

database frames and calculation of least squares coefficients

can be performed offline so localization speed is not af-

fected. The inclusion of linear regression coefficients for

each feature set in the database has little effect on the

database size compared to the feature descriptors.

5. Experimental Results

To evaluate the localization performance of the proposed

method, a dataset captured at a driving school was used.

The location allowed traversal of intersections and maneu-

vers to be safely performed away from traffic. A sophisti-

cated data capture system was employed to provide accu-

rate ground truth data in this dataset, which is described in

Section 5.1. The method was tested with a database rela-

tive localization system using feature point scale to deter-

mine image matches [23], which allowed testing of both the

basic interpolation method and the scale linear regression

method. This process is described in Section 5.2 and results

using the proposed method are presented in Section 5.3.

5.1. Mobile Mapping System

The database and query image streams were captured

using a Mitsubishi Electric MMS-X320R Mobile Mapping

System (MMS). This system incorporates three 5 megapixel

cameras, three laser scanners, GPS, and odometry hard-

ware. Only one forward facing camera was used in these ex-

periments. The localization hardware of the MMS was used

to construct an image database and also to obtain a highly

accurate ground truth for the query image set for evaluation.

Figure 3. The dataset location, showing the driving paths used.

Satellite imagery: Google, ZENRIN.

The MMS provides a claimed localization error of less than

6 cm (RMS), and the system provided an estimated average

error of below 1 cm in the experiments that were conducted.

The MMS system captures images at approximately 2 m in-

tervals. Fig. 3 shows the vehicle paths around the driving

school. The query images and database images were cap-

tured on the same day at different times, giving some degree

of lighting variations.

5.2. Image Matching Method

We used two different image matching methods to illus-

trate the performance of our method. Firstly, the WISURF

whole image descriptor [2] method was used within a DTW

framework to create a database and localize input frames.

This method is included here to show a baseline for local-

ization performance using image matching.

Next we implemented a feature scale [23] method which

compares query image feature scales to corresponding

database features within a DTW framework to find the

closest database image. For the image matching localiza-

tion process, an important consideration is the selection

of feature detector type and descriptor type. After testing

with a variety of modern feature extraction and detection

techniques we found that the method providing the most

stable feature scale was the original SIFT detector [14],

but matching performance and speed was best when using

the FREAK feature descriptor [1] together with a FLANN

based matcher [18]. The results of localization using dif-

ferent feature detection and description types are discussed

in Section 6. Although the native capture resolution of the

MMS camera was 2,400 x 2,000 pixels, we found that lo-

calization performance was maintained after down-scaling

to 600 x 500 pixels which improved computation speed.

These experiments used a standard desktop computer with

a 3.5 GHz Intel i7 processor. No GPU, multi-threading

nor optimization was used to increase performance, and the

OpenCV C++ library was used to implement feature detec-

tors and descriptor extractors.
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Table 1. Localization results of proposed and comparative methods. SIFT features use FREAK descriptors.

Method Avg. error (m) Variance Max. error (m)

WISURF 3.71 2.83 4.61

SIFT scale only 0.66 0.15 3.46

SIFT scale + basic interpolation 0.51 0.15 2.96

SIFT scale + linear regression 0.45 0.17 2.84
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Figure 4. Localization error of the proposed method compared

with standard image matching methods.

5.3. Localization Results

Localization of query images was performed using both

image matching methods on the driving school dataset.

Both the proposed basic interpolation method and the scale

regression interpolation method were tested as an extension

to the feature scale image matching method. Localization

performance of all tested methods was evaluated by com-

paring localization results to the ground truth data provided

by the MMS. A summary of the average localization errors

of the various tested methods is presented in Table 1. The

localization error rates of the different methods are shown

in Fig. 4. The proposed method achieved an average lo-

calization error of 0.51 m when using basic interpolation,

representing a 24 % improvement over the feature scale im-

age matching method alone. When using the interpola-

tion method with regression, the improvement over the fea-

ture scale image matching method increased to 33 % with

an average localization error of 0.45 m. All methods us-

ing feature scale were significantly better than the baseline

WISURF localization method in these experiments.

6. Discussion

While we tested many feature types, the original SIFT

detector appeared to result in features with the most stable

scale, providing robust image matching and position inter-

polation with feature scale. The results of testing of feature

detectors and descriptors are shown in Table 2. Some other

detection and description techniques, such as ORB, pro-

vided nearly as good results with much faster computation

speed. A good compromise was provided by using the SIFT

detector with binary FREAK descriptors. The fast binary

descriptors allowed rapid detection and matching while re-

liable feature scale was provided by the SIFT detector. In

these experiments, there was not a great deal of time spent

on fine tuning individual feature extraction and detection

parameters; in future work, further tuning of all methods

will be tested. In addition, some of the theoretically fast

feature detection and description methods were surprisingly

slower than SIFT when used in the image matching sys-

tem. Further investigation into the implementation details

of these methods is required for speed optimization.

The image matching performance using SIFT scale with

DTW and FREAK descriptors was very effective. Example

image matching results can be seen in Fig. 5. The image

matching method alone had an average localization error of

0.66 m, which shows close to perfect image matching since

the database image spacing was approximately 2.0 m.

Interpolation of the query image position using feature

scale was effective in all tested combinations of feature de-

tector and descriptor types. In particular the SIFT detector

appeared to produce features with enough scale resolution

for interpolation to be effective. We only tested the regres-

sion technique with the SIFT detector and FREAK descrip-

tor, but improvements with other feature types is likely as

well.

While the database size varied significantly with the

number of extracted feature descriptors, when SIFT features

and descriptors were used it was around 90 MB per kilome-

ter. The use of FREAK descriptors produced a database of

half the size, at about 40 MB per kilometer. The MSER fea-

ture detector resulted in fewer matched features so created

the smallest databases of as little as 7 MB per kilometer with

FREAK descriptors. However, the smaller number of fea-

tures also affected localization performance as can be seen

in Table 2.

The dataset used in experiments is limited by the fact
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Table 2. Results of feature descriptor and descriptor testing. Minimum values are shown in bold.

Extractor /

descriptor

Avg. error,

no interpola-

tion (m)

Variance, no

interpolation

Avg. error,

basic inter-

polation (m)

Variance,

basic

interpolation

Avg. time

per query

frame (ms)

Avg. database

size per

frame (KB)

SIFT / SIFT 0.66 0.15 0.52 0.15 102 182

SIFT / SURF 0.67 0.24 0.52 0.26 69 303

SIFT / BRISK 0.65 0.22 0.55 0.23 188 98

SIFT / FREAK 0.65 0.25 0.51 0.16 65 91

SURF / SURF 0.66 0.15 0.57 0.19 153 582

SURF / BRISK 0.65 0.20 0.59 0.21 180 171

SURF / FREAK 0.69 0.26 0.65 0.29 101 150

BRISK / BRISK 1.74 3.59 1.73 3.54 605 55

ORB / ORB 0.98 0.68 0.86 0.61 24 102

MSER / ORB 0.70 0.45 0.62 0.45 88 13

MSER / FREAK 1.06 3.17 0.88 2.82 50 20

WISURF image matchQuery image SIFT scale image match 

0.63m0.63m 0.63m

1.17m4.43m

1.21m 0.75m

Figure 5. Example image matching results of query images (left)

using the WISURF image descriptor (center) and SIFT feature

scale (right). Current localization errors are shown in the bottom

left-hand corner.

that a single camera type and mounting system was used

for both query and database images. While it would be de-

sirable to use a variety of configurations to test robustness,

this was not possible with the hardware used. Nevertheless,

this method uses feature scale only and not pixel position,

so we predict that it will provide some robustness to un-

calibrated cameras of varying types even when mounted at

different positions.

7. Conclusion

In this paper we presented a method for using feature

point scale to interpolate the position of a query image be-

tween the two closest database images. An extension of this

method that models the scale of corresponding database fea-

tures with a linear ordinary least squares regression was also

presented. Both techniques were demonstrated to improve

the localization accuracy of a feature-based image matching

method which determines the position of a query image by

finding the most similar database frame. The localization

accuracy improved by an average of 24 % with a basic po-

sition interpolation using feature scale, and 33 % with the

addition of linear regression, resulting in an average local-

ization error of 0.45 m.

An experiment using different types of feature detectors

and descriptors was also performed, in order to investigate

the best combination for image matching and interpolation

using feature scale. The original SIFT detector gave the

best localization results, while the FREAK binary descrip-

tor provided a faster alternative for feature description and

matching. Even with the slower SIFT implementation and

no speed optimization, real-time operation of around 15 Hz

was achievable on standard hardware.

Future work will include further experiments with differ-

ent feature and descriptor implementations, as well as test-

ing of feature repeatability and scale robustness in chang-

ing lighting conditions. We also plan to test the method on

larger databases in traffic environments with a wider variety

of camera hardware and mounting positions.
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