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Abstract

In this paper, we present a framework for automatically

analyzing activities and interactions, and recognizing traf-

fic states from surveillance video. Activities and interac-

tions are firstly learned by Hierarchical Dirichlet Process

(HDP) models based on low-level visual features. Based

on the learning results, a Gaussian Process (GP) classifier

is trained to classify the traffic states in online video. Fur-

thermore, the temporal dependencies between video events

learned by HDP-Hidden Markov Models (HMM) are effec-

tively integrated into GP classifier to enhance the accuracy

of the classification. Our framework couples the benefits of

the generative models-HDP with the discriminant models-

GP. We validate the proposed model by applying it to the

analysis of the three standard video datasets over crowded

traffic scenes and compare it with other baseline models.

Experimental results demonstrate that our model is effec-

tive and efficient.

1. Introduction

Video event classification is an important issue in com-

puter vision and have attracted great attention in recent

years [11] due to their significant practical values such as

security monitoring, traffic controlling, etc. Most existing

approaches focused on recognition of an individual activity

[21], or a collective activity [2] in clean backgrounds. This

task remains challenging in a crowded public scene due to a

large number of agents with different activities at the same

time, and complicated interactions such as traffic flows at

a busy junction. Moreover, a surveillance video captured

from a crowded scene is usually low-quality.

Discriminant models such as GP models and SVM are

the most popular approaches to classify video event [1, 4]

due to their advantage in terms of classification accuracy.

However, they are supervised models and training dataset

with manual labels is necessary in advance. Besides, they

are feature-based approaches. They have high requirement

in the applicability and the preciseness of features to ensure

their performance. The most widely used features include

HOG feature, optic flow based features, etc.

The generative topic models such as LDA [7] and

HDP [22, 13] have shown great promise in exploring mo-

tion patterns for dynamic scenes. They effectively learn ac-

tivities and interactions from non-labeled video by analyz-

ing semantic relationships instead. However, they have seri-

ous limitations: consuming computation and work in batch.

Besides, most existing methods neglect the temporal depen-

dencies between activities and interactions [22].

Inspired by the benefit of generative and discriminative

models, in this paper, we propose a framework to combine

the HDP model and the GP model for analyzing and clas-

sifying video events. The first step is unsupervised learn-

ing the activities using HDP model and traffic states using

HDP-HMM, respectively. Based on the learning results, a

GP classifier is trained to recognize the traffic states. In ad-

dition, the temporal dependencies between two states are

integrated into our GP model to enhance classification ac-

curacy.

Contributions. First, we effectively combine unsuper-

vised generative model HDP with discriminant model GP,

to realize classification of traffic states. Second, we in-

tegrate transition information between two states with GP

model to enhance the accuracy of classification. Third,

we provide detailed experiments and analysis showing that

our framework enjoys favorable performance in video event

classification in a crowded traffic scene.

1.1. Related Work

Topic models have received increasing attention to an-

alyze activity in surveillance video [7, 9, 13, 22, 19, 6].

However, [22] are offline and batch procedures and tem-

poral dependencies are neglected. [7, 9] use latent Dirich-

let allocation (LDA) models to infer activities in a video,

which requires predefined number of clusters. It is hard to

give a proper number of possible activities that may occur

in a video from a crowded scene. Besides, their models per-

form Gibbs sampling in each newly captured video clip to
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Figure 1. The flow chart of proposed framework

estimate the joint distribution. It is time consuming and es-

pecially inefficient in an online model. [13] proposed a new

method to infer activities and interactions from video. But

this model is computation consuming. Moreover, it is not

clear whether the model could work online.

GP models have been often applied for human motion

analysis and activities recognition [1, 20] because of its

robustness and high accuracy in classification. However,

GP models are supervised. They must be fed with man-

ual labeled data set. In the other hand, GP models require

proper features to model events such as the most widely

used trajectories [12, 5]. However, tracking-based meth-

ods depend crucially on the performance of detection and

tracking which is costly or unreliable in our complex and

crowded scene. [17] proposed an alternative method to

combine features for complex event recognition. However,

this method is unfeasible in a surveillance video because of

the low quality and too many objects in small size. [10]

proposed a method to combined the HDP model with One-

Class SVM by using Fisher kernel. This method needs to

compute the gradient of the log likelihood with respect to

each parameters of the model.

2. Video Representation

Firstly, some key notations are given in Tab. 1. The

application data are surveillance videos from complex and

crowded traffic scenes and captured by a fixed camera. They

contain many activities and interactions. Some unavoidable

problems such as occlusions, a variety object types, small

size of objects challenge detection and tracking based meth-

ods. In such case, using the local motions as low-level fea-

tures is a reliable way. First, optical flow features for each

pixel between each pair of successive frames are extracted

using the method proposed in [14]. A proper threshold (0.85

in our experiments) is necessary to reduce noise. Similar to

the related works [22, 13, 8] the camera scene is uniformly

divided into square cells of 8 × 8 pixels to get rough posi-

tion features. The optical flow features of each cell are the

mean of its pixel memberships and quantized into one of the

8 directions (see Fig. 7(r)) as local motion features. Finally,

a vocabulary is constructed, in which each word is charac-

terized by its position and motion direction. A vocabulary

with N total flow words is denoted as V = {1, 2, · · · , N}.

The input videos are uniformly segmented into non-

overlapping clips for 75 frames each (3 seconds). Each clip

is an accumulation of flow words over its frames and rep-

resented as a word vector w = (w1, · · · ,w|I|), where I is

set of the word indexes and |I| denotes the total number of

occurring words in this clip. The entries of the vector are

unique, i.e. we only care about if a word occurs during this

clip instead its frequency of occurrence.

Table 1. Notations of variables

Notations Descriptions

t = 1, · · · , T index of video clips

V = {1, · · · , N} codebook with N total words

wti ith flow word in clip t
mi,j transition probability from state i to j
pkwi

probability of word i in activity k
ak pattern dictionary of activity k
It set of word indexes in clip t
cti intensity of activity i in clip t

3. Method

The whole framework is illustrated as Fig. 1. First, the

local motion are extracted to form a vocabulary. Second,

a HDP model and a HDP-HMM are applied to automati-

cally learn the activities and traffic states, respectively. The

HDP-HMM also provide the transition information between

two states. Next, we propose a method to represent activi-

ties based on low-level features and states with mixture of

activities. Then, a GP classifier is trained with the repre-

sentation. The transition information is integrated into the

classifier to enhance the classification accuracy. Finally, the

trained classifier performs to classify the traffic states in on-

line surveillance video sequence.

We model activity and traffic state patterns as spatial dis-

tributions of flow words that have high co-occurrence fre-

quencies within a clip. They are topic basis: a distribution

over vocabulary V. Then HDP [18] is applied to learn the

latent topics, i.e. the activities and states.
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Figure 2. A graphical representation of HDP model

3.1. Learning Activities Using HDP

The graphical representation of HDP model is shown in

Fig. 2. The global random measure G0 is the global topics

(activities) set that is shared by all clips. Its distribution

is a Dirichlet Process with concentration parameter λ and

Dirichlet prior H:

G0|γ,H ∼ DP (γ,H).

G0 can be expressed using the stick-breaking formula-

tion [18]:

G0 =

∞∑

k=1

πkδφk
, πk = π′

k

k−1∏

l=1

(1− π′
l),

π′
k ∼ Beta(1, λ), φk|γ,H ∼ H,

where {φk} are parameters of multinomial distributions

over words in codebook corresponding to topic θk, i.e. word

probability vector and the sum of its entries equals 1. δφk
is

the Delta function at point φk. {πk} are random probability

measures (mixtures over topics) and Σ∞
k=1

πk = 1. It is also

known as πk ∼ GEM(γ) in stick-breaking process. The

multinomial distribution φk over words in the codebook is

generated from H . Therefore, H is interpreted as a distribu-

tion over multinomial distributions and thus can be defined

as a Dirichlet distribution:

H = Dir(D0), φk|γ,H ∼ Dir(D0).

Gt is a random measure and drawn from the second DP with

concentration parameter α and Dirichlet prior G0:

Gt|α,G0 ∼ DP (α,G0),

where G0 itself is drawn from the first DP as demonstrated

above. Thus, G0 is a prior distribution over the whole cor-

pus and a sample Gt is its subset. In our case Gt describes

the multinomial distribution of active topics in clip t. We

(a) (b)

Figure 3. Examples of activity (a) and traffic state (b) patterns

without explicit semantics

express it using the stick-breaking representation again:

Gt =

∞∑

k=1

πtkδφk
, πtk = π′

tk

k−1∏

l=1

(1− π′
tl),

π′
tk ∼ Beta(1, α), φk|α,G0 ∼ G0.

For the ith word in document t, a topic θti is first drawn

from Gt and then the word wti is drawn from multinomial

distribution Multi(wti;φθti) (i.e. the multinomial distri-

bution over words in codebook corresponding to topic θti
). Different Gt has the same φk as G0, i.e. different clips

share the same set of topics and statistical strength. We ap-

ply Gibbs sampling schemes to do inference under an HDP

model [18].

The hyperparameters γ and α are empirically predefined.

They are priors on the concentration of the word distribution

within topics. They influence the number of activities in G0

and Gt. The parameter D0 for the Dirichlet distribution is

also set empirically.

Although HDP models decide the number of topics auto-

matically, some of the explored activities are non-semantic

(Fig. 3(a)). Some activities are generated because some rare

motions need to be explained individually. There motions

could be caused by noise or rare events. These activities

could lead to ambiguous or even misleading analysis of in-

teractions. Therefore, the typical normal activities are nec-

essary to be selected from all the learned activities. This

step is executed as follows. The total number of words that

are assigned to activity k throughout the training video is

denoted as nk. The ratio of activity k is computed as

rk =
nk

n1 + · · ·+ nK

. (1)

We rank {r1, · · · , rK} in a decreasing order as {r′
1
≥ · · · ≥

r′K} and calculate the accumulated sum as R′
j =

∑j

i=1
r′i

Then typical activity set is denoted as

Atypical , {Aj |R
′
j ≤ 0.99}, 1 ≤ j ≤ K, (2)

where Aj is the activity j with ratio r′j .
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Figure 4. A graphical representation of the HDP-HMM model [18]

3.2. Learning States using HDP­HMM

A busy traffic junction is normally regulated by traffic

lights: different traffic states occur sequentially and circula-

tory in a certain order. Hidden Markov model (HMM) [3]

hat inherent advantages to explore the latent states and their

transition information. HMM can be explained as a doubly

stochastic Markov chain and is essentially a dynamic vari-

ant of a finite mixture model. [18] replaced the finite mix-

ture with a Dirichlet process and proposed the HDP-HMM

model as shown in Fig. 4. Therefore, the number of states of

HMM is automatically decided by the HDP model instead

of given in advance. Its stick-breaking formalism is:

β ∼ GEM(γ), πk ∼ DP (α, β), φk ∼ H

yt|yt−1 ∼ Mult(πyt−1
), wt|yt = si ∼ Multi(φyt=si)

where yt ∈ S = {s1, · · · , sNs
} is the state label of the

tth clip and S is the set of possible states and Ns is the

total number of states. In this case, each vector πk =
{πkl}l=1,··· ,Ns

is one row of the Markov chain’s transition

matrix from state k to the other states. For clear explanation,

we denote these transition matrix as M = {mi,j}i,j=1···L

throughout the paper. Gibbs sampling schemes are applied

to do inference under this HDP-HMM. Fig. 8 shows the typ-

ical traffic states learned by HDP-HMM for QMUL Junc-

tion Dataset [7].

The same as in the activity learning results, the typical

traffic states also need to be selected from the results given

by HDP-HMM. Fig. 3(a) shows an example of learned

states caused by anomaly. This process is the same as de-

scribed in Sec.3.1.

3.3. Activity and State Patterns

Both the learned activities and traffic states are character-

ized by a multinomial distribution over the words in code-

book. These statistic information cannot be directly applied

by our classifier. We propose here a new way to represent

activity and traffic states based on the learning results.

Activity patterns The probability of ith word in activity

θk is denoted as pkwi
and pkw = {pkwi

}Ni=1
, ΣN

i=1
pkwi

=

(a) All possible words (b) activity pattern words in the dic-

tionary

Figure 5. An example of activity pattern

1. We sort pkw in descending order p′
kw = {p′kw1

≥ · · · ≥
p′kwN

} and calculate the accumulated sum of probability as:

P ′
kj =

j∑

i=1

p′kwi
. (3)

The pattern dictionary of activity k is denoted as:

ak = {wj |P
′
kj ≤ 0.9} (4)

The words which fall into the rest 10% are viewed as noise

or rare motion. Fig. 5 shows a comparison between all pos-

sible co-occurring visual words and the selected representa-

tive words in the activity of vehicles driving downward.

State patterns The traffic state of a clip is represented as

a mixture of activities c = {c1, · · · , cNa
}, where Na is the

total number of typical activities. For clip t each component

of the vector is computed as:

cti =
|ai ∩wt|

|It|
. (5)

The vector explains the intensity of each activity in this clip,

as shown in Fig. 8.

3.4. Gaussian Process for State Classification

The HDP-HMM has mined the main traffic states from

training video sequence and labeled the training video clips

y = {y1, · · · , yT }, yt ∈ S and T is the total number of

clips for training. C = {c1, · · · , cT } is the set of fea-

ture vectors for corresponding clips, where ct is the feature

vector of clip t given by Eq. (5). Now the training data

set (C,y) is constructed to train our discriminative model

(GP). Our task is labeling a new coming video clip c∗ to a

traffic state with the highest probability P (y∗|C,y, c∗). For

simple illustration the binary classification with two traffic

states yt ∈ {−1,+1} is considered here. The binary classi-

fication can be easily extended to multiple classification by

using the one-against-all strategy.
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(a) imperfect clip segmentation (b) too few motions

Figure 6. Examples of confused traffic states

The general formulation of probability prediction for a

new test sample given the training data (C,y) under a GP

model is:

p(y∗ = +1|C,y, c∗) =

∫
p(y∗|f∗)p(f∗|C,y, c∗)df∗,

(6)

where p(f∗|C,y, c∗) is the distribution of latent variable

f∗ corresponding to sample c∗. It is obtained by integrating

over the latent variable f = (f1, . . . , fT ):

p(f∗|C,y, c∗) =

∫
p(f∗|C,y, c∗, f)p(f |C,y)df (7)

where p(f |C,y) = p(f |y)p(f |C) / p(y|C) is the posterior

over the latent variables. p(y|C) is the marginal likelihood

(evidence), p(f |C) is the GP prior over the latent function,

which in GP model is a jointly zero mean Gaussian distri-

bution and with the covariance given by the kernel K.

The non-Gaussian likelihood in Eq. (7) makes the inte-

gral analytically intractable. We have to resort to either ana-

lytical approximation of integrals or Monte Carlo methods.

We use the Laplace method [23] in this paper. As intro-

duced in [16] the mean and variance of f∗ are obtained as

follows:

p(f∗|C,y, c∗) = N (µ∗, σ∗),

with µ∗ = k(C)TK−f̃ ,

σ∗2 = k(c
∗
, c∗)− k(C, c∗)T (K+W−)k(c, c∗),

where W
△
= −∇∇logp(y|̃f) is diagonal. K denotes

a T × T covariance matrix between T training points.

k(C, c∗) is a covariance vector between T training video

clips C and test clip c∗, while k(c
∗
, c∗) is covariance for

test clip c∗, and f̃ = argmaxf p(f |C,y). Given the mean

and variance of latent variable f∗ for test clip c∗, we com-

pute the prediction probability using Eq. (6).

The covariance function and its hyperparameters Θ cru-

cially affect GP models performance. The Gaussian radial

basis function (RBF) is one of the most widely used kernels

due to its robustness for different types of data and is given

as:

KRBF (ci, cj) = σ2 exp(−
‖ci − cj ‖

2

2l2
). (8)

Θ = [σ, l] is the hyperparameter set for RBF. We optimize

the hyperparameters using Conjugate Gradient method [15].

3.5. Integration of Transition Information into GP
Classifier

The input video is segmented into clips along time and

some clips maybe span two traffic states, as shown Fig. 6(a).

In practice, the traffic volume varies. Sometimes the scene

is silent within one or several consecutive clips, as shown

in Fig. 6(b). In these two cases, the GP classifier is hard to

exactly classify the states of the clips. The clips are classi-

fied as the states with highest probability. To enhance the

classify accuracy, the transition information between two

traffic states is worth considering. For example, the transi-

tion from state in Fig. 8(a) to state in Fig. 8(c) is impossible.

To exploit the transition information, we define a new state

energy function for clip t as:

E(yt = si|yt−1 = sj) (9)

= −log{p(yt|ct)}+ βlog{msi,sj}(1− δ(yt, yt−1))

yt = arg min
yt=si

E(yt|yt−1) (10)

where p(yt|ct) is the likelihood of the tth clip labeled as

state si given by Eq. (6). msi,sj is the transition probability

from state sj (the state of previous clip) to si (the state of

current clip). δ(yt, yt−1) = 1, if yt = yt−1, else 0. β
is the weight of transition energy and is set experimentally

as 0.1. It means that, if the state does not change, we do

not need to care about the transition problem. If the state

changes in two consecutive clips, the transition information

is taken into account and the current clip is labeled with the

state which has minimal energy.

4. Experiments

4.1. Dataset

Experiments were carried out in real video data from

three complex and crowded traffic scenes regulated by

the traffic lights. QMUL Junction Dataset [7] contains

1 hour of 25 fps video (90000 frames) with frame size

360×288. The video covers a busy traffic junction contain-

ing three major flows in different directions. QMUL Junc-

tion Dataset 2 [7] is 52 minutes of video with 25 fps and

frame size is 360×288. This video covers a busy street with

particularly busy pedestrian activity. MIT Dataset [22] is

1.5 hour of video with 30fps (162000 frames) and frame

size is 720× 480. It covers a far-field traffic scene.

4.2. Parameter Setting

For each dataset, the first 500 video clips (about 25 min-

utes’ length) were employed to learn the typical activities
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(a) activity 1: 16.6% (b) activity 2: 15.9% (c) activity 3: 15.8% (d) activity 4: 9.8% (e) activity 6: 5.7% (f) activity 9: 2.7%

(g) activity 10: 2.7% (h) activity 12: 1.9% (i) activity 13: 1.8% (j) activity 15: 1.7% (k) activity 16: 1.6% (l) activity 17: 1.5%

(m) activity 18: 1.2% (n) activity 19: 1% (o) activity 20: 1% (p) activity 22: 0.8% (q) all possible lanes (r) quantized direc-

tions

Figure 7. (a)-(p) 16 of the 22 most important activity patterns discovered by HDP model in QMUL Junction dataset, shown in order of

decreasing importance. (q) Manually labeled legal vehicle driving lanes (red lines) and pedestrian walking lanes (yellow dash lines). (r)

quantized directions.

(a) vertical flow (b) leftward flow (c) rightward flow (d) left and right turn (e) state transition graph

(f) (g) (h) (i)

Figure 8. (a)-(b) typical traffic state patterns learned by HDP-HMM model and their corresponding average components of typical activities

(f)-(i) throughout the training video sequence. (e) is the state transition graph noted with transition probabilities and directions.

and traffic states. The rest of the video sequences were em-

ployed to simulate online video for testing, i.e. 699 clips

for QMUL Junction Dataset, 539 clips for QMUL Junction

Dataset 2 and 1711 clips for MIT Dataset.

To infer the latent variables under the HDP and HDP-

HMM, 1000 sweeps of the Gibbs sampler were executed

and the first 500 were used as burn-in. To find the best hy-

perparameters (β, α) for our task, a grid search has been

performed on β, α ∈ {0.1, 0.5, 1.0, 1.52.0}. We analyzed

the results with different hyperparameter set. Even though

the number of clusters increased with larger β and α, the

numbers of typical activities and states always converged

when about least 90% of the total motions were explained.

These numbers kept consistent when β and α were both
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 9. Typical traffic state patterns learned by HDP-HMM model for QMUL Junction Dataset 2 (a)-(d) and MIT Dataset (e)-(i)

Table 2. Comparison of classification results between our method and baseline methods for QMUL Junction Dataset

State
MCTM [7] LDA [8] HMM [8] Ours

L R V VT L R V VT L R V VT L R V VT

Left .99 .00 .00 .01 .49 .44 .00 .06 .98 .00 .01 .01 1.0 .00 .00 .00

Right .00 .94 .01 .05 .00 1.0 .00 .00 .00 .92 .08 .00 .00 .99 .00 .01

Vertical .00 .00 .77 .22 .01 .17 .82 .00 .02 .01 .69 .28 .00 .00 0.98 .02

Vertical-Turn .31 .05 .20 .43 .01 .21 .30 .46 .49 .04 .32 .15 .05 .00 .00 .95

Average Accuracy .78 .69 .69 .98

larger than 0.5. The selected typical activities and states

look similar. The additional activities and were generated

to explain very rare motions. In this paper, we are only in-

terested in typical activities and states and we did not use

topic models to estimate likelihood or posterior. Therefore,

we did not need precise hyperparameters for our models and

the hyperparameters were fixed at β = 2, α = 0.5 for all

experiments.

4.3. Learning Typical Activities and States

Due to limited space and for better understanding, we

will only analyze the experimental result in QMUL Junction

Dataset in detail. The HDP models automatically learned

32 activities in this traffic scene, among which 22 were au-

tomatically selected as typical activities (some of them are

shown in Fig. 7). For a better illustration, all possible mo-

tion flows for vehicles and pedestrians are manually painted

and marked with alphabetic letters in Fig. 7(q). For exam-

ple, the vehicle flow ”a” consists of activity 1 and 13.

The HDP-HMM automatically learned 9 traffic states. 4

of them were automatically selected as typical states which

have the highest percentage among all training clips, as il-

lustrated in Fig. 8(a)-8(d). For instance, the main com-

ponents of state vertical flow are activity 1, 2, 13, 20.

The corresponding average feature vectors of each typical

state through the training video are shown in Fig. 8(f)-8(i).

Fig. 8(e) is the state transition graph with transition proba-

bilities and directions. We can see that, the transition from

state vertical flow to state rightward flow is very rare.

4.4. Traffic State Classification

The learned typical traffic states in QMUL Junction

Dataset 2 are shown in Fig. 9(a)-9(d) and the states of MIT

Dataset are shown in Fig. 9(e)-9(i).

QMUL Junction Dataset 2 has two main flows and 4 typ-

ical states: vehicles driving vertical without (Fig. 9(c)) or

with (Fig. 9(d)) pedestrian; vehicles making a turn at the

crossing without (Fig. 9(a)) or with (Fig. 9(b)). The MIT

Dataset has 5 typical traffic states: Fig. 9(e) explains a busy

vertical flow; Fig. 9(e) shows a rightward flow; Fig. 9(g) ex-

plains a horizontal flow in two directions; Fig. 9(h) explains

vehicles driving downward from top and pedestrian cross-

ing the road; Fig. 9(i) illustrates that vehicles stop behind

the crosswalk and pedestrian cross the road.

The online screened video sequence was also seg-

mented into clips of 75 frames each. Our experimental re-

sults are compared with the baseline methods: Dual-HDP

model [22], Markov Clustering Topic Models (MCTM) [7],

LDA and HMM. They adopted diverse length of video clip

ranging from 1 second to 10 seconds. The experimental
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Table 3. Classification performance for the MIT Dataset

State
Dual-HDP [22] Ours

a b c d e a b c d e

M
an

u
al

ly
la

b
el a 149 0 2 0 0 610 4 5 0 3

b 8 74 4 2 11 3 402 0 2 0

c 10 3 60 1 2 3 2 304 2 0

d 4 0 2 88 11 7 8 10 222 0

e 4 2 6 5 92 6 5 4 8 102

Table 4. Classification performance for QMUL Dataset 2

Our Classification

M
an

u
al

ly
la

b
el a b c d

a 86 2 1 2

b 2 264 0 4

c 0 0 188 2

d 0 2 0 76

results are directly cited from [8] (for QMUL dataset) and

[22] (for MIT dataset). From the comparison in Tab. 2 we

see that our model outperforms other three popular meth-

ods in terms of classification results in the QMUL dataset.

In contrast to the Dual-HDP model in the MIT dataset as

listed in Tab. 3, our methods also achieved better classifi-

cation results. To validate our method, we have executed

one more experiment in the QMUL Junction Dataset 2. The

results is listed in Tab. 4.

It is worth pointing out that some clips were falsely rec-

ognized by traditional GP classifier and corrected by our

model. For example, it is ambiguous to determine whether

the state in Fig. 10 belongs to state Fig. 9(e) or Fig. 9(f) only

based on its appearance. It was falsely classified as the sec-

ond one with higher probability by GP classifier. Because

its previous clip is in the state as Fig. 9(e), it is successfully

corrected by using transition information.

The false classification happens when two situations

arise. First, the appearance of a clip is ambiguous between

two states. Second, the transition probability between these

two states is not low. Take the QMUL Junction dataset for

example: the transition from state D (left and right turn) to

state B (leftward flow) is very normal in this scene. When

a clip, in which is state D, contains a clear left turn flow (as

shown in Fig. 7(h)) but the other activities are not so clear,

this clip is easily classified as state B.

4.5. Computation Cost

Since computing the optical flow from each consecutive

frames is the most time-consuming process, all optical flow

features are computed in advanced. The rest computation

cost consists of three parts: 1. off-line learning activities

and states using HDP and HDP-HMM models. 2. train-

(a) (b)

Figure 10. Two examples of false classification using GP classifier

only

ing GP classifier involving optimization of the hyperparam-

eters. 3. testing the data in the online phase. Our experi-

ments run on a 4 cores CPU of 3.4 GHz with 7 GB RAM

with Matlab 2013b. The first part takes about 4 hours on 25

minutes of video clips at a resolution of 360 × 288 pixels

and the second parts takes about 2 minutes. For testing 35

minutes of video clips, it takes only about 1 second.

5. Conclusion

In this paper, we have presented a novel framework for

automatic video event analysis and recognition by com-

bining HDP and GP. We employ the unsupervised non-

parametric model-HDP to learn the typical activities and

states from training video. We propose to represent activ-

ities using local motion and states using activity patterns.

Then a training dataset is generated to train the GP clas-

sifier. Furthermore, the transition information learned by

HDP-HMM has been effectively integrated into GP clas-

sifier. Our model is validated in three real-world datasets

and the experimental results are compared with the baseline

methods. In the future, we will extend our model to recog-

nize abnormal activities in online video.
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