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Abstract

Occupancy grid state mapping is a key process in

robotics and autonomous driving systems. It divides the en-

vironment into grid cells that contain information states. In

this paper, we propose a modified SMC-BOF method to map

and predict occupancy grids. The original SMC-BOF has

been widely used in the occupancy grid mapping because it

has lower computational costs than the BOF method. How-

ever, there are some issues related to conflicting informa-

tion in dynamic situations. The original SMC-BOF can-

not completely control an elongated vehicle that has con-

flicting information caused by the height difference between

backward of vehicle and ground. To overcome this problem,

we add confidence weights onto a part of the grid mapping

process of the original SMC-BOF using the Linear Opinion

Pool. We evaluate our method by LIDAR and stereo vision

data in the KITTI dataset.

1. Introduction

Mapping and predicting occupancy grid probability are

important tasks in autonomous driving systems or any

robotic systems. A grid map has been widely used to es-

timate stationary indoor environments in combination with

mapping and object tracking algorithms. Occupancy grid

mapping was first proposed in the work of [6]. The occu-

pancy grid mapping process is to represent the environment

around an ego vehicle via grid cells. All grid cells contain

a fusion of a variety of information from several different

sensor measurements.

Moravec et al. [13] and Elfes [7] combined the likeli-

hood function of several sensors using Bayesian reasoning

to map and filter grid states. The latest algorithm that is used

more often is the Bayesian occupancy filter (BOF) [2]. It

uses a Bayesian framework that estimates the dynamic state

of each cell with the occupancy probability. While early

object tracking algorithm can track the shapes of predefined

Figure 1. A simple overview of represented states via evidence

theory. (a) Occupied state grids, (b) Free state grids.

objects, the BOF can track any arbitrarily objects.

Both algorithms mentioned above use the Bayes theory

to map environments and to track objects using the informa-

tion obtained from several sensors. However, the BOF has

some problems. High computational cost occurs in the BOF

because it applies a histogram filter to the dynamic state. To

overcome this cost issue, Danescu et al. [3] used the sequen-

tial Monte Carlo Bayesian occupancy filter (SMC-BOF).

Because the SMC-BOF uses particles to represent the dy-

namic state of grid cells that are treated independently, the

computational cost can be reduced compared to the origi-

nal BOF [5]. Danescu et al. [3] used stereo vision data for

the SMC-BOF model. Negre et al. [14] and Tanzmeister

et al. [19] applied multi-layer laser scanner data into the

SMC-BOF. However, previous works related to the SMC-

BOF cannot completely control an elongated vehicle, such

as a trailer or a bus, or a stationary object. Due to the height

difference between backward of a vehicle and the ground,

it is very difficult to handle the information. Furthermore, a

stationary object is often misjudged as a moving object with

the same speed as that of the ego vehicle.

To solve this problem, Pathak et al. [16] used the Super-

bayesian Independent Opinion Pool formula, and Moras et

al. [12] used the Dempster-Shafer theory. Adarve et al. [1]

presented the linear opinion pool for the occupancy grid

mapping. The Linear Opinion Pool creates created more

complex models by considering the interaction between
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multi-sensor modalities via modifying the linear pooling of

opinions [4].

In this paper, we proposed a modified SMC-BOF to

handle conflicting information such as an elongated car.

We use the Linear Opinion Pool for grid mapping in-

stead of using the original mapping process of the SMC-

BOF [5, 13, 16, 17]. We tested our model by using LIDAR

and stereo vision data from KITTI dataset. The reason why

we use LIDAR-stereo fusion data is that a stereo vision and

a LIDAR can accurately measure the nearby object and a

distant object, respectively.

This paper is organized as follows. Section 2 explains

the SMC-BOF. Section 3 describes our proposed method, a

modified SMC-BOF with the Linear Opinion Pool for the

complex model. Section 4 shows the experimental results

using the KITTI dataset and the conclusion is presented in

Section 5.

2. The Sequential Monte Carlo Bayesian Occu-

pancy Filter

This section explains an overview of the SMC-BOF im-

plementation. The SMC-BOF is used to filter the occupancy

probability of each grid cell. Most occupancy filters in ob-

ject tracking algorithms follow similar process. First, infor-

mation obtained from the multi-sensor is presented. Based

on the presented data, we can predict the state of next frame.

Finally, we estimate the posterior state by updating step

which jointly computes the state of the predicted state and

new observed states.

2.1. Representation of a grid state

The measured environment from equipped sensors is di-

vided into 2D discrete grid cells. That is projected in birds

eye view space. The size of the grid cell influences the

computational time and the performance of the model. For

a grid cell C, at time k, S(Ck) is composed of the occu-

pancy state S(CkO) and the dynamic state S(CkD). The oc-

cupancy state of a grid cell C considers free or occupied

probability S(CKO ) ∈ {P (Cko ), P (C
k
f )}. The dynamic state

of a grid cell C is comprises the 2D position and velocity

S(CkD) = [x, y, xv, yv].
The occupied probability of grid cell C at time k is esti-

mated as the ratio between the number of particles in a cell

C and the number of particles reflected by the obstacles:

P (Cko ) =

∑NC

i=1
wki

NC
, wki ∈ ΥkC (1)

wki =

{

1,Reflected particles

0, otherwise

P (Ckf ) = 1− P (Cko ) (2)

Figure 2. The occupancy grid state and the confidence grids are

binarized. (a) Original input image, (b) occupancy grid state, (c)

confidence grids.

, where NC means the number of particles in grid cell C
and ΥkC is a set of particles in a grid cell C at time k.

Most particles in grid C become a part of the unknown

area, because of the occlusion area. In this area, we cannot

define the occupancy probability and this area cannot have

a dynamic state. To deal with this problem, we consider the

grid with unknown state separately from other grids using

the Dempster-Shafer theory of evidence [18]. We represent

occupancy probability by the mass function based on a ba-

sic belief assignment (BBA). Therefore, we can represent

the occupancy state of a grid cell C by [m(Cko ),m(Ckf )].

m(Cko ) is the mass of the occupied grid cell and m(Ckf ) is

the mass of the free grid cell at the time k.

In the occupancy state of an unknown area, we set

P (Cko ) = 0.5, such that m(Cko ) = m(Ckf ) = 0. While

an unknown area cannot be defined as either occupied or

free state, can have potentials that can be either occupied or

free state.

2.2. Prediction of the next observation state

This step provides the grid states at next time step using

recent information. In this model, we individually estimate

the posterior states of each grid cell S(Ck+1|k).

To predict the grid states at time k + 1 from time k, we

have to consider speed v and yaw rate ψ′ information of the

ego-vehicle in time interval T . This information is required

to be compensated. The ego-vehicles yaw rate is ψ and the

drive distance d is estimated using

ψ = ψ′T (3)
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d =
2vTsin(ψ

2
)

ψ
(4)

Two coordinate axes Dx and Dz displace the origin of

grid C [3]

Dx = dsin(
ψ

2
)/xsize (5)

Dz = dcos(
ψ

2
)/ysize (6)

, where xsize and ysize represent the size of the cell C.

Position of the grid cell (x, y) is determined by following

[

xn
yn

]

=

[

cosψ −sinψ
sinψ cosψ

] [

x
y

]

−

[

Dx

Dy

]

(7)

Finally, the following equation is used for the prediction

S(Ck+1

D ) =









1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

















xn
yn
xv
yv









+Gk (8)

Gk represents randomly drawn discrete zero-mean white

Gaussian noise with covariance matrix Q.

To predict the occupancy probability of grid cell C
S(Ck+1

O ), we use a transition parameter; that is, the occu-

pancy state of cell a was moved to cell c, when the time

changed T , (∆
k+1|k
c|a ). At this point, we can also consider

that a = c, which indicates that some particles remain in

the same grid in the next time step.

The probability of occupancy is approximated by the

mass function:

m(∆
k+1|k
c|a ) =

∑

w
k+1|k
a,i

∈Υ
k+1|k

c|a

w
k+1|k
a,i (9)

Then, we can predict the occupancy mass as:

m(Ck+1|k
o ) = 1−

∏

1≤a≤C

(1−m(∆
k+1|k
c|a )) (10)

To predict the mass for free space, we use another

method that differs from the original SMC-BOF method

in that the existing SMC-BOF method considers the ab-

sence of particles coming from an unobserved region as free

space. However, the absence of particles does not indicate

free space; it indicates that there is lack of information for

the definition of the state. Therefore, a new method is re-

quired to solve this problem. Figure 1 is a simple example

of grid states.

We can discount the mass for free of the last time step

using nave free space prediction [5]:

m(C
k+1|k
f ) = α(F )m(Ckf ), α(F ) ∈ [0, 1] (11)

Figure 3. The model overview.

2.3. Update for new observation

This process provides the posterior cell states from the

predicted cell states and a new observed state S(Ck+1|k+1).
In the field of the occupancy grid filter, there are two sen-

sor models. The first one is the forward sensor model.

It is estimated by calculating the likelihood of the mea-

surements obtained from each sensor [20]. The for-

ward sensor model considers all inter-cell as dependent

cells P (measurements|Map). The second one is the

inverse sensor model. The inverse model maps mea-

surements to their causes and estimates all grid cells

P (Occupied|measurements) independently [10]. Most

occupancy grid filters are designed for an inverse sensor

model.

Therefore, we cannot apply the following in our model:

P (Ck+1|k+1
o ) =

P (Θk+1|C
k+1|k
o )P (C

k+1|k
o )

h
(12)

h = P (Θk+1|C
k+1|k
o )P (Ck+1|k

o )

+P (Θk+1|C
k+1|k
f )P (C

k+1|k
f )

(13)

, where Θ means an observation.

We use the Dempster-Shafer theory to estimate the pos-

terior occupancy probability. Here, we use a basic be-

lief assignment (BBA) m(Ck+1
o |Θk+1). This BBA is

comprised of two mass functions: the evidence for occu-

pied state m(Ck+1
o |Θk+1) and the evidence for free state

m(Ck+1

f |Θk+1). To estimate the posterior occupancy BBA

m(C
k+1|k+1
o ), we use the Dempster-Shafer combination

rule [15] to combine the posterior occupancy BBA and pre-

dicted BBA as follows:

m(S
k+1|k+1

O ) = m(Sk+1

O |Θk+1)⊕m(S
k+1|k
O ) (14)
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3. A Modified SMC-BOF with The Linear

Opinion Pool

Conflicting information is common in autonomous driv-

ing systems and robotics caused by the feature differ-

ence between multi-sensors or dynamic environments.This

causes grid mapping to be difficult. We apply the Linear

Opinion Pool [4, 11] in the SMC-BOF to lessen the prob-

lem of the conflicting information [1].

The aim of this task is to estimate the confidence of the

mapped grid cell C obtained from multi-sensors. Each sen-

sor has an additional state that corresponds to a measure of

confidence. Using the confidence measurement data con-

taining irrelevant information can be discarded. We can

easily model this method with an addition of the confidence

parameter.

S(CkO)
′ = wk(C)S(CkO) (15)

, where wk(C) denotes the confidence weight of a cell C
at time k. The confidence weights are designed differently

based on the characteristics of each sensor. Figure 2 (b) and

(c) are differences between the occupancy state map and the

confidence map.

Our proposed method computes the confidence of input

LIDAR and the depth map measured by stereo vision to

represent grid states. Each grid states merged using the

Dempster-Shafer evidence theory are filtered through the

SMC-BOF. Figure 3 shows an overview of our proposed

method.

3.1. Confidence of the LIDAR sensor model

For the confidence weight of the LIDAR sensor, we con-

sider feature corresponds to the reflection by the angle of

inclination of the road. A LIDAR is mounted at the top of a

vehicle and a reflection similar to a contour is generated on

the road. Therefore, the reflection data obtained from hit the

road of beams is not reliable. This characteristic is modeled

as follows:

wroadlidar(Θ) = max{1 +
Θtan(Φ)

h0
, 0} (16)

, where h0 is the height of the reflection at Θ = 0, Φ
indicates the angle between the reflection and the road sur-

face.

3.2. Confidence of the stereo sensor model

The confidence weight for the stereo sensor model has

two confidence components.

The first one considers the visibility of regions wvisstereo.
This confidence includes a partially occluded region in

the space. We can simply obtain the visibility confidence

weight as the ratio of the number of possible Pp and visible

pixels Pv .

Figure 4. KITTI dataset. This dataset not only provides raw data

measured by LIDAR, stereo cameras, GPS, but also includes other

information such as synced data, objects label and so on.

wvisstereo =
Pv
Pp

(17)

The second component is modeled as stereo vision works

well at short distance range than greater distance. This con-

fidence weight is estimated as follows:

wdiststereo = 1−
d2max
d2

(18)

, where d and dmax denote the disparity values and the

maximum possible disparity value, respectively.

Finally we can estimate the confidence weight of the

stereo sensor model as follows:

wkstereo = wvisstereo × wdiststereo (19)

4. Experimental Results

The model was implemented on an Intel Core i5-4570

at dual 3.20 GHz with 8 GB RAM and NVIDIA GeForce

GTX 650 graphics card with 3.7 GB of memory.

4.1. Dataset

We use the KITTI dataset for the evaluation of our model

[8] (see Figure 4). The KITTI dataset is published by An-

dreas Geiger et al. in the Karlsruhe Institute of Technol-

ogy for free. This dataset was captured from a Volkswagen
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LIDAR Velodyne HDL-64E, 10Hz, 0.09 degree

angular resolution, collecting 1.3 million

points per second, field of view: [360]◦

horizontal, [26.8◦] vertical, range 120m

Color

stereo

PointGray Flea2 (FL2-14S3C-C), 1.4

Megapixels

GPS OXTS RT3003 inertial and GPS navigation

system,6 axis, 100Hz, resolution: 0.02m

per [0.1]◦

Table 1. The setting of equipped sensors.

Figure 5. Graph showing the execution time according to the num-

ber of grid cells. Increasing of the number of grid cells results in

an exponential increase in the computational times.

station wagon for mobile robotics and autonomous driving

research. It has a variety of sensor modalities including

color and grayscale stereo cameras, a Velodyne 3D LIDAR,

and a GPS/IMU inertial navigation system. These sensors

recorded various diverse scenarios captured in real-world

traffic situations that range from freeways over rural areas

to inner-city scenes with many objects. In addition, this

dataset provides synchronized, timestamped data and a cal-

ibration matrix. Estimation of the disparity map via stereo

vision is generated using the ARW method described by Lee

et al. [9].

In this paper, we use LIDAR data, color stereo vision

data, and GPS data from the KITTI dataset. Table 1 is the

setup for each sensor.

4.2. Results

For the analysis of the execution time, we changed the

grid resolution. The resolution is changed from 450x136 to

1030x311. Figure 5 is the execution time based on the grid

resolutions.

To evaluate our proposed method, we performed a qual-

Figure 6. Result of the our modified SMC-BOF after 1s of obser-

vation. (a) LIDAR-only data, (b) LIDAR-stereo fusion data.

itative comparison between the original SMC-BOF and our

modified SMC-BOF method, which includes the Linear

Opinion Pool for the grid mapping process. Firstly, Fig-

ure 6 (a) is using a LIDAR-only data and the right side of

bottom is using a LIDAR-Stereo vision data. The LIDAR-

only data cannot completely measure grid states of nearby

objects. Figure 7 (a) also used a LIDAR-only data. Similar

to Figure 6, the LIDAR-only data cannot catch the nearby

objects. Since a stereo vision is robust in detecting nearby

objects, we can overcome this problem by using a LIDAR-

stereo vision fusion data.

In particular, Figure 7 (b) and (c) are differences between

the original SMC-BOF and the SMC-BOF with the linear

opinion pool. Figure 7 (b) shows a situation in which the

original SMC-BOF does not perform well in situations con-

sisting of trucks or buses. Because of the elongated ve-

hicle in the right side of scene, conflicting information is

observed. The truck is disappeared in the original SMC-

BOF method. On the other hand, our modified SMC-BOF

method can solve these information conflicts.

5. Conclusion

In this paper, we proposed a modified SMC-BOF with

linear opinion pool. We used the combination of LIDAR

3D point cloud data and stereo vision data obtained from

KITTI dataset. Because a stereo vision is robust on nearby

objects, it can improve the measurement ability of LIDAR.

The SMC-BOF is used for the occupancy filter. To deal with

complex objects, we used Linear Opinion Pool. The Linear

Opinion Pool can solve the problem related to conflicting

information.

There are drawbacks in using the combination of data.
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Figure 7. Result of the occupancy filter after 1s of observation.

(a) our method on LIDAR-only data, (b) the original SMC-BOF

on LIDAR-stereo fusion data, (c) our method on LIDAR-stereo

fusion data.

The occupancy state mapping via stereo vision data depends

on the depth estimation algorithm. Because the grid map

is generated after the estimation of a depth map from the

stereo vision data, the performance of the depth map estima-

tion algorithm influences the grid mapping process. There-

fore, we need an accurate depth estimation method. An-

other drawback is a hand designed metric for sensor con-

fidences. A confidence metric in the linear opinion pool

should rather be designed according to equipped sensor en-

vironments. Thus, this could have influenced the perfor-

mance of our proposed model.

The SMC-BOF is definitely faster than the original BOF

at the same system environment [5]. In the future work,

we will implement a method with real-time capabilities by

using GPU implementations.
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