Egocentric Gesture Recognition Using Recurrent 3D Convolutional Neural Networks With Spatiotemporal Transformer Modules

Congqi Cao, Yifan Zhang, Yi Wu, Hanqing Lu, Jian Cheng; The IEEE International Conference on Computer Vision (ICCV), 2017, pp. 3763-3771

Abstract


Gesture is a natural interface in interacting with wearable devices such as VR/AR helmet and glasses. The main challenge of gesture recognition in egocentric vision arises from the global camera motion caused by the spontaneous head movement of the device wearer. In this paper, we address the problem by a novel recurrent 3D convolutional neural network for end-to-end learning. We specially design a spatiotemporal transformer module with recurrent connections between neighboring time slices which can actively transform a 3D feature map into a canonical view in both spatial and temporal dimensions. To validate our method, we introduce a new dataset with sufficient size, variation and reality, which contains 83 gestures designed for interaction with wearable devices, and more than 24,000 RGB-D gesture samples from 50 subjects captured in 6 scenes. On this dataset, we show that the proposed network outperforms competing state-of-the-art algorithms. Moreover, our method can achieve state-of-the-art performance on the challenging GTEA egocentric action dataset.

Related Material


[pdf]
[bibtex]
@InProceedings{Cao_2017_ICCV,
author = {Cao, Congqi and Zhang, Yifan and Wu, Yi and Lu, Hanqing and Cheng, Jian},
title = {Egocentric Gesture Recognition Using Recurrent 3D Convolutional Neural Networks With Spatiotemporal Transformer Modules},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2017}
}