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Abstract

In this paper, we introduce the concept of proximity pri-
ors into semantic segmentation in order to discourage the
presence of certain object classes (such as ’sheep’ and
’wolf’) ’in the vicinity’ of each other. ’Vicinity’ encom-
passes spatial distance as well as specific spatial directions
simultaneously, e.g. ’plates’ are found directly above ’ta-
bles’, but do not fly over them. In this sense, our approach
generalizes the co-occurrence prior by Ladicky et al. [3],
which does not incorporate spatial information at all, and
the non-metric label distance prior by Strekalovskiy et

al. [11], which only takes directly neighboring pixels into
account and often hallucinates ghost regions. We formu-
late a convex energy minimization problem with an exact
relaxation, which can be globally optimized. Results on
the MSRC benchmark show that the proposed approach re-
duces the number of mislabeled objects compared to previ-
ous co-occurrence approaches.

1. Introduction
Image segmentation is an essential component in im-

age content analysis and one of the most investigated prob-

lems in computer vision. The goal is to partition the im-

age plane into ’meaningful’ non-overlapping regions. Espe-

cially for complex real-world images, however, the defini-

tion of meaningful depends on the application or the user’s

intention. Typically, the desired segmentation consists of

one region for each separate object or structure of the scene.

Due to strongly varying texture and color models within

and between different object classes, the segmentation task

is very complex and requires additional prior information.

For example animals such as horses, cows and sheep have

similar color models and similarly textured fur. Since many

segmentation algorithms only consider local color or texture

information to assign each pixel to an object class, they of-

ten generate incorrect segmentations, where e.g. part of the

sheep is assigned the label ’cow’ as shown in Figure 1b).

∗This work was supported by the ERC Starting Grant ’ConvexVision’

and the German Academic Exchange Service (DAAD).

a) Original images

b) Global co-occurrence prior by Ladicky et al. [3]

c) Local non-metric prior by Strekalovskiy et al. [11]

d) Proposed proximity priors

Figure 1: Proximity priors discourage the simultaneous

occurrence of label pairs within specific directions and dis-

tances. Hence, they extend both global [3] co-occurrence

priors, which altogether disregard spatial information, and

local [11] co-occurrence priors, which only consider di-

rectly adjacent pixels as close and often create ghost regions

(see Figure 4).

For humans the task of recognizing objects strongly re-

lies on their context and inter-relations with other objects.

Therefore, we introduce high-level proximity priors. The

key idea is to encourage or discourage the simultaneous ap-

pearance of objects within a specified range (distance and

direction). Respective penalties for the proximity of various

label pairs (encourage ’vases’ directly above the ’table’ but

not further above or below the ’table’) can be learned sta-

tistically from a set of segmented images. Figure 1 shows

three examples where previous co-occurrence priors fail but

2013 IEEE International Conference on Computer Vision Workshops

978-0-7695-5161-6/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.132

15

2013 IEEE International Conference on Computer Vision Workshops

978-1-4799-3022-7/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.132

15



proximity priors correctly propagate co-occurrence infor-

mation yielding the correct segmentation result.

The specific challenge we face in this paper is to find an

efficient and convex optimization approach for multi-label

segmentation with proximity priors. Improved results based

on proximity priors in comparison to related co-occurrence

based approaches are shown in Figures 1, 4, 5.

1.1. Related Work

There have been several previous approaches on the inte-

gration of co-occurrence priors into semantic segmentation.

The most closely related approaches are the global co-

occurrence prior by Ladicky et al. [3] and the non-metric

distance prior by Strekalovskiy et al. [11], which can be un-

derstood as a local co-occurrence prior.

Ladicky et al. [3] globally penalize label sets which oc-

cur together in the same image. Yet, this prior is entirely in-

different about where in the image respective labels emerge.

Moreover, the penalty proposed in [3] is independent of the

size of the labeled regions. As a consequence, if more pix-

els vote for a certain label then they may easily overrule

penalties imposed by the co-occurrence term – leading to

the segmentations in Figure 1b) with large adjacent regions

despite large co-occurrence cost for ’sheep’ and ’cow’.

In contrast, Strekalovskiy et al. [11] introduced a local
co-occurrence prior, which operates only on directly neigh-

boring pixels. The authors formulate a variational approach,

which allows for the introduction of non-metric label dis-

tances in order to handle learned arbitrary co-occurrence

penalties, which often violate the triangle inequality. While

labels ’wolf’ and ’grass’, for example, are common within

an image and labels ’sheep’ and ’grass’ as well, sheep are

rarely found next to wolves. The drawback of this approach

is that the algorithm can avoid costly label transitions sim-

ply by introducing infinitesimal ’ghost labels’ – see Fig-

ure 4. Furthermore, due to the strong locality the prior al-

lows for regions to appear close to each other despite high

co-occurrence penalties (see the labels ’sheep’ and ’cow’ in

Figure 1c).

Considering more complex spatial label relationships

will avoid ghost labels due to stronger penalization and will

allow to propagate the co-occurrence penalty to more dis-

tant pixels of the second sheep. Therefore, we generalize

these priors to a prior for arbitrary relative spatial relations.

Figure 1d) shows examples where proximity priors success-

fully propagated the co-occurrence penalty to neighboring

objects.

In the context of learning, relative spatial label distances

have been successfully applied in [1, 2, 9].

1.2. Contributions

In this paper, we propose proximity priors for variational

semantic segmentation and recognition. Specifically, we

make the following contributions:

• We integrate learned spatial relationships between differ-

ent objects into a variational multi-label segmentation ap-

proach.

• We generalize global co-occurrence priors [3] and local

co-occurrence priors [11] to co-occurrence priors with ar-

bitrary spatial relationships.

• We give a convex relaxation which can be solved with fast

primal-dual algorithms [8] in parallel on graphics hard-

ware (GPUs).

• We avoid the emergence of artificial ’ghost labels’.

• We do not rely on prior superpixel partitions but directly

work on the pixel level.

2. Variational Multi-Label Segmentation

Let I : Ω → R
d denote the input image defined

on the image domain Ω ⊂ R
2. The general multi-label

image segmentation problem with n ≥ 1 labels con-

sists of the partitioning of the image domain Ω into n re-

gions {Ω1, . . . ,Ωn}. This task can be solved by com-

puting binary labeling functions ui : Ω → {0, 1} in the

space of functions of bounded variation (BV ) such that

Ωi =
{
x
∣∣ ui (x) = 1

}
. We compute a segmentation of the

image by minimizing the following energy [13] (see [6] for

a detailed survey and code)

E(Ω1, ..,Ωn) =
λ

2

n∑
i=1

Perg (Ωi) +
n∑

i=1

∫
Ωi

fi (x) dx. (1)

For comparability, we use the same appearance model fi as

in [3, 11]. Perg (Ωi) denotes the perimeter of each set Ωi,

which is minimized in order to favor segments of shorter

boundary. These boundaries are measured with either an

edge-dependent or an Euclidean metric defined by the non-

negative function g : Ω→ R
+. For example,

g (x) = exp

(
−|∇I (x) |2

2σ2

)
, σ2 =

1

|Ω|
∫
Ω

|∇I (x) |2dx

favors the coincidence of object and image edges.

To rewrite the perimeter of the regions in terms of the

indicator functions we make use of the total variation:

Perg(Ωi) =

∫
Ω

g(x)|Dui| = sup
ξi:|ξi(x)|≤g(x)

−
∫
Ω

ui div ξi dx.

Since the binary functions ui are not differentiable

Dui denotes their distributional derivative. Furthermore,

ξi ∈ C1c
(
Ω;R2

)
are the dual variables and C1c denotes the

space of smooth functions with compact support. We can
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a) Original Image b) - d) Indicator function extended by different sets S.

Figure 2: Impact of S. Different sets S in (3) convey different proximity priors. b) Symmetric sets S only consider object

distances, but are indifferent to directional relations. c) If S is chosen as a vertical line centered at the bottom, the indicator

function of the region ’sign’ is extended to the bottom of the object, e.g. penalizing ’book’ appearing closely below ’sign’.

d) Horizontal lines penalize labels to the left and right.

rewrite the energy in (1) in terms of the indicator functions

ui : Ω→ {0, 1} [6, 13]:

E(u1, .., un) = sup
ξ∈K

n∑
i=1

∫
Ω

(fi − div ξi)ui dx, (2)

where K =

{
ξ ∈ C1c

(
Ω;R2×n

) ∣∣∣ |ξi(x)| ≤ λg(x)

2

}
.

2.1. The Novel Proximity Prior

To introduce the proximity prior into the optimization

problem in (2), we define the proximity matrix A ∈ R
n×n
≥0 .

Each entry A(i, j), i �= j indicates the penalty for the

occurrence of label j in the proximity of label i, which we

denote by i ∼ j. For i = j we set A(i, i) := 0. The penal-

ties can be computed from co-occurrence probabilities of

training segmentations, e.g. by A(i, j) = − logP (i ∼ j).
An example for a learned proximity matrix A is illustrated

in Figure 3.

To compute the proximity of two labels, we first intro-

duce the notion of an extended indicator function ui denoted

by di : Ω→ {0, 1}, which ’enlarges’ the indicator function

Figure 3: Proximity matrix. Learned penalty matrix for

the MSRC benchmark (objects are color coded correspond-

ing to benchmark convention in first row and column). The

lighter the color the more likely is the occurrence of the cor-

responding labels within the relative spatial context, and the

lower is the corresponding penalty.

in a specific direction and distance (see Figure 2):

di (x) = sup
y∈Ω

ui(y) + s(x− y) = sup
z∈S

ui(x+ z), (3)

where s(x) =

{
0, x ∈ S,
−∞, otherwise.

The set S ⊆ Ω determines the type of geometric spatial

relationship we want to penalize, i.e. distance and direction,

for example ’less than 20 pixels above’. Symmetric sets of

specific sizes consider the proximity of two labels without

preference of a specific direction. If S is for example a line

we can penalize the proximity of specific labels in specific

directions, e.g. the occurrence of a book below a sign (com-

pare Figure 2c). The larger S the more pixels are considered

adjacent to x. Runtime can be minimized here by choosing

sparse sets S.

To detect if two regions i and j are close to each other,

we compute the overlap of the extended indicator function

di and the indicator function uj . For each two regions i
and j we can now penalize their proximity by means of the

following energy term:

Eprox(u) =
∑

1≤i<j≤n

A(i, j)

∫
Ω

di (x)uj (x) dx. (4)

2.2. A Convex Relaxation

In the following we will propose a convex relaxation of

the segmentation problem (2) combined with the proposed

proximity prior in (4). To obtain a convex optimization

problem, we require convex functions over convex domains.

Relaxation of the Binary Functions ui The general

multi-labeling problem is not convex due to the binary re-

gion indicator functions ui : Ω → {0, 1}. To obtain a con-

vex problem where each pixel is assigned to exactly one

label, optimization is carried out over the convex set

U =

{
u ∈ BV (Ω; [0, 1]n)

∣∣∣ n∑
j=1

uj (x) = 1 ∀ x ∈ Ω

}
.
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min
u∈U
d∈D
α∈A

max
ξ∈K
β∈B
q∈Q

n∑
i=1

{∫
Ω

(fi − div ξi)ui dx+
∑
z∈S

∫
Ω

βiz (x)
(
di (x)− ui (x+ z)

)
dx (5)

+
n∑

j=i+1

∫
Ω

q1ij(1− di) + q2ijdi + q3ij(1− uj) + q4ijuj

+ α1
ij

(
q1ij + q3ij

)
+ α2

ij

(
q1ij + q4ij

)
+ α3

ij

(
q2ij + q3ij

)
+ α4

ij

(
q2ij + q4ij −A(i, j)

)
dx

}
.

Relaxation of the Dilation Constraints The dilation

constraints in (3) are relaxed to

di (x) ≥ ui (x+ z) ∀ x ∈ Ω, z ∈ S. (6)

By simultaneously minimizing over the functions di we can

assure that at the optimum di fulfills the constraints in (3)

exactly. The inequality (6) can easily be included in the

segmentation energy by introducing a set of Lagrange mul-

tipliers βiz and adding the following energy term:

min
d∈D

max
β∈B

n∑
i=1

∑
z∈S

∫
Ω

βiz (x)
(
di (x)− ui (x+ z)

)
dx, (7)

B =
{
βiz

∣∣ βiz : Ω→ [−∞, 0] ∀ z ∈ S, i = 1, .., n
}
,

D = BV (Ω; [0, 1]n) .

Relaxation of the Product in (4) The product of the di-

lation di and the indicator function uj is not convex. A

convex, tight relaxation of such energy terms was given by

Strekalovskiy et al. [10]. To this end, we introduce addi-

tional dual variables qij and Lagrange multipliers αij :

Q =
{
qij

∣∣ qij : Ω→ R
4, 1 ≤ i < j ≤ n

}
, (8)

A =
{
αij

∣∣ αij : Ω→ [−∞, 0]
4
, 1 ≤ i < j ≤ n

}
.

Resulting Optimization Problem After carrying out

these relaxations we finally obtain the convex energy mini-

mization problem in (5).

The projections onto the respective convex sets of ξ, d, β
and α are done by simple clipping while that of the primal

variable u is a projection onto the simplex in R
n [5].

3. Implementation
In order to find the globally optimal solution to this re-

laxed convex optimization problem, we employ the primal-

dual algorithm published in [8]. Optimization is done by

alternating a gradient descent with respect to the functions

u, d and α and a gradient ascent for the dual variables ξ, β
and q interlaced with an over-relaxation step on the primal

variables. The step sizes are chosen optimally according

to [7]. We stopped the iterations when the average update

of the indicator function u(x) per pixel was less than 10−5.

By allowing the primal variables ui to take on intermediate

values between 0 and 1 we may end up with non-binary so-

lutions. In order to obtain a binary solution to the original

optimization problem, we assign each pixel x to the label L
with maximum value after optimizing the relaxed problem:

L (x) = arg max
i

{ui (x)} , x ∈ Ω. (9)

We observed that the computed relaxed solutions u are bi-

nary almost everywhere.

Due to the inherent parallel structure of the optimiza-

tion algorithm [8] the approach can be easily parallelized

and implemented on graphics hardware. We used a paral-

lel CUDA implementation on an NVIDIA GTX 680 GPU.

To reduce the runtime of the approach we randomly sub-

sampled only very few entries in S and neglected the others

yielding equivalent results in around 180 seconds on aver-

age (note that we do not work on super pixels). We can

conclude that already very sparse sets S containing around

ten entries yield results very similar to the full set S .

4. Experiments and Results
We have defined proximity priors within a variational

multi-label approach in order to integrate spatial relations

between object labels. One of the major advantages of the

proposed algorithm is that we can utilize sets S of different

sizes and shapes which allow us to take into account larger

neighborhoods of pixels in specific directions and to prevent

’ghost labels’. In the following we will show results on the

MSRC database and compare our segmentations to state-of-

the-art approaches for semantic labeling and co-occurrence

priors.

4.1. Preventing Ghost Labels

’Ghost labels’ denote thin artificial regions which are

easily introduced if label distances are learned from train-

ing data, see for example [11].

If the distance function does not obey the triangle inequal-

ity ’ghost labels’ can appear. They reduce costs of direct

label transitions by taking a ’detour’ over a third, unrelated

but less expensive label. Examples are given in Figure 4b)

with a closeup in Figure 4c). The segmentation result ob-

tained by [11] e.g. contains very thin ’boat’ regions at the
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Gould et al. [1] CRF + rel. loc. 76.5 64.38 72 95 81 66 71 93 74 70 70 69 72 68 55 23 82 40 77 60 50 50 14

Ladicky et al. [3] co-oc. 80 67.76 77 96 80 69 82 98 69 82 79 75 75 81 85 35 76 17 89 25 61 50 22

Lucchi et al. [4], DPG local 75 68.62 54 88 83 79 82 95 87 70 85 81 97 69 72 27 88 46 60 74 27 49 28

Lucchi et al. [4], DPG loc.+glob. 80 74.62 65 87 87 84 75 93 94 78 83 72 93 86 70 50 93 80 86 78 28 58 27

Vezhnevets et al. [12], weak sup. 67 66.52 12 83 70 81 93 84 91 55 97 87 92 82 69 51 61 59 66 53 44 9 58
Vezhnevets et al. [12], full sup. 72 71.71 21 93 77 86 93 96 92 61 79 89 89 89 68 50 74 54 76 68 47 49 55

Strekalovskiy et al. [11] 84.85 77.52 70 97 92 89 85 96 81 83 90 82 92 83 66 45 92 63 86 80 51 73 32

Proposed Proxmity Priors 84.97 78.19 69 97 92 87 87 97 87 82 91 83 94 84 62 44 93 67 86 83 57 74 26

Ladicky et al. [3] co-oc. + hier. 87 76.76 82 95 88 73 88 100 83 92 88 87 88 96 96 27 85 37 93 49 80 65 20

Table 1: MSRC benchmark scores. We compare the segmentation accuracy to state-of-the-art segmentation algorithms with

co-occurrence priors on the MSRC benchmark. The approach by Ladicky et al. in the last row is added for completeness but

is not comparable since it includes hierarchical label priors and uses potentials of the highest order |Ω| instead of order two

as in our approach.

edge of the ’grass’ label, because the transition between the

labels ’water’ and ’boat’ and ’boat’ and ’grass’ is in sum

less costly than the direct transition between ’water’ and

’grass’.

a) Original images

b) Local non-metric prior by Strekalovskiy et al. [11].

c) Zoom of b) showing ghost labels

d) Proposed proximity priors

Figure 4: Proximity priors prevent ghost labels. If the

transition of two labels is cheaper via a third label artificial

labels will be introduced as shown in b) and as closeup in c).

The proposed proximity priors consider regions with more

than one-pixel distance still as adjacent and thus avoid ghost

labels.

Proximity priors prevent such ghost labels by considering

more than a single pixel wide margin as close to the object,

see for example Figure 4d).

4.2. MSRC Segmentation Benchmark

To evaluate the proposed segmentation algorithm we

apply it to the task of object segmentation and recognition

on the MSRC benchmark. This benchmark comprises

591 images which contain 21 different labels such as

’cow’, ’book’, ’building’ or ’grass’. For the benchmark

experiments we chose a symmetric set S of size 9 × 9 and

set λ = 0.3.

The penalty matrix A defined in Section 2.1 is learned

from training data based on the relative frequencies of label

occurrences within the local range defined by S. For a

symmetric set S of size 9× 9 we obtain the penalty matrix

in Figure 3.

To evaluate the segmentation accuracy of the proposed

method, in Table 1 we compare the benchmark scores of

our method to the approaches by Gould et al. [1] with rel-

ative location priors, Ladicky et al. [3] with co-occurrence

prior (with and without hierarchical prior), Lucchi et al. [4]

for the data pairwise global and local models, Vezhn-

evets et al. [12] for the weakly and fully supervised ap-

proach and to Strekalovskiy et al. [11] with the non-metric

distance functions for multi-label problems. The scores

denote the average accuracy on the benchmark given as
True Positives · 100

True Positives + False Negatives per pixel and per class. The results

indicate that we outperform the other co-occurrence based

methods in average class and pixel accuracy.

Note that the high score of the approach by Strekalovskiy et
al. [11] does not reflect the ghost label problem since these

regions contain only very few pixels. However, the intro-

duction of entirely unrelated objects, albeit small ones, is
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a) Original images

b) Global co-occurrence prior by Ladicky et al. [3].

c) Local non-metric prior by Strekalovskiy et al. [11].

d) Proposed proximity prior.

Figure 5: Improved results on the MSRC benchmark. Proximity Priors capture richer semantic information on spatial ob-

ject inter-relations such as distances, direction and relative location than previous approaches such as global co-occurrence [3]

or local co-occurrence [11].

often problematic for applications.

The benchmark results in general suggest rather small

improvements for the integration of geometric spatial pri-

ors. This is somewhat surprising since the images show

strong improvements and the prior corresponds to typical

human thinking. As already mentioned by Lucchi et al. [4]

who stated similar findings this is probably due to the rather

crude ground truth of the benchmark with large unlabeled

regions especially at object boundaries. These regions are

not counted in the score, but nevertheless leave a lot of room

for misclassification or improvements. Therefore, we think

that the benchmark score should not be overstressed here.

Qualitative comparisons with the two best scoring of the

above mentioned methods by Ladicky et al. [3] with hierar-

chical prior and by Strekalovskiy et al. [11] on the MSRC

database are given in Figures 1 and 5. The results show

that the proposed method reduces the number of mislabeled

objects. For example, our approach is the only one which

correctly detects the boat in Figure 1 without assigning part

of it to the label ’bird’. Another example is the head of the

sheep in the first column of Figure 1 which is correctly la-

beled without any ’cow’ pixels. The result of the cat in the

first column of Figure 5 shows that we can avoid problems

which appear due to prior superpixel segmentations.

4.3. Direction Dependent Proximity

Some object pairs only appear in specific spatial con-

stellations, for example cars do not appear above water or

books on top of buildings. Such relations can be encoded by

applying directional sets S, e.g. horizontal or vertical lines

(compare Figure 2). The corresponding penalties can either

be defined or learned from training data.

For the portrait of the woman in Figure 5 we used a learn-

ing based approach for a horizontal set S such as the one

shown in Figure 2d). We derive the penalties A from the

relative frequencies of objects appearing up to 40 pixels left

and right of the label ’face’ in the training images. For the

bench and cat images (rightmost in Figure 5) we used a ver-

tical set S centered at the bottom/top (compare Figure 2c)

together with a distance of 20 to penalize the label ’bird’

below ’chair’ and the label ’water’ above ’street’.

5. Conclusion
We introduced proximity priors for semantic segmenta-

tion and recognition within a variational multi-label frame-

work. Instead of introducing co-occurrence probabilities of

label combinations, proximity priors define likelihoods for

specific geometric spatial relationships of label pairs, i.e.

their direction and distance. In this way, proximity priors
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generalize both global co-occurrence priors [3], which take

into account all labels irrespective of their spatial location,

and local co-occurrence priors [11] which are only imposed

on directly adjacent pixels.

The label cost penalty is proportional to the size of the

labeled regions and also effects object labels at larger spatial

distances. In addition, the proposed approach does not re-

quire the computation of superpixels and prevents the emer-

gence of one pixel wide ’ghost labels’.
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