
Tracking an RGB-D Camera Using Points and Planes

Esra Ataer-Cansizoglu
Northeastern University

Boston, MA, USA
ataer@ece.neu.edu

Yuichi Taguchi, Srikumar Ramalingam, Tyler Garaas
Mitsubishi Electric Research Labs (MERL)

Cambridge, MA, USA
{taguchi,ramalingam,garaas}@merl.com

Abstract

Planes are dominant in most indoor and outdoor scenes
and the development of a hybrid algorithm that incorpo-
rates both point and plane features provides numerous ad-
vantages. In this regard, we present a tracking algorithm
for RGB-D cameras using both points and planes as prim-
itives. We show how to extend the standard prediction-
and-correction framework to include planes in addition to
points. By fitting planes, we implicitly take care of the noise
in the depth data that is typical in many commercially avail-
able 3D sensors. In comparison with the techniques that
use only points, our tracking algorithm has fewer failure
modes, and our reconstructed model is compact and more
accurate. The tracking algorithm is supported by relocal-
ization and bundle adjustment processes to demonstrate a
real-time simultaneous localization and mapping (SLAM)
system using a hand-held or robot-mounted RGB-D cam-
era. Our experiments show large-scale indoor reconstruc-
tion results as point-based and plane-based 3D models, and
demonstrate an improvement over the point-based tracking
algorithms using a benchmark for RGB-D cameras.

1. Introduction

There has been significant progress in 3D reconstruction
algorithms that simultaneously track the pose of a camera.
Such techniques are commonly referred to as simultaneous
localization and mapping (SLAM) and widely studied in
computer vision, robotics, and augmented reality. In par-
ticular, real-time SLAM systems using a single 2D camera
or RGB-D camera such as Kinect are attractive, as they pro-
vide cost-effective and easy-to-use solutions for several in-
teractive computer vision applications.

Although many promising tracking and 3D reconstruc-
tion results have been shown, there are several challenges
that still exist. SLAM systems using a single 2D camera [7,
11, 12, 14] are generally successful for textured scenes,
but encounter many failure modes with texture-less regions.
Systems using a depth camera [18, 16, 13, 17, 29, 5] exploit

geometric variations in the scene such as curved surfaces
and depth boundaries with the help of iterative-closest point
(ICP) algorithms [3]. However, such ICP-based approaches
fail if there are no geometric variations. Typically room-
scale scenes have many objects that have both texture and
geometric features. For reconstructing larger-scale scenes,
we need to track features in regions like corridors with lim-
ited texture and insufficient geometric variations. Systems
using an RGB-D camera [8, 9, 20, 1, 26, 10, 28] exploit
both texture and geometric features to handle the problem,
but they still treat the scene as a set of points and do not
exploit the structure of the scene.

We present a SLAM system that exploits common struc-
tures of man-made scenes, i.e., planes, in conjunction with
points as primitives. The goal of our system design is to
enable compact representations of scenes and accurate reg-
istration that minimizes failure cases due to insufficient tex-
ture and geometric features. Figure 1 shows a motivating
example, where a large indoor scene including a kitchen
and several cubicles is represented by using only 15 planes.
Note that the entire floor plane is modeled with a single
plane, which achieves a compact representation of the scene
as well as drift-free registration along the direction of the
normal of the plane. In this paper, we demonstrate how
to find point and plane correspondences using camera mo-
tion prediction, and develop a tracker based on a prediction-
and-correction framework. We also incorporate relocaliza-
tion and bundle adjustment processes using both points and
planes [23] to recover from tracking failures and to contin-
uously refine camera pose estimates. We show experimen-
tal results on large-scale indoor 3D reconstruction using a
hand-held or robot-mounted Kinect sensor. We also evalu-
ate the performance of our SLAM system using benchmark
datasets [22].

Terminologies: As commonly used in the litera-
ture [11], we use tracking to refer to a process that uses
the predicted motion of a camera for sequentially estimat-
ing the camera pose, and relocalization to refer to a process
that uses some feature-based global registration for recov-
ering from tracking failures.

2013 IEEE International Conference on Computer Vision Workshops

978-0-7695-5161-6/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.14

51

2013 IEEE International Conference on Computer Vision Workshops

978-1-4799-3022-7/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.14

51

Figure 1. Man-made scenes include many planar structures. We exploit them along with point features to robustly track an RGB-D camera.
In addition to registered 3D point clouds (left), our system reconstructs a large-scale indoor scene as a compact plane-based model (right).
The number of keyframes registered in this model is 86, and the numbers of plane and point landmarks are 15 and 12558, respectively.
Note that the entire floor is represented by a single plane. One of the major advantages of our approach is the compact modeling. The
point-based representation on the other hand has an order of 86×640×480 primitives.

1.1. Contributions

The following list summarizes our contributions.

• We present a prediction-based camera tracking algo-
rithm using both points and planes.

• We describe a real-time SLAM system using the track-
ing algorithm as well as relocalization and bundle ad-
justment processes, all using points and planes.

• We demonstrate large-scale indoor scene reconstruc-
tion using a hand-held and robot-mounted RGB-D sen-
sor.

1.2. Related Work

Camera Tracking: For systems using 3D sensors pro-
viding 3D point clouds, the camera tracking problem re-
duces to the registration problem given some 3D corre-
spondences. The ICP algorithm [3] finds point-to-point or
point-to-plane correspondences iteratively, starting from an
initial pose estimate given by camera motion prediction.
It has been widely used for line-scan 3D sensors in mo-
bile robotics (also known as scan matching) [24] as well
as for depth cameras and 3D sensors producing full 3D
point clouds [18, 16]. KinectFusion [13] extended com-
monly used frame-to-frame ICP registration to frame-to-
model ICP registration: The system accumulated registered
point clouds in a truncated signed distance function (TSDF)
volume [6] and generated a virtual depth map, which has
much less noise, to be registered to the current depth map. It
was extended for reconstructing larger-scale scenes by spa-
tially moving the TSDF volume [17, 29] and by using a
hierarchical data structure that efficiently represents empty
spaces and enables lossless streaming of the data between
the GPU and CPU [5]. These ICP-based methods require

scenes to have sufficient geometric variations for accurate
registration.

Henry et al.’s RGB-D mapping system [8] extracted fea-
tures from RGB images and performed descriptor-based
point matching to compute point-to-point correspondences
and estimate the camera pose, which was then refined with
the ICP algorithm. Instead of using a sparse set of feature
points, several algorithms aligned a dense set of points be-
tween two frames by warping the points from one frame to
the other using the depth map and minimizing the photomet-
ric error [20, 1, 10]. In addition to the photometric error, the
depth differences between points [26] and the point-plane
ICP cost [28] were also incorporated into the direct align-
ment framework. Those systems exploit both texture (RGB)
and geometric (depth) features in the scene; however, they
still use a set of points as primitives, which results in redun-
dant representations of scenes and causes more drifts than
systems using higher-level primitives.

SLAM Using High-Level Primitives: Plane features
have been used in several SLAM systems [27, 15, 25]. To
determine the camera pose, we need at least three planes
whose normals span R

3; thus, using only planes causes
many degeneracy issues especially if the field of view
(FOV) or range of the sensor is small such as in Kinect.
Trevor et al. [25] used a large FOV line-scan 3D sensor
along with a small FOV depth camera to avoid the degener-
acy with an additional system cost. Salas-Moreno et al. [19]
used objects as primitives in their SLAM system. Although
objects are more distinctive and provide more constraints
to camera poses than planes, objects are not as general as
planes in typical scenes and their models need to be pre-
scanned.

Taguchi et al. [23] presented point-plane SLAM, which
uses both points and planes to avoid the failure modes

5252

Input
Frames
(RGB-D)

Tracking

Find
Point & Plane

Correspondences

Take Next
Frame &

Predict Pose

RANSAC
Registration

Success?
Y

Y

Y

N

N

N Consecutive
Failures?

Relocalization

New
Keyframe?

Extract Additional
Points & Planes
& Update Map

Bundle
Adjustment

Map

Figure 2. System overview. The system performs prediction-based tracking using points and planes to determine the pose of an RGB-D
camera. If the tracking fails in consecutive frames, the system uses a relocalization process to recover the pose. The system also runs
bundle adjustment to refine the poses of keyframes and point and plane landmarks in the map in an asynchronous thread.

that are common in algorithms using one of these primi-
tives. The system did not use any camera motion predic-
tion; instead it performed relocalization for all the frames
by finding point and plane correspondences globally. As
a result, the system was slow (2–3 frames per second)
and encountered failures with some repetitive textures due
to descriptor-based point matching. Our prediction-based
tracking achieves faster correspondence search and shows
robustness in scenes with repetitive textures.

2. System Overview

Figure 2 shows an overview of our system, which takes
a sequence of RGB-D frames as the input. Our system is
a keyframe-based SLAM system [11, 21], where we select
several representative frames as keyframes and store them in
a global map. We use both points and planes as primitives
in all the processes in the system. Points and planes in each
frame are called measurements, and measurements in the
keyframes are stored in the map as landmarks.

Given the map, we use a prediction-and-correction
framework to estimate the pose of the current frame: We
first predict the pose of the frame and use it to deter-
mine correspondences between point/plane measurements
and point/plane landmarks, which are then used to correct
the pose. Section 3 details the tracking algorithm.

Tracking may fail due to incorrect or insufficient corre-
spondences. Once we observe consecutive tracking failures,
we resort to the relocalization process, where we use global
point and plane correspondence search between the current
frame and the map, similar to [23]. We also perform bundle
adjustment using points and planes [23] to refine landmarks
in the map asynchronously in a separate thread.

Note that such a combination of tracking, relocalization,
and bundle adjustment is common in practical SLAM sys-
tems [11, 30]. This paper advances such systems, which are
generally based on points, by additionally using planes for
efficient and robust SLAM.

3. Camera Pose Tracking

This section describes our tracking algorithm using fea-
tures that include both points and planes. The algorithm is

based on a prediction-and-correction scheme and is summa-
rized as follows:

1. For every new RGB-D frame, predict its pose using a
camera motion model.

2. Based on the predicted pose, find point and plane mea-
surements in the new frame corresponding to point and
plane landmarks in the map.

3. Perform a RANSAC-based registration using the point
and plane correspondences.

4. If the pose is novel compared to those of the exist-
ing keyframes, then extract additional point and plane
measurements and add the frame as a new keyframe to
the map.

The next subsections discuss the steps in detail.

3.1. Camera Motion Prediction

We represent the pose of the kth frame as

Tk =

(
Rk tk

0T 1

)
, (1)

where Rk and tk respectively denote the rotation matrix and
the translation vector. We define the coordinate system of
the map using the first frame; thus T1 is the identity matrix
and Tk represents the pose of the kth frame with respect to
the map.

We predict the pose of the kth frame, T̂k, by simply using
the constant velocity assumption. Let ΔT denote the pre-
viously estimated motion between the (k− 1)th frame and
(k− 2)th frame, i.e., ΔT = Tk−1Tk−2

−1. Then we predict
the pose of the kth frame as T̂k = ΔTTk−1.

3.2. Finding Point and Plane Correspondences

Using the predicted pose T̂k, we find point and plane
measurements in the kth frame corresponding to landmarks
in the map, as illustrated in Figure 3.

Point Correspondence: Let pi = (xi,yi,zi,1)T denote
the ith point landmark in the map, represented as a homoge-
neous vector. The 2D image projection of pi in the current
frame is predicted as

p̂k
i = T̂kpi, ûk

i = FP(p̂k
i), (2)

5353

Current FramePoints and Planes in the Map

Predicted Pose

(a)

(b)

Figure 3. Given the predicted pose of the current frame, we find
correspondences between point/plane landmarks in the map and
point/plane measurements in the current frame. We first transform
the landmarks in the map to the current frame using the predicted
pose. Then, (a) for every point, we perform local search using
an optical flow method from the predicted pixel location in the
current frame; (b) for every plane, we first find the parameters of
the predicted plane. We then consider a set of reference points on
the predicted plane, and find pixels connected from each reference
point that lie on the predicted plane. The reference point with
the largest number of connected pixels is chosen and the plane
parameters are refined using all the connected pixels.

where p̂k
i is the 3D point transformed to the coordinate sys-

tem of the kth frame, and the function FP(·) computes the
forward projection of the 3D point onto the image plane us-
ing the internal camera calibration parameters. We find the
corresponding point measurement by using Lucas-Kanade’s
optical flow method [4], starting from the initial position of
ûk

i . Let Δuk
i be the computed optical flow vector. Then the

corresponding point measurement pk
i is given as

uk
i = ûk

i +Δuk
i , pk

i = BP(uk
i)D(uk

i), (3)

where the function BP(·) back-projects the 2D image pixel
to a 3D ray and D(·) refers to the depth value of the pixel. If
the optical flow vector is not computed or the pixel location
uk

i has an invalid depth value1, then the feature is regarded
as lost.

Plane Correspondence: Instead of performing a time-
consuming plane extraction procedure on each frame inde-
pendently from other frames, as is done in existing sys-
tems [27, 15, 25, 23], we make use of the predicted pose
to extract planes. This leads to faster plane measurement
extraction and also provides the plane correspondences.

Let π j = (a j,b j,c j,d j)
T denote the plane equation of the

jth plane landmark in the map. We assume that the plane
landmark and its corresponding measurement have some
overlapping regions observed from the camera. To find such
a corresponding plane measurement, we randomly choose
several reference points q j,r (r = 1, . . . ,N) from the inliers

1We consider a depth value invalid if it is missing in the sensor reading
or it is larger than a maximum depth value, which we set 3000 mm in
experiments. We ignore pixels with invalid depth values in all the processes
in our system.

of the jth plane landmark, and transform them to the kth
frame as

q̂k
j,r = T̂kq j,r, v̂k

j,r = FP(q̂k
j,r) (r = 1, . . . ,N). (4)

We also transform π j to the kth frame as

π̂
k
j = T̂

−T

k π j. (5)

For each transformed reference point v̂k
j,r, we find pixels

that are connected to it and lie on the plane π̂
k
j . We then

select the reference point with the largest number of inliers.
The inliers are used to refine the plane equation, resulting
in the corresponding plane measurement π

k
j . If the number

of inliers is smaller than a threshold, the plane landmark is
declared as lost. In experiments, we used N = 5 reference
points, a threshold of 50 mm for the point-to-plane distance
to determine inliers on a plane, and 9000 as the threshold of
the minimum number of inliers.

Landmark Selection: Performing the above process us-
ing all the landmarks in the map would be inefficient. We
thus use the landmarks appearing in a single keyframe that
is the closest to the current frame. The closest keyframe is
selected by using the pose of the previous frame Tk−1 be-
fore the tracking process.

3.3. RANSAC Registration

The prediction-based correspondence search provides
candidates of point-to-point and plane-to-plane correspon-
dences, which may include outliers. Thus we run a
RANSAC-based registration algorithm to determine inliers
and compute the camera pose. We use the algorithm pre-
sented in [23], which solves the registration problem us-
ing the mixed correspondences in closed-form. The algo-
rithm prioritizes plane correspondences over point corre-
spondences, because the number of planes is typically much
smaller than the number of points, and planes are more ro-
bust to noise due to the support from many points. Tracking
is considered successful if the RANSAC algorithm finds a
sufficient number of inliers (40% of the number of all point
and plane measurements in experiments). The algorithm
gives the corrected pose of the kth frame, Tk.

3.4. Map Update

We determine the kth frame as a keyframe if the esti-
mated pose Tk is sufficiently different from the poses of any
existing keyframes in the map (we used thresholds of 100
mm in translation and 5◦ in rotation). For the new keyframe,
the point and plane measurements found as inliers in the
RANSAC-based registration are associated to correspond-
ing landmarks, while those found as outliers are discarded.
We then extract additional point and plane measurements,
which newly appear in this frame. The additional point

5454

Figure 4. Office scene: Point-based (left) and plane-based (right) models of a large indoor scene with several office cubicles (124 keyframes
registered using 15 plane and 15431 point landmarks). Note that the floor corresponds to a single plane landmark, and the 6 table tops are
associated to a single plane landmark. These long-range interactions lead to stable, drift-less registration.

(a) Tracking Using Points and Planes (b) Tracking Using Only Points

Figure 5. Corridor scene: (a) Models reconstructed using both points and planes for tracking (63 keyframes registered using 6 plane and
4006 point landmarks). (b) Reconstructed model using only points for tracking.

measurements are extracted using the SURF keypoint de-
tector [2] on pixels that are not close to any existing point
measurements. On the other hand, the additional plane mea-
surements are extracted by using a RANSAC-based plane
fitting algorithm [23] on pixels that are not inliers of any ex-
isting plane measurements. The additional point and plane
measurements are added as new landmarks to the map. In
addition, we extract SURF feature descriptors for all point
measurements in the frame, which are used for relocaliza-
tion.

4. Experiments

In this section, we present evaluations of our real-time
tracking and SLAM system. We first demonstrate qualita-
tive results using indoor video sequences, captured with a
Kinect sensor that provides color images and depth maps at
a resolution of 640×480 pixels. The sensor was either hand-
held or mounted on a mobile robot. We then show quantita-
tive analysis using two datasets from a benchmark [22].

4.1. Qualitative Results and System Performance

We tested our tracking and SLAM system for several
indoor scenes. Please refer to the supplementary video,
demonstrating real-time SLAM results for scenes shown in
Figures 1, 4, and 5. In the video, when there is a tracking
failure we indicate that by showing the entire background
in green (this should not be confused with transparent green
polygons indicating plane landmarks). Note that, in these
sequences, our algorithm recovered from such tracking fail-
ures in the next few frames and thus did not invoke the re-
localization process.

Figure 6 explains the visualization of our system. Our
system provides real-time feedback to the user using this
visualization, enabling the user to decide on where to scan
next. If the tracking or relocalization fails, the user can re-
turn to a location from which some of the landmarks already
registered in the map are observable.

Figures 1 and 4 show our reconstruction results as point-
based and plane-based models. In plane-based models,

5555

Current Frame

Current
Point Cloud

Closest Keyframe

Keyframes

Point
Landmarks

Plane
Landmarks

Figure 6. An example of our real-time SLAM visualization. The
orange and green camera icons depict the pose of the current frame
and that of the closest keyframe, respectively. The camera trajec-
tory is shown as a set of keyframes with the white camera icons.
Point landmarks (cyan points) and plane landmarks (colored poly-
gons) are superimposed on the current point cloud.

we depict plane measurements associated to a single plane
landmark using the same color (the average color of all
the inlier points of the plane measurements). Note that the
floor and several tables tops, each of which physically cor-
responds to a single plane, are successfully associated to a
single plane landmark. These large planes produce long-
range interactions between frames; e.g., frames observing
the floor are always registered with respect to the floor plane
correctly. This makes the registration accurate and drift-
less.

Comparisons: Figure 5 demonstrates the advantage of
our system by comparing (a) the result obtained using both
point and plane correspondences with (b) that obtained us-
ing only point correspondences on a long corridor sequence.
The sequence was captured using a Kinect sensor mounted
on a mobile robot moving along a corridor. Most of the
frames in the sequence have the floor, left and right walls as
planes, and only a small number of keypoints. Because of
the small number of keypoints and poor texture information,
tracking using only points caused inaccurate registration
and reconstruction as shown in Figure 5 (b). The floor and
wall planes provide the necessary long-range constraints in
this sequence; our system exploiting them produced the cor-
rect reconstruction result shown in Figure 5 (a).

Note that using only plane correspondences would fail
on this sequence, because there are only two non-degenerate
planes and we cannot compute the remaining 1 degree-
of-freedom (along the direction of the corridor) from the
planes. ICP-based approaches [16, 13, 17, 29, 5] would also
drift due to insufficient geometric variations along this di-
rection. Whelan et al. [28] combined the ICP-based camera
tracking with other algorithms aligning dense textures [20]
and matching sparse texture features [9], and demonstrated
successful results for corridor sequences similar to Figure 5.
Their system still represents a scene as a set of points (or

Table 1. Average processing time of each component in our sys-
tem. The tracking is performed on every frame, while the tracking
with map update is performed only on keyframes.

Process Time (msec)

Point Correspondence 4
Plane Correspondence 97
RANSAC Registration 1

Tracking Total 102

Additional Point Detection 53
Additional Plane Detection 132

Descriptor Extraction 15
Map Update 4

Tracking with Map Update Total 306

a mesh model generated from them), while ours exploits
planar structures in the scene explicitly for more compact
representation.

Processing Time: Table 1 reports the processing time
for each component of our system, measured on an Intel
Core i7-2600 PC and averaged over the corridor sequence
shown in Figure 5. Currently our system runs at 10 frames
per second for tracking without map update (frames that are
not added to the map) and 3 frames per second for tracking
with map update2. The tracking is more than 3 times faster
than the relocalization-based system presented in [23]. As
seen from the table, the tracking process allows us to avoid
unnecessary descriptor extraction and matching for every
frame. Moreover, the new planes are extracted only for the
keyframes and this extraction is done only for a partial set
of pixels that are not the inliers of the existing planes.

4.2. Quantitative Results on Benchmark Datasets

In the second set of experiments, we quantitatively
evaluate the performance of our system using two se-
quences, freiburg1 floor and freiburg1 xyz,
from a benchmark [22]. We use the absolute trajectory er-
ror (ATE) and relative pose error (RPE) proposed in [22] as
performance metrics. ATE measures the distances between
camera centers of the true and estimated trajectories after a
global alignment of the two trajectories. In contrast, RPE
computes the relative pose errors of all pairs of poses in a
fixed time interval (we used the default time window of 1
second). As a result, ATE accounts for the global consis-
tency of the trajectory, while RPE measures the registration
accuracy locally over a fixed time interval.

Table 2 shows the root mean square (RMS) of each er-
ror metric for the two sequences, and Figure 7 shows the
point-based and plane-based models reconstructed by our
tracking-based SLAM system. We compare our tracking-
based SLAM system using both points and planes with that

2In the supplementary video, we play back all frames with a constant
speed.

5656

Table 2. Quantitative evaluations for the freiburg1 floor (top) and freiburg1 xyz (bottom) sequences from the benchmark [22].
From left to right, the columns show the number of successfully registered frames in the sequence, the number of relocalization occurred
(after tracking failures), the number of keyframes added to the map, the total number of frames, and the root mean square (RMS) of
absolute trajectory error (ATE) and relative pose error (RPE) in terms of translation and rotation. The first sequence mainly consists of a
large floor plane having similar or repetitive textures, which greatly benefits from our tracking-based system using both points and planes.
In contrast, the second sequence includes a texture-rich scene, where the performance of the point-plane tracking is similar to that of the
point-only tracking.

Method # Success # Relocalization # Keyframes # Frames RMS of ATE RMS of RPE
Tracking-Based (Point-Plane) 830 1 81 1223 62 mm 35 mm, 2.2◦

Tracking-Based (Point Only) 558 6 60 1223 162 mm 63 mm, 1.5◦

Relocalization-Based (Point-Plane) [23] 705 N/A 68 1223 65 mm 53 mm, 3.2◦

Method # Success # Relocalization # Keyframes # Frames RMS of ATE RMS of RPE
Tracking-Based (Point-Plane) 775 2 29 787 32 mm 36 mm, 2.3◦

Tracking-Based (Point Only) 749 4 34 787 26 mm 44 mm, 2.2◦

Relocalization-Based (Point-Plane) [23] 714 N/A 33 787 24 mm 34 mm, 1.7◦

Relocalization-Based (Point Only) 584 N/A 26 787 23 mm 30 mm, 1.2◦

Figure 7. Point-based (top) and plane-based (bottom) models re-
constructed by our system for the freiburg1 floor (left) and
freiburg1 xyz (right) sequences in the benchmark [22].

using only points. In addition, we run the relocalization-
based SLAM system using both points and planes as pre-
sented in [23], and that using only points. Note that we
only include the keyframes in the estimated trajectory for
the evaluation, since the remaining frames are not added to
the map.

The first sequence (freiburg1 floor) contains an
office floor with several knotholes on it. The results are
shown in Table 2 (top). Using only points in the tracking-
based system gives poor results in terms of accuracy com-
pared to using both planes and points. This is expected,
because the large floor plane is visible in most of the frames
throughout the sequence and its correspondence provides
more robust registration, similar to the corridor sequence
in Figure 5. The tracking-based system using only points
fails when the image has less texture information. Com-

pared to the relocalization-based SLAM system using both
points and planes [23], our tracking-based system provides
a larger number of frames that are successfully registered.
This is mainly due to the fact that the floor has repetitive
textures, which leads to the failure of descriptor-based point
matching algorithms. By tracking the point features, our
system provides robustness to such repetitive textures. The
relocalization-based SLAM system using only points failed
after the first 55 frames, so we omitted its result in the table.

The second sequence (freiburg1 xyz) includes an
office desk with several objects on it. This sequence is es-
pecially good for point-based systems, because it contains
rich texture information in every frame. In this sequence,
our approach is comparable to that using only points, as can
be seen in Table 2 (bottom).

5. Conclusions and Discussion

We presented a tracking algorithm that exploits both
point and plane correspondences for accurate and robust
registration while minimizing failure cases. We developed
a real-time SLAM system using the tracking algorithm in
conjunction with relocalization and bundle adjustment pro-
cesses. The tracking framework accelerated the feature
detection and correspondence search, and also enabled us
to avoid incorrect correspondences in areas with repetitive
texture. We performed several qualitative and quantitative
evaluations on indoor scenes and showed that planes provid-
ing long-range interactions lead to accurate and drift-less
registration. Nevertheless, there are still some drift along
the directions not supported by planes. For example, if the
scene includes a floor plane only, registration error similar
to point-based algorithms can happen on the in-plane trans-
lations and rotation (3 degrees-of-freedom). Planes provide
the effect of loop closing due to long-range interactions, but
we currently do not perform explicit loop closing for points.

5757

We plan to explore it to further improve registration accu-
racy in the future.

Acknowledgments: We thank Jay Thornton, Jeroen van
Baar, Yong-Dian Jian, and Chen Feng for valuable discus-
sion. This work was supported by and done at MERL.

References

[1] C. Audras, A. I. Comport, M. Meilland, and P. Rives. Real-
time dense appearance-based SLAM for RGB-D sensors. In
Proc. Australian Conf. Robotics and Automation, Dec. 2011.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up
robust features (SURF). Computer Vision and Image Under-
standing, 110(3):346–359, June 2008.

[3] P. J. Besl and N. D. McKay. A method for registration of 3-D
shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239–
256, Feb. 1992.

[4] J.-Y. Bouguet. Pyramidal implementation of the affine Lucas
Kanade feature tracker description of the algorithm. Techni-
cal report, Intel Corporation, 2001.

[5] J. Chen, D. Bautembach, and S. Izadi. Scalable real-time
volumetric surface reconstruction. ACM Trans. Graphics,
32(4):113:1–113:16, July 2013.

[6] B. Curless and M. Levoy. A volumetric method for building
complex models from range images. In Proc. SIGGRAPH,
pages 303–312, Aug. 1996.

[7] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.
MonoSLAM: Real-time single camera SLAM. IEEE Trans.
Pattern Anal. Mach. Intell., 29(6):1052–1067, June 2007.

[8] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-
D mapping: Using depth cameras for dense 3D modeling
of indoor environments. In Proc. Int’l Symp. Experimental
Robotics (ISER), Dec. 2010.

[9] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Matu-
rana, D. Fox, and N. Roy. Visual odometry and mapping for
autonomous flight using an RGB-D camera. In Proc. Int’l
Symp. Robotics Research (ISRR), Aug. 2011.

[10] C. Kerl, J. Sturm, and D. Cremers. Robust odometry estima-
tion for RGB-D cameras. In Proc. IEEE Int’l Conf. Robotics
and Automation (ICRA), May 2013.

[11] G. Klein and D. Murray. Parallel tracking and mapping for
small AR workspaces. In Proc. IEEE Int’l Symp. Mixed and
Augmented Reality (ISMAR), pages 1–10, Nov. 2007.

[12] R. A. Newcombe and A. J. Davison. Live dense reconstruc-
tion with a single moving camera. In Proc. IEEE Conf. Com-
puter Vision and Pattern Recognition (CVPR), pages 1498–
1505, June 2010.

[13] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and
A. Fitzgibbon. KinectFusion: Real-time dense surface map-
ping and tracking. In Proc. IEEE Int’l Symp. Mixed and Aug-
mented Reality (ISMAR), pages 127–136, Oct. 2011.

[14] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison.
DTAM: Dense tracking and mapping in real-time. In Proc.
IEEE Int’l Conf. Computer Vision (ICCV), pages 2320–2327,
Nov. 2011.

[15] K. Pathak, A. Birk, N. Vaškevičius, and J. Poppinga. Fast
registration based on noisy planes with unknown correspon-
dences for 3-D mapping. IEEE Trans. Robotics, 26(3):424–
441, June 2010.

[16] F. Pomerleau, S. Magnenat, F. Colas, M. Liu, and R. Sieg-
wart. Tracking a depth camera: Parameter exploration for
fast ICP. In Proc. IEEE/RSJ Int’l Conf. Intelligent Robots
and Systems (IROS), pages 3824–3829, Sept. 2011.

[17] H. Roth and M. Vona. Moving volume KinectFusion. In
Proc. British Machine Vision Conf. (BMVC), Sept. 2012.

[18] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3D
model acquisition. ACM Trans. Graphics, 21(3):438–446,
July 2002.

[19] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J.
Kelly, and A. J. Davison. SLAM++: Simultaneous locali-
sation and mapping at the level of objects. In Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR),
June 2013.

[20] F. Steinbrücker, J. Sturm, and D. Cremers. Real-time visual
odometry from dense RGB-D images. In Proc. IEEE Int’l
Conf. Computer Vision (ICCV) Workshops, pages 719–722,
Nov. 2011.

[21] H. Strasdat, J. M. M. Montiel, and A. J. Davison. Real-time
monocular SLAM: Why filter? In Proc. IEEE Int’l Conf.
Robotics and Automation (ICRA), pages 2657–2664, May
2010.

[22] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of RGB-D SLAM
systems. In Proc. IEEE/RSJ Int’l Conf. Intelligent Robots
and Systems (IROS), pages 573–580, Oct. 2012.

[23] Y. Taguchi, Y.-D. Jian, S. Ramalingam, and C. Feng. Point-
plane SLAM for hand-held 3D sensors. In Proc. IEEE Int’l
Conf. Robotics and Automation (ICRA), May 2013.

[24] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics.
The MIT Press, 2005.

[25] A. J. B. Trevor, J. G. Rogers III, and H. I. Christensen. Planar
surface SLAM with 3D and 2D sensors. In Proc. IEEE Int’l
Conf. Robotics and Automation (ICRA), pages 3041–3048,
May 2012.

[26] T. Tykkälä, C. Audras, and A. I. Comport. Direct iterative
closest point for real-time visual odometry. In Proc. IEEE
Int’l Conf. Computer Vision (ICCV) Workshops, pages 2050–
2056, Nov. 2011.

[27] J. Weingarten and R. Siegwart. 3D SLAM using planar seg-
ments. In Proc. IEEE/RSJ Int’l Conf. Intelligent Robots and
Systems (IROS), pages 3062–3067, Oct. 2006.

[28] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and
J. McDonald. Robust real-time visual odometry for dense
RGB-D mapping. In Proc. IEEE Int’l Conf. Robotics and
Automation (ICRA), May 2013.

[29] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. J.
Leonard, and J. McDonald. Kintinuous: Spatially extended
KinectFusion. In Proc. RSS Workshop on RGB-D: Advanced
Reasoning with Depth Cameras, July 2012.

[30] B. Williams, G. Klein, and I. Reid. Real-time SLAM relocal-
isation. In Proc. IEEE Int’l Conf. Computer Vision (ICCV),
Oct. 2007.

5858

