
 

 

Abstract 
 

This paper presents an adaptive cooperative approach 
towards the 3D reconstruction tailored for a bio-inspired 
depth camera: the stereo dynamic vision sensor (DVS). 
DVS consists of self-spiking pixels that asynchronously 
generate events upon relative light intensity changes. 
These sensors have the advantage to allow simultaneously 
high temporal resolution (better than 10µs) and wide 
dynamic range (>120dB) at sparse data representation, 
which is not possible with frame-based cameras. In order 
to exploit the potential of DVS and benefit from its 
features, depth calculation should take into account the 
spatiotemporal and asynchronous aspect of data provided 
by the sensor. This work deals with developing an 
appropriate approach for the asynchronous, event-driven 
stereo algorithm. We propose a modification of the 
cooperative network [6] in which the history of the recent 
activity in the scene is stored to serve as spatiotemporal 
context used in disparity calculation for each incoming 
event. The network constantly evolves in time - as events 
are generated. In our work, not only the spatiotemporal 
aspect of the data is preserved but also the matching is 
performed asynchronously. The results of the experiments 
prove that the proposed approach is well suited for DVS 
data and can be successfully used for our efficient passive 
depth camera. 

1. Introduction 
3D vision is currently intensively investigated in computer 
vision, thanks to the introduction of new depth cameras in 
consumer markets (e.g. Kinect). Different technologies are 
used for depth acquisition including passive and active 
methods. In the former depth is inferred from the parallax 
- displacements between two or more views of the same 
scene (e.g. stereo reconstruction, structure from motion). 
The latter is based on the analysis of the emitted light 
(laser, infrared or light patterns) with active triangulation 
methods or time-of-flight measurements. In this work we 
deal with the stereo dynamic vision sensor, therefore the 

challenge is to design an efficient stereo algorithm adapted 
for specific features of the sensor.  
Dynamic vision sensors can play an important role in the 
next generation depth cameras and in some aspects can 
overcome the limitations of the other depth cameras. 
Firstly, they offer very high temporal resolution achieved 
by asynchronous data generation (benefits of frame-free 
vision). Secondly, their wide dynamic range and 
sensitivity to relative light intensity change allows for 
outdoor applications under uncontrolled lighting 
conditions. What is more, dynamic vision sensors are 
efficient; they capture only the prominent features of the 
scene (edges), reduce data redundancy (pixels spike only 
when a change is detected) and their low power 
consumption makes them applicable for mobile robots. 
Additionally, DVSs are designed for industrial 
applications and are suited for long-time operation.  
Several attempts have been made to address the problem 
of 3D reconstruction for DVS. One typical approach 
[9][10] was to apply conventional stereo matching on 
pseudo-frames rendered from DVS events accumulated 
over a particular period of time. Nevertheless, the 
biological character of the data provided by DVS imposes 
different methods of processing than those proposed in the 
conventional computer vision. Moreover, transformations 
into the image-like representation may lessen the benefits 
of asynchronous vision. Therefore, it is more suitable to 
asynchronously process data in the same form as they are 
delivered by the sensor without losing the high temporal 
resolution of events occurrence. We claim that in order to 
exploit the full potential of dynamic vision sensors, the 
asynchronous aspect of the events should be preserved to 
better mimic the mechanism in biological vision. In the 
proposed algorithm we use the early model for cooperative 
stereo computation introduced by Marr and Poggio [6]. 
Furthermore the possibility to adapt the cooperative 
network for dynamic matching of events is investigated. 
The paper is structured as follows: firstly we briefly show 
the data from dynamic vision sensors and present 
approaches proposed in the literature for the DVS stereo 
reconstruction. Then, we introduce our concept of 
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cooperative event-based stereo matching along with the 
description of the algorithm. The experimental proof of 
concept is given in Section 4. We conclude with a short 
summary. 

2. Stereo for dynamic vision sensors 
This section starts with a short description of the dynamic 
vision sensor properties and characteristics. Afterwards, 
related works on stereo vision using this type of sensors 
are listed in order to motivate the purpose of this research.  

2.1. Short review of dynamic vision sensors 
Dynamic vision sensors consist of self-spiking pixels 
which are sensitive to relative change in the light intensity.  
The sensor encodes visual information as a stream of 
events where each event represents a pixel’s activity 
(spike) at a particular time.  As depicted in Figure 1, there 
is significant difference in data captured by a conventional 
camera (Figure 1(a)) and dynamic vision sensors (Figure 
1(b-c)). Moreover, dealing with a static sensor setup, only 
the scene dynamics is captured. Thus each moving object 
generates a cloud of events in space and time.  
 

Figure 1: (a) Dynamics of two people walking in the room 
captured by a conventional video camera. The same scene 
captured by the dynamic vision sensor results in the stream of 
events shown in (b) image-like and (c) spatiotemporal 
representation (adapted from [1]). 
 
The additional information attached to the event, despite 
of location and time, is the polarity which denotes the 
intensity increase (ON) or decrease (OFF). The data 
stream from DVS is encoded with Address Event 
Representation (AER). Each event TAE (Time stamped 
Address Event) is defined by a tuple: 

,,,,, >=< chptyxTAE  (1) 

where (x,y) is the pixel address, t is the event timestamp, p 
is the polarity (ON / OFF), and the channel (ch) denotes 
the source of the event (left or right view).  

The stereo matching task is to find correspondences 
between the left and right events stream. The desired 
stereo algorithm output is to compute for each event in the 
stream an assigned disparity value d, resulting in the tuple: 

>=< chptdyxTAE D ,,,,,3  (2) 

2.2. Related work 
The first attempt for event-based stereo vision was 
proposed by Mahowald and Delbruck [5]. Inspired by the 
cooperative algorithm [6] and its applicability for the on-
chip implementation, they developed a stereo vision chip 
for 1D image matching. Although the results of this on-
chip stereo were very promising, the main drawback of 
hardware approaches is the lack of flexibility, e.g. fixed 
disparity resolution (as defined by the size of the 
correlation network). Moreover, for 2D pixel arrays, the 
complexity of the chip’s architecture would drastically 
increase. 
The cooperative approach was also an inspiration for 
software solutions for the DVS stereo. Hess [3] proposed 
to use the cooperative matching for each row in the image. 
Additionally, he introduced a time-based matching 
function to assign some initial weights for each possible 
match. According to the observation that correct matches 
are more likely to be coincident in time, the weight of the 
match is higher for those events which are closer in time. 
The disparity is assigned by the highest value of high-
weighted matches. Such algorithm, however, can only be 
reliable under the assumption of homogeneous disparity of 
the scene, which can be hard to obtain in real world 
scenarios. Nevertheless, it can be successfully used for 
camera alignment. In a further investigation, Hess [3] 
introduced spatiotemporal window matching for event-
based stereo. In this approach, the correspondence 
between events is established on the basis of the similarity 
of the spatiotemporal neighborhood.  
The importance of timing information in event-based 
matching has also been investigated by Rogister et al. [8]. 
They first perform the rectification of events and then 
apply the epipolar constraint to event matching. They 
suggest that events which are in correspondence should 
have the shortest distance in space and time to the epipolar 
line. Additionally, they used polarity and ordering 
constraints to reduce matching ambiguities. The proposed 
algorithm relies mainly on the temporal agreement of the 
corresponding event, which could be quite risky. 
Moreover, single event-to-event matching assumes that 
object’s appearance is the same on the left and right view. 
This assumption, however, could be hard to obtain dealing 
with non-rigid and non-frontal motion. 
Schraml et al. [7][9] proposed a synchronous approach to 
event matching. First, events are transformed to an image-
like representation and then local window matching is 
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used as the stereo method. The Normalized Sum of 
Absolute Differences (NSAD) is used as a cost function to 
handle the differences in events distribution between left 
and right view. Matching is performed only on the non-
zero pixels, which increases the speed of matching. The 
proposed algorithm is already used in many DVS 
applications (e.g. [1][10]). Furthermore, it is included in 
an embedded software of the product UCOS (smart-eye 
Universal COunting Sensor) [11] for people counting in 
security applications. 
Kogler et al. [4] proposed and compared 3 methods for 
stereo vision using DVS: area-based matching, event-
image-based matching and time-based matching. The first 
method uses conventional window-based stereo matching 
applied to the image representation of the events stream. 
In the second method, the stream is transformed into an 
image with a 3 state logic (on/off event or no event {– 1 0 
1}). The local neighborhood of each event in such an 
image is used as a matching primitive. The last method 
uses time for matching cost calculation. Possible matches 
are weighted according to their distance in time to the 
reference event. The weights are stored in a dynamic 
structure called Weighted Matching Image which is 
updated in time. The weights for events are aggregated in 
defined time periods.  
The field of stereo vision using DVS is not yet extensively 
investigated. Apart from the work in [10] using 
synchronous matching, the majority of the proposed 
methods are rather experimental than fully working 
algorithms. Furthermore, it is quite hard to compare them 
as each algorithm was tested not only on different datasets 
but also using different vision sensors. In general, we can 
observe that image-based (synchronous) methods usually 
outscore event-based stereo matching in terms of accuracy 
and efficiency. Therefore, providing a robust 
asynchronous stereo matching algorithm still remains a 
challenge. 

3. Adaptive Cooperative Stereo 
The goal of this work is to propose a stereo algorithm that 
is suited for dynamic vision sensors and that would be 
comparable in terms of accuracy with currently used 
conventional methods [9][10]. We assume that it is 
important to preserve the asynchrony of the dynamic 
vision sensors to fully exploit their potential in efficiency 
and high-speed. We define three important aspects of the 
sensor that are considered in the design of our algorithm: 

• dynamic matching for spatiotemporal data 
• asynchronous processing (data-driven instead of 

time- driven processing) 
• feature matching using data parsimony (edges)  

In order to achieve all of the aforementioned points we 
have to operate directly on the stream of events, thus we 

aim to propose an event-based method for stereo 
reconstruction. 
In this section we first provide a short description of the 
original cooperative approach by Marr and Poggio [6] and 
we explain in which aspects it is suitable for asynchronous 
matching. Next, we show how the cooperative approach 
can be adapted for DVS data and we present our algorithm 
in more details. 

3.1. Cooperative approach 
Marr and Poggio [6] model the problem of stereo 
matching with the cooperative network where each node 
corresponds to an intersection of the left and right 
sightline. The task of stereo matching is to distinguish the 
true matches out of all possible matches. In order to do 
that, Marr and Poggio [6] defined two constraints: 
uniqueness and smoothness. The former reflects the fact 
that an object can occupy only one physical position at a 
particular time. Therefore there is only one true match for 
a particular feature. The latter says that disparity varies 
smoothly due to the coherence of the matter. Both 
constraints are employed in the cooperative network as 
local neighborhood operations. Nodes at the same 
disparity level support each other according to the 
smoothness rule, whereas nodes along the sightline inhibit 
each other due to the uniqueness constraint. The network 
iteratively performs those local operations in order to find 
a global optimum. 
There are a few aspects making the cooperative approach 
very suitable for the DVS data. This method is to a 
significant extent based on implications from biological 
stereopsis and therefore adequate for the bio-inspired 
sensor. For instance, the use of a neural mechanism to 
achieve a global optimum through multiple local 
neighborhood operations can be easily employed for 
dynamic event processing. In addition, the cooperative 
stereo was designed for matching identical features, thus it 
can be considered very eligible for matching events. 
The applicability of the cooperative approach for the DVS 
data has been already proven in [5][3].We extend it even 
further to provide the dynamic adaptation of the network 
and, therefore, enable asynchronous matching. We suggest 
storing not only the most recent events but also the history 
of previous matching results. In order to achieve that, we 
propose a dynamic cooperative network which is 
constantly updated as each event contributes new 
information to it. The result being that this form of the 
network allows us to perform fully asynchronous 
matching because each event from the stream can infer its 
disparity on a basis of information found in the network. 
Nevertheless, we still use a time-based cost function to 
assign some initial weights while mapping the possible 
matches into the network. Additional constraints for false 
match suppression are already employed in the network by 
the positive and negative feedback from local neighbors. 
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Events from the left and right views are mapped to the 
network, where they receive two types of feedback. 
Neighbors at the same disparity level implement a 
cooperative process and give positive feedback to the 
node, whereas the nodes across the disparity planes 
compete with each other by negative feedback.  
Finally, the node having the highest weight after local 
neighborhood operations is considered to be the correct 
match in analogy to winner takes all (WTA) networks). 

3.2. The proposed algorithm 
The proposed algorithm can be divided into three 
processing steps: mapping to the network, local network 
update and winner-takes-all procedure. We assume that 
events have been previously rectified such that left and 
right views are geometrically aligned and possible 
matches can be found on the corresponding epipolar lines. 
For each event from the input stream, we search for 
possible matches and assign their initial weights. Next, the 
network feedback is calculated for each possible match 
and, finally, a WTA procedure is applied on the nodes to 
retrieve the correct disparity. 

Mapping events to the Cooperative Network 

The incoming events are mapped into the cooperative 
network by their temporal correlation. Therefore, for each 
event, we search for all possible matches among the most 
recent events in the opposite view. Additionally, according 
to the canonical stereo setup, we assume that the true 
match for any of the left events will always appear on the 
right view on the left side of the event’s position; 
analogically for the right events. 
The matching is done symmetrically for both the left and 
right events. As the co-occurrence of the events is directly 
connected with their correspondence, we assume that a 
higher correlation of events reflects a smaller time 
difference between them. The matching scores are 
calculated as in [3] using the following function: 

,
1

1)(
+Δ

=Δ
ta

tf  (3) 

where tΔ is the time difference between the reference 
event and its matching candidate; the parameter a controls 
the slope of the function. 
 
Cooperative Network – structure, update and disparity 
calculation 
Derived from the cooperative stereo method [6], the 
possible feature locations in the disparity space are 
modeled as nodes in the network. In our algorithm the 
network is a 3D matrix of size (MxNxD), where MxN is 
the resolution of the sensor and D the considered disparity 

range. The schematic illustration of the network is shown 
in Figure 2. The core of the algorithm, however, is in the 
local neighborhood operations. As previously discussed, 
we consider two types of neighborhoods: excitatory 
(positive) and inhibitory (negative). The first one is a 
square neighborhood of each node within its disparity 
plane (along x and y directions). The size of the excitatory 
neighborhood is given as an algorithm parameter.  

 
Figure 2: The illustration of the feedback mechanisms used in 
our cooperative network. Each node of the network is first 
influenced by an 8-connected spatial neighborhood (green), 
supporting matches within the same disparity plane. Next, nodes 
receive the negative feedback from the competing matches 
across the disparity planes (red).  

The positive feedback is a sum of the weights of all 
neighbors multiplied by the initial weight of the node. The 
inhibitory neighborhood, however, includes always all the 
nodes along the sightline, and thus has a constant size of 
D-1 nodes. Negative feedback applied to the node is done 
by subtraction of the sum of all inhibitory neighbors 
multiplied by the given inhibitory factor. Finally, the node 
values are normalized to have values from 0 to 1. In the 
last step of the algorithm, we apply a winner-takes-all 
strategy to the possible matches as the one with the highest 
value is assumed to be of correct disparity.  
The cooperative neural network is constantly changing as 
the events are generated by the sensor. Each event 
contributes to the local neighborhood at different disparity 
levels. Additionally, the node weights decay in time if 
they were not updated recently. This is done by the global 
update of the network, performed in given periods of time.  

4. Experimental proof of concept 
In order to evaluate the algorithm, tests have been first 
performed using synthetic data depicting different 
configurations of moving edges. Three sequences were 
used: (a) edge20 – which consists of one moving edge at a 
disparity of 20 pixels;  (b) 2edges - two edges at different 
disparities (5 and 20 pixels) moving in two opposite 
directions; and (c) changDisp with an edge of changing 
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disparity (from 5 to 20 pixels). The synthetic datasets are 
shown in Figure 3. 

 
            (a) 

 
                               (b) 

 

(b) 

   (c) 

Figure 3: Datasets:  (a) edge20, (b) 2edges, (c) changDisp. The 
left view is depicted in blue and the right in red. The direction of 
motion is indicated by arrows. Additionally, in (c) the change of 
disparity over time is illustrated by showing the position of edges 
at three different timestamps (t0, t1 and t2). 

Table 1 summarizes the tests performed on the synthetic 
data. It includes details of each sequence such as length 
and number of events. The results are given by the 
accuracy and performance. The accuracy is a percentage 
of events whose disparity agrees with ground-truth (up to 
one pixel difference is considered as a correct result). The 
algorithm achieves more than 95% of accuracy. 
Considering the algorithm’s performance, we need to take 
into account that the processing time is dependent on the 
events’ rate (amount of events in the sequences). 
Furthermore, the complexity of a scene can influence the 
processing time due to the higher amount of possible 
matches to filter out. Therefore, the performance was 
measured by the events number processed in one time unit 
(1 second) and this varies around 900 TAEs/s. 
According to the results of tests on synthetic data, the 
algorithm has been positively verified. Therefore, the next 
step was to test it on real DVS recordings as shown in 
Figure 6. Two sequences were used depicting a single 
object in the scene: (a) tool: moving tool at uniform 
disparity (d = 60) and (b) person: walking person captured 
by the sensor from overhead mounting. 
 

Table 1: Results of the proposed algorithm on synthetic test data 

sequence details accuracy Performance 
name length(s) #events (%) TAEs/s 

edge20 10,1 51510 98 953,89 
changDisp 10,1 51106 97 940,73 

2edges 10,1 103020 95 858,50 
 

Figure 4: Two simple data sequences from the left and right 
DVS: (a) moving tool and (b) walking person seen from above.

The obtained disparity maps were compared with results 
of the algorithm proposed in [10] that uses the 
conventional NSAD matching on image-like DVS data 
representation. 
As observed in Figure 4(a), some corresponding edges 
have opposite polarity. If polarity is used as a constraint in 
the stereo algorithm, the correct (true) matches are 
eliminated and not considered in matching. That leads to 
incorrect disparity estimation as visible in Figure 5b. We 
currently do not consider the polarity constraint. Thus, 
better results than [10] are obtained, which is illustrated by 
the disparity histogram with a narrow and high peak at the 
correct disparity (see Figure 5c). Nevertheless, the polarity 
may be an additional feature to be considered in future 
versions of cooperative stereo matching to increase the 
algorithm’s accuracy. The results of stereo matching 
applied to the person sequence are depicted in Figure 6. In 
this sequence we have a complex object movement with 
non-uniform disparity due to the fact that the sensor has 
been placed in an overhead position. Therefore, we can 
see that the head is the closest to the sensor, so it has a 
higher disparity (yellow/red) than the shoulders or legs.  
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We can also observe that our algorithm is capable of 
recognizing different disparity levels even in quite 
challenging object shapes. However, it tends to smooth the 
transition between disparity levels.  

 

Figure 5: (a) Results of the proposed cooperative algorithm 
applied to the sequence tool. The results are displayed in image-
like representation for visual comparison with (b) the algorithm 
in [10]. The depth (disparity in pixels) is color-coded. The results 
are also presented by disparity histograms (showing the events 
number assigned to a particular disparity) for: (c) our cooperative 
approach and (d) the algorithm in [10]. 

 
Figure 6: Results of the proposed algorithm (cooperative 
stereo) applied to the second sequence person. Comparison of 
results displayed in image-like representation of a) our 
algorithm and b) the algorithm proposed in [10]. The disparity 
is encoded in color, according to the legend (colorbar).

 

5. Conclusions 
In this work, the problem of asynchronous stereo vision 
for dynamic vision sensors was addressed. We extend 
existing methods for event-based processing by using the 
cooperative approach, which enables spatiotemporal and 
asynchronous 3D reconstruction. 
In the proposed algorithm, stereo matching is modeled 
with a cooperative network where nodes of the highest 

activation denote correct disparity. The cooperative aspect 
is considered as refinement for event-based matching as it 
not only uses the temporal similarity to match events but 
also their spatiotemporal neighborhood. The key aspects 
of our contribution are that the proposed network is 
dynamic, asynchronous and cooperative. The algorithm 
was evaluated and tested with a dataset including both real 
DVS and synthetic data with reference information. These 
early results proved that the algorithm can successfully 
perform event-based 3D reconstruction. In the future, we 
plan to perform a further quantitative and qualitative 
evaluation of the approach using larger ground truth data.  
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