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Abstract

Visual tracking of objects under varying lighting con-
ditions and changes of the object appearance, such as ar-
ticulation and change of aspect, is a challenging problem.
Due to its robustness and speed, distribution field tracking is
among the state-of-the-art approaches for tracking objects
with constant size in grayscale sequences. According to
the theory of averaged shifted histograms, distribution fields
are an approximation of kernel density estimates. Another,
more efficient approximation are channel representations,
which are used in the present paper to derive an enhanced
computational scheme for tracking. This enhanced distri-
bution field tracking method outperforms several state-of-
the-art methods on the VOT2013 challenge, which evaluates
accuracy, robustness, and speed.

1. Introduction

This paper addresses the problem of visual object track-

ing, i.e. local methods of searching for a matching object

in a grayscale image, which is a fundamental step in many

computer vision systems, e.g. visual surveillance and struc-

ture from motion.

The visual matching requires a suitable representation

of the object appearance and the current local image patch.

In [20] the authors propose to compare Distribution Fields

(DFs) of the object and the local image region. The result-

ing DF Tracking (DFT) method outperforms several state-

of-the-art methods.

The particular goal of the present work is to improve

the estimation process of the DFs and the local matching

scheme, in order to improve the overall performance. For

this purpose, we extend DFT in three ways:

A) By careful analysis of the DFT implementation, we

improve the search window selection and the motion pre-
diction computation.

B) Using the theory of Averaged Shifted Histograms
(ASH) [19], we replace the smoothed histograms with a

coarse grid of smooth bins as used in Channel Represen-

tations (CRs) [10].

C) For the channel-based method, we systematically de-

rive the parameters that are equivalent to the optimized pa-

rameters of the DFT.

The resulting variants are step-wise compared to the

original DFT algorithm, using the challenging VOT2013

evaluation kit [1]. For each change of the original al-

gorithm, the performance improves. The so proposed fi-

nal version of the algorithm, Enhanced Distribution Field
Tracking (EDFT), is faster than the original method and is

more robust against outliers, while achieving at least the

same accuracy. EDFT compares also favorably to other

state-of-the-art methods on the VOT2013 challenge.

1.1. Related Work

Visual object tracking is based on various aspects in-

cluding appearance representation, motion modeling, ob-

ject modeling, and update rules for all previous aspects. In

the present work we focus on the appearance representation,

which can be in terms of a template or kernel-based. Hybrid

approaches become increasingly common, though.

Template-based approaches make use of intensity val-

ues, color values, gradient information, or other simple fea-

tures in a spatial grid [3]. These methods suffers typically

from outliers, which may be addressed using robust met-

rics [15], and non-smooth objective functions, which may

be addressed by smoothing [14].

Kernel-based approaches, in the simplest case

histogram-based methods, integrate information over

the image patch [5]. These methods are often more robust

than template-based ones, but suffer from ambiguities

caused by the loss of spatial structure [11]. This is miti-

gated by the use of spatially varying kernels or higher order

statistics [4], thus going toward hybrid methods.

Combining spatial structure and kernel-based estimates

in a hybrid approach allows to balance the trade-off be-

tween specificity of the template-based approach and the

sensitivity of the kernel-based approach. Indeed, the reso-

lution of the spatial grid and the bandwidth of the kernel are

2013 IEEE International Conference on Computer Vision Workshops

978-0-7695-5161-6/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.22

121

2013 IEEE International Conference on Computer Vision Workshops

978-1-4799-3022-7/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.22

121



strongly coupled and can be recomputed on the fly [6]. In

Distribution Field Tracking (DFT) [20], a method based on

smoothed local histograms, it has been shown that a care-

ful choice of parameters lead to state-of-the-art tracking re-

sults. The computation of local kernel-based features be-

comes very efficient if using integral images, and real-time

performance can be achieved [16].

Smoothed local histograms, or Averaged Shifted His-

tograms (ASH), are closely related to kernel density esti-

mators [19] and smooth histograms, in particular Channel

Representations (CRs) [10]. Due to the frame-properties of

the latter, transformations of the template (rotation, scaling)

can be directly mapped to localized CRs, called Channel-

Coded Feature Maps, which can then be used for tracking

under affine transformations [12] – however at a larger com-

putational effort. Similar to frame-based features, wavelet

features such as Haar features have been used successfully,

however not in combination with simple distance measures,

but using boosting techniques [2].

1.2. Contributions

In the present work we concentrate on fast hybrid ap-

proaches for tracking using a fixed size window. In partic-

ular, we extend Distribution Field Tracking (DFT) in three

ways:

• By careful analysis of the DFT implementation, we

improve the search window selection and the motion

prediction computation.

• Using the theory of Averaged Shifted Histograms

(ASH) [19], we replace the smoothed histograms

with smooth bins as used in Channel Representations

(CRs) [10].

• For the channel-based method, we systematically de-

rive the parameters that are equivalent to the optimized

parameters of the DFT.

The resulting method, Enhanced DFT (EDFT), is evaluated

on the VOT2013 Challenge Dataset [1] and is compared to

state-of-the-art methods.

2. Methods
In order to make the paper self-contained, we add short

technical descriptions of the DFT method (section 2.1),

ASH (section 2.2), and CRs (section 2.3). Our contributions

and the EDFT method are explained in detail in section 2.4.

2.1. Distribution Field Tracking

Distribution Field Tracking (DFT) [20] is a visual re-

gion tracking method that is based on comparing smoothed

local histograms of the image patch. Histograms are one

of the most simple forms of non-parametric density repre-

sentation. In case of DFT, the image value (grayscale) is

the stochastic variable and its distribution is estimated in

three steps: a) quantizing and binning the value domain;

b) spatial smoothing at different scales; and c) smoothing

the bins. Step a) results in a one-out-of b coding d(i, j, k)
(k = 1, . . . , b) of the image I(i, j)

d(i, j, k) =

{
1 if I(i, j) == k

0 otherwise
. (1)

In the original work it is suggested to use b = 16 quantiza-

tion levels.

The spatial smoothing in step b) makes use of 2D Gaus-

sian kernels hσs(i, j) at two scales σs = 1 and σs = 2

ds(i, j, k) = (d(·, ·, k) ∗ hσs
)(i, j) for all i, j. (2)

The smoothing in step c) makes use of a 1D Gaussian kernel

hσf
(k) with σf = 10 (with respect to 255 grayscales, thus

σf = 0.625 if b = 16)

dss(i, j, k) = (ds(i, j, ·) ∗ hσf
)(k) for k = 1, . . . , b.

(3)

The so computed function dss(i, j, k) is denoted as distri-

bution field (DF) in the sequel and its subscript is omitted

for simplifying the notation.

During the tracking, the DF of the template, dmodel, is

compared to the DF of a local window in the current frame,

df , within a local search and a coarse-to-fine strategy. The

distance measure used is the sum of absolute differences,

i.e. the L1 distance between dmodel and df

L1(dmodel, df ) =
∑
i,j,k

|dmodel(i, j, k)− df (i, j, k)| . (4)

The displacement is estimated coarse-to-fine by local search

of the minimum L1 error within a window of maximum dis-

placement (30 pixels in the original work). When the best-

fitting position has been found, the current template dmodel,t

is updated using the current DF df using linear weights

λ = 0.95 for the previous template and (1 − λ) = 0.05
for the update

dmodel,t+1(i, j, k) = λdmodel,t(i, j, k) + (1− λ)df (i, j, k).
(5)

Due to the density-based comparison, the method is ro-

bust against outliers, and due to the template-update, the

method can also deal with continuous changes of object as-

pects and the lighting. All parameters have been optimized

using cross-validation on a dataset with 11 sequences [20],

which shares 2 sequences with the VOT2013 dataset (david

and face).
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2.2. Averaged Shifted Histograms

The construction of DFs combines pooling steps and

weighted averaging. The exact statistical characteriza-

tion of the final descriptor is thus not straightforward, but

falls within the theory of Averaged Shifted Histograms

(ASH) [19]. At each spatial position, the result from (2) in

step b) is a (weighted) histogram. Thus, the bin smoothing

in (3) results in an averaging of histograms.

According to ASH theory [19], asymptotic properties of

density estimates by averaged histograms are superior to or-

dinary histograms. To start with, a set of m shifted his-

tograms1 f̂1(x), . . . , f̂m(x) with bin-width h is generated,

such that the relative shift is h/m. For the unweighted ASH,

the m histograms are averaged in each point

f̂ASH(x;m) =
1

m

m∑
i=1

f̂i(x) . (6)

The ASH is piece-wise constant in intervals of width h/m.

If we now assume a fine histogram ĝ(x) on these intervals,

we may calculate the ASH from the latter as [18]

f̂ASH(x;m) =
1

m

m−1∑
i=1−m

(
1− |i|

m

)
ĝ(x+ i) . (7)

Or to put it into signal processing terms, the histogram val-

ues f̂i are obtained by convolving ĝ with a rectangular ker-

nel of width m, and the ASH is obtained by convolving ĝ
with a triangle-kernel of width 2m − 1 (which is obtained

by convolving the rectangular kernel with itself).

For the weighted ASH, the isosceles triangle in (7) is

replaced with a more general weighting function wm(i) ≥ 0
that sums to one

f̂ASH(x;m) =
m−1∑

i=1−m

wm(i)ĝ(x+ i) . (8)

Compared to ordinary histograms with comparable compu-

tational effort, the ASH has a lower Asymptotic Mean Inte-

grated Squared Error (AMISE) [18], pp. 119–121. If wm is

chosen as a Gaussian kernel, the weighted ASH is identical

to the DF feature pooling (3). On the other hand, taking the

limit of infinitesimal narrow bins, we obtain a kernel den-

sity estimator (KDE) if we place the kernel at the n data

samples xj , j ∈ {1, . . . , n}, see (5.14) in [18]

lim
m→∞ f̂ASH(x;m) =

1

nh

n∑
j=1

K

(
x− xj

h

)
, (9)

where K(·/h) is obtained from limm→∞ wm(·). Thus, in

expectation values sense, DFs become kernel density esti-

mators.

1In our text we throughout identify histograms and the corresponding

density estimate since the latter is defined as the relative count divided by

the bin width.

2.3. Channel Representations

Another efficient method to approximate kernel den-

sity estimators in expectation sense are Channel Repre-

sentations (CRs) [10], also called population codings [17],

a biologically inspired data representation. Regular CRs

have a probabilistic interpretation in terms of smooth his-

tograms [22, 8], i.e., the kernel functions used for binning

the data are smooth instead of rectangle functions. Possi-

ble choices are (besides Gaussian kernels) cos2 kernels or

quadratic B-splines [9]. An easily accessible introduction

to the topic is given in [7].

If we assume bin centers with spacing h, the coefficients

of the CR are computed as

ck =
1

nh

n∑
j=1

K(xj/h− k) k ∈ N . (10)

Thus, CRs are similar to KDEs, but establish a discrete

function over the bin-centers (like histograms) instead of a

continuous function. Therefore, the sum above is evaluated

only once when adding the sample xj , in contrast to KDEs,

where the sum over all xj has to be evaluated for each x.

Thus, CRs are more efficient to compute if the number of

samples is large and the dimensionality is moderate.

CRs are also a limit case m → ∞ of ASHs, but in-

stead of placing the kernel functions at the samples, they

are placed at the coarse grid of the ASH. From sampling

theory it is known that lowpass-filtered signals can be sub-

sampled without loss of information. In this case, the kernel

function K acts as a lowpass-filter on the underlying distri-

bution (a regularizer) and therefore the coarser grid of the

ASH is sufficient to represent the density with high accu-

racy. In expectation sense, the coefficients in the channel

representation are equivalent to the kernel density estima-

tor evaluated at discrete points [8] and thus the limit of the

ASH

E{ck} = lim
m→∞ f̂ASH(k;m) . (11)

The major practical question in this context is whether CRs

or DFs result in a better, i.e. faster and more accurate,

approximation of a kernel density estimator. Or in other

words: is it better to smooth ordinary histograms or to com-

pute histograms with smooth bins? This question will be

addressed below and for this purpose we will calculate the

CR parameters that are equivalent to the DF parameters as

described above. For this calculation, we need the func-

tional description of the applied kernel function. We chose

a quadratic B-spline over cos2 kernels in order to obtain

simpler calculations below:

K(x) =

⎧⎪⎨
⎪⎩
3/4− x2 |x| ≤ 1/2

(|x| − 3/2)2/2 1/2 < |x| ≤ 3/2

0 otherwise

. (12)
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2.4. Enhance Distribution Field Tracking

This section contains the main contributions of the

present paper and successively leads to the proposed En-

hanced Distribution Field Tracking (EDFT) algorithm. The

EDFT algorithm is obtained from the DFT method in three

steps, cf. figure 1.
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Figure 1. Overview of proposed changes and the resulting new

variants of the DFT algorithm.

DFTc In a first step, we improve some details of the DFT

algorithm, resulting in the DFT with constant velocity pre-

diction (DFTc). The original code from the authors extracts

a slightly asymmetric window. This has been corrected in

the DFTc.

For the initialization of the minimization, the original

algorithm uses a prediction based on the correction of the

previous prediction. Instead, the DFTc starts at the posi-

tion predicted by a constant motion model. If the previous

estimated object position (upper left corner of the bound-

ing box) is denoted pold and the current one as pnew, the

motion prediction mp is given as

mp = pnew − pold (13)

so that the predicted position pp becomes

pp = pnew +mp = 2pnew − pold . (14)

CBDF In a second step, we replace the explicit histogram

averaging in the DF feature pooling (3) with the encoding

into the equivalent CR (10). The implementation of the CR

is based on the Matlab toolbox (GPL) that is based on [13].

The channel-based DFT is denoted as CBDF.

In order to get the CBDF that is equivalent to the DFT

in expectation sense, we choose the bandwidth parameter h
of the CR from the parameters of the DF. Since we consider

only one parameter, we obtain the best approximation by

choosing the same effective variance of the combined ker-

nel. For the DF, this is the Gaussian kernel hσf
(σf = 10)

convolved with the original bins used in (1), a rectangle of

width w = 16. Thus we obtain

σeff =

√∫ w/2

t=−w/2

1

w
(σ2

f + t2) dt =

√
σ2
f +

w2

12
. (15)

On the other hand, the variance of h−1K(x/h) is

σK(h) =

√∫ 3h/2

−3h/2

h−1K(x/h)x2 dx =
h

2
(16)

so that the bandwidth (in relation to values x ∈
{0, . . . , 255}) should be chosen as

h = 2σeff =

√
4σ2

f +
w2

3
= 4

√
91

3
≈ 22.03 . (17)

However, small variations of h have no significant impact

on the final results.

Finally, since the channels with lowest and highest index

are outside the encoded interval, the CR consists of b =
	256/h
+ 2 = 14 channels, encoding the interval Ivalue =
[−4.68; 259.68] (the interval of length (b − 2)h centered

around the original interval).

EDFT In a third step, we regularize the predicted motion

by a simple smoothing filter. This improves the continuity

of the motion prediction beyond the second frame and helps

to avoid being trapped in local minima. The new predicted

motion mp,new is computed from the previous one mp,old

and the old and new positions (pold respectively pnew) as

mp,new =
1

2
(mp,old + pnew − pold) . (18)

This simple recursive filter leads to a long sustain of motion

predictions. The resulting method, Enhanced DFT (EDFT)

has exactly the same number of independent parameters

as the original DFT method, with the only difference that

the feature kernel variance σf is replaced with the interval

length of Ivalue, implicitly determining the bandwidth pa-

rameter h.

3. Experiments
All considered methods have been evaluated according

to the rules of the VOT2013 challenge as specified in the

VOT2013 evaluation kit document [1]. The authors guaran-

tee that they have exactly followed the guidelines and have

not modified the obtained results in any way that would vi-

olate the challenge rules.

3.1. Dataset and Evaluation

The VOT2013 challenge consists of 16 color image se-

quences with 172 to 770 frames: bicycle, bolt, car, cup,
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david, diving, face, gymnastics, hand, iceskater, juice,

jump, singer, sunshade, torus, and woman. The sequences

have been selected to make the tracking a challenging task:

objects change aspect or are articulated, the scale and ori-

entation vary, illumination changes and occlusions occur.

Some example frames are shown in figure 2.

Figure 2. Examples from the dataset: singer, sunshade, torus.

The VOT2013 challenge foresees to evaluate three as-

pects of tracking: accuracy, robustness, and speed. The

speed is computed as the average number of frames that are

processed per second. The robustness is determined by the

failure rate. Each time the tracker fails to achieve at least a

partial overlap, the failure count increases and the tracker is

re-initialized after five frames.

The accuracy is computed from the relative overlap

of the ground truth bounding box and the tracked object

bounding box, i.e. the intersection area of the two bound-

ing boxes divided by their joined area. The accuracy is only

evaluated if the tracking has not failed and therefore even

methods that regularly fail do not necessarily have a poor

accuracy. Accuracy evaluation starts 10 frames after (re-)

initialization.

In total, three different experiments are preconfigured.

Experiment 1, baseline, runs the tracker on the sequences

as they are with ground truth position as initialization. Ex-

periment 2, region noise, runs the tracker as before but with

perturbated initialization (10% of the bounding box size) in

order to test stability with respect to the initialization. Ex-

periment 3, grayscale, repeats experiment 1 after converting

the sequences to grayscale. Since the considered methods

only consider grayscale information, Experiment 1 and 3

are supposed to give the same result. All runs are repeated

15 times, which however only differ if the tracking method

is non-deterministic or for experiment 2.

3.2. Comparisons

We compare the results of the proposed EDFT method

with three state-of-the-art methods: the original DFT

method [20] as published on the authors’ project page2,

Mean-Shift Tracking [5] as provided by the VOT2013 chal-

lenge, also available at Matlab Central3, and Multiple-

Instance Learning [2], available as OpenCV beta version4.

Since EDFT has been derived from DFT in three steps,

cf. section 2.4 for details, we also evaluate the impact of

each step: a) We compare the original DFT algorithm with

our constant velocity prediction version DFTc. b) We com-

pare DFTc with the, in expectation value sense, equivalent

channel-based algorithm CBDF. c) We compare CBDF with

EDFT using its modified motion prediction.

All methods have been evaluated using their standard pa-

rameter settings: The DFT parameters are chosen accord-

ing to the cross-validation optimization [20], the proposed

methods use the same parameters or the equivalent param-

eters as derived in section 2.4. MST and MIL are applied

with the standard parameters as downloaded.

The experimental environment consists of one In-

tel Xeon X5675 (3.07GHz), in a multicore machine

with108GB shared RAM, running CentOS 6.4 64-bit.

All algorithms except for MIL, which is implemented in

C++/OpenCV, are native Matlab implementations and are

executed with Matlab R2013a.

3.3. Results

Table 1. Experiment DFT region noise

accuracy robustness speed (fps)
bicycle 0.46 0.73 8.53

bolt 0.68 4.27 7.87

car 0.42 0.80 9.61

cup 0.70 0.20 7.06

david 0.60 1.07 5.09

diving 0.34 3.87 7.55

face 0.75 0.00 4.70

gymnastics 0.52 2.93 5.96

hand 0.45 2.73 7.46

iceskater 0.33 1.27 4.54

juice 0.72 1.27 7.03

jump 0.58 0.13 6.70

singer 0.36 0.27 3.17

sunshade 0.59 3.20 6.70

torus 0.73 0.67 7.09

woman 0.61 1.40 7.21

2http://people.cs.umass.edu/˜lsevilla/
trackingDF.html

3http://www.mathworks.com/matlabcentral/
fileexchange/35520-mean-shift-video-tracking

4https://github.com/opencv-gsoc/gsoc11_tracking
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Table 2. Experiment MST region noise

accuracy robustness speed (fps)
bicycle 0.37 1.93 15.50

bolt 0.45 1.27 11.43

car 0.43 1.00 19.40

cup 0.69 0.00 21.55

david 0.50 2.07 30.69

diving 0.31 6.40 18.17

face 0.67 0.00 15.91

gymnastics 0.39 8.93 20.61

hand 0.48 0.93 17.30

iceskater 0.55 3.87 25.42

juice 0.63 1.20 23.43

jump 0.54 0.00 17.16

singer 0.44 4.27 21.80

sunshade 0.65 1.80 14.52

torus 0.42 0.87 14.11

woman 0.53 5.53 44.54

Table 3. Experiment MIL region noise

accuracy robustness speed (fps)
bicycle 0.51 0.07 7.49

bolt 0.58 6.87 7.73

car 0.41 0.00 7.68

cup 0.63 0.53 7.89

david 0.48 0.07 8.33

diving 0.36 3.20 8.70

face 0.53 0.00 7.90

gymnastics 0.53 3.73 9.08

hand 0.42 1.93 7.86

iceskater 0.54 0.07 8.48

juice 0.58 0.00 7.95

jump 0.56 0.27 7.78

singer 0.33 0.00 9.48

sunshade 0.54 2.60 7.76

torus 0.50 3.07 7.78

woman 0.59 3.80 9.72

We perform the analysis on the noisy initialization re-

sults with respect to accuracy, robustness, and speed, see

tables 1, 2, 3, 4, 5, and 6. The baseline/grayscale results are

not further considered because the region noise results are

more significant, see [21] for a detailed argumentation.

The results of the comparison to the state-of-the-art

methods are summarized in table 7 , where mean and me-

dian values for all three measures and the four methods

DFT, MST, MIL, and EDFT are listed for the noisy initial-

ization experiment.

In order to analyze what exactly caused the improved

performance of EDFT compared to the original DFT

method, the intermediate results of each step from sec-

tion 2.4 are summarized in table 8.

Table 4. Experiment EDFT region noise

accuracy robustness speed (fps)
bicycle 0.44 0.00 18.45

bolt 0.72 0.93 16.28

car 0.42 0.53 17.91

cup 0.73 0.00 14.17

david 0.66 0.40 11.04

diving 0.36 4.07 12.17

face 0.77 0.00 10.58

gymnastics 0.54 2.60 9.58

hand 0.48 1.47 13.45

iceskater 0.40 3.80 8.78

juice 0.58 0.00 13.60

jump 0.60 0.00 12.90

singer 0.36 0.33 6.04

sunshade 0.62 2.40 11.27

torus 0.76 0.00 14.56

woman 0.60 1.87 14.81

Table 5. Experiment DFTc region noise

accuracy robustness speed (fps)
bicycle 0.44 0.07 12.14

bolt 0.71 1.00 10.75

car 0.42 0.67 11.39

cup 0.73 0.00 9.70

david 0.62 0.67 7.08

diving 0.37 3.40 9.09

face 0.77 0.00 6.39

gymnastics 0.56 3.13 6.83

hand 0.51 1.73 9.64

iceskater 0.41 3.87 5.27

juice 0.58 0.00 8.93

jump 0.60 0.00 9.10

singer 0.36 0.27 3.81

sunshade 0.63 2.27 8.77

torus 0.76 0.07 10.29

woman 0.59 1.13 8.81

3.4. Discussion of Results

As stated above, due to the higher significance of re-

sults, we only consider the results from the noisy initial-

izations (see also [21]). Whenever a result is characterized

as significant, the p-value of the t-test is below 1%. Strictly

speaking, the p-value larger than 1% only implies that the

null-hypothesis (the results stem from the same distribution)

cannot be rejected at 1% significance level, but we use the

common notion of significant difference if p < 1%. The p-

values have been computed on the basis of single tracking

runs, i.e. 16× 15 = 240 runs in total.

As it can be seen from table 7, DFT and EDFT perform

significantly better than MST and MIL concerning accu-
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Table 6. Experiment CBDF region noise

accuracy robustness speed (fps)
bicycle 0.44 0.00 17.92

bolt 0.68 1.73 15.86

car 0.42 0.60 17.69

cup 0.73 0.00 14.17

david 0.66 0.40 11.28

diving 0.36 3.73 12.63

face 0.77 0.07 10.67

gymnastics 0.54 2.73 9.18

hand 0.49 1.20 13.40

iceskater 0.40 4.13 8.80

juice 0.58 0.00 13.65

jump 0.60 0.00 12.69

singer 0.38 0.40 6.03

sunshade 0.62 2.80 11.57

torus 0.76 0.07 14.32

woman 0.60 1.87 14.41

Table 7. Summarized results for the region noise experiment, com-

parison to state-of-the-art (best scores in boldface)

method DFT EDFT MST MIL

mean accuracy 0.55 0.57 0.50 0.51

median accuracy 0.59 0.59 0.49 0.53

mean robustness 1.55 1.15 2.50 1.64

median robustness 1.17 0.47 1.54 0.40
mean speed 6.64 12.85 20.72 8.23

median speed 7.05 13.18 18.79 7.90

Table 8. Summarized results for the region noise experiment, anal-

ysis of the DFT improvements (best scores in boldface)

method DFT DFTc CBDF EDFT

mean accurracy 0.55 0.57 0.56 0.57
median accurracy 0.59 0.59 0.59 0.59
mean robustness 1.55 1.14 1.23 1.15

median robustness 1.17 0.67 0.50 0.47
mean speed 6.64 8.62 12.77 12.85
median speed 7.05 9.01 13.05 13.18

racy. The accuracy of DFT and EDFT does not differ sig-

nificantly. Similarly, MST and MIL show insignificant dif-

ference of accuracy.

For robustness, EDFT obviously outperforms DFT and

MST significantly. EDFT has a better mean robustness

score than MIL, but MIL has a better median robustness

score than EDFT. In general, a high discrepancy between

mean and median indicates the presence of outliers. Thus,

MIL shows fewer tracking failures than EDFT on the major-

ity of cases, but in the remaining cases, MIL fails more often

than EDFT. This is confirmed by comparing the numbers

for the individual experiments in tables 3 and 4. Applying

the t-test shows that EDFT is significantly better than MIL,

despite MIL having the better median. Quite surprisingly,

the robustness of DFT and MIL do not differ significantly.

The observation from table 7 that EDFT has up to the

significance level the same accuracy as DFT, but has signif-

icantly better robustness can be explained from the evalua-

tion setup. As argued in section 3.1, the accuracy measure

might even increase in case of growing number of tracking

failures, because the failure cases are not considered in the

accuracy calculation. Thus, EDFT can be considered as at

least as accurate as DFT if both succeed to track, but EDFT

is significantly less likely to fail than DFT.

For the computational speed, all differences are signifi-

cant and MST is fastest, EDFT second, MIL third, and DFT

slowest. Thus, to summarize, EDFT produces the best re-

sults in accuracy and robustness for the second best speed.

DFT produces the best result in terms of accuracy and sec-

ond best in terms of robustness, but is also slowest. MIL

produces the least accurate results and second best robust-

ness for the second highest computational cost. Finally

MST produces the least accurate and robust results at the

lowest computational cost.

While accuracy remains at the same level by going from

DFT to EDFT, speed and robustness improve significantly.

Using table 8, we analyze which steps lead to this signifi-

cant improvement. Going from DFT to DFTc, i.e. by using

a symmetric search window and the constant motion pre-

diction, both robustness and speed improve significantly.

Closer analysis shows that the constant motion prediction

is often more accurate and thus fewer local search steps are

required. Also the risk to end up in a local minimum is

reduced.

Replacing DFs with CRs, i.e., comparing DFTc and

CBDF, does not influence robustness significantly, which is

to be expected from the asymptotic equivalence of the two

methods. However, the CR-based approach is significantly

(50%) faster, which is also expected from the theory. Thus,

the observed results can be considered as a positive verifi-

cation of the theoretic findings.

The smoothed motion prediction (18) in EDFT improves

the robustness and speed significantly compared to CBDF.

The improvement can be explained with the same argument

as the improvement when going from DFT to DFTc: The

more accurate the prediction, the fewer iterations are re-

quired (better speed) and the lower is the risk for ending

up in a local minimum (robustness).

Thus, EDFT is superior or equal to all compared meth-

ods in all measures except for speed in the case of MST.

Note that the parameters of EDFT have not been tuned to

the dataset, but have been derived directly from the pro-

posed DFT parameters. Therefore, further performance im-

provement by parameter tuning is possible.

We have also compared other modifications of the algo-

rithm according to [12], using downsampling of the spatial

domain (channel-coded feature maps – CCFMs), Hellinger
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and Euclidean distance, as well as extending to color im-

ages using RGB channels and using cos2 basis functions.

Without giving the details here, all results were inferior to

or at least not significantly better than using dense CRs, the

L1-distances, and B-spline channels.

However, we assume that cross-validation optimization

of parameters might change the relative ranking. The pa-

rameters as obtained from section 2.4 are well suited for the

L1-distance and full resolution, but might be suboptimal for

CCFMs and other distance measures. The poorer perfor-

mance of the color-based variant can also be explained by

the suboptimal parameters and possibly by the color char-

acteristics of the dataset.

4. Conclusion

Visual tracking of objects under varying lighting condi-

tions and changes of the object appearance, such as articu-

lation and change of aspect, remains a challenging problem

with room for improving the state-of-the-art. In the present

paper we have used the theoretic connection between distri-

bution fields, averaged shifted histograms, and channel rep-

resentations to derive an enhanced computational scheme

for distribution field tracking. This enhanced distribution

field tracking method outperforms state-of-the-art methods

in the VOT2013 challenge. It achieves highest accuracy and

robustness at the second highest speed. Future extensions

will address adaptive windows sizes, embedding of color

information, and more adaptive model update schemes.
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