This ICCV2013 Workshop paper is the Open Access version, provided by the Computer Vision Foundation.

The authoritative version of this paper is available in IEEE Xplore.

Enhanced Distribution Field Tracking using Channel Representations

Michael Felsberg
Link6ping University
58183 Linkoping, Sweden

michael.felsberg@liu.se

Abstract

Visual tracking of objects under varying lighting con-
ditions and changes of the object appearance, such as ar-
ticulation and change of aspect, is a challenging problem.
Due to its robustness and speed, distribution field tracking is
among the state-of-the-art approaches for tracking objects
with constant size in grayscale sequences. According to
the theory of averaged shifted histograms, distribution fields
are an approximation of kernel density estimates. Another,
more efficient approximation are channel representations,
which are used in the present paper to derive an enhanced
computational scheme for tracking. This enhanced distri-
bution field tracking method outperforms several state-of-
the-art methods on the VOT2013 challenge, which evaluates
accuracy, robustness, and speed.

1. Introduction

This paper addresses the problem of visual object track-
ing, i.e. local methods of searching for a matching object
in a grayscale image, which is a fundamental step in many
computer vision systems, e.g. visual surveillance and struc-
ture from motion.

The visual matching requires a suitable representation
of the object appearance and the current local image patch.
In [20] the authors propose to compare Distribution Fields
(DFs) of the object and the local image region. The result-
ing DF Tracking (DFT) method outperforms several state-
of-the-art methods.

The particular goal of the present work is to improve
the estimation process of the DFs and the local matching
scheme, in order to improve the overall performance. For
this purpose, we extend DFT in three ways:

A) By careful analysis of the DFT implementation, we
improve the search window selection and the motion pre-
diction computation.

B) Using the theory of Averaged Shifted Histograms
(ASH) [19], we replace the smoothed histograms with a

121

coarse grid of smooth bins as used in Channel Represen-
tations (CRs) [10].

C) For the channel-based method, we systematically de-
rive the parameters that are equivalent to the optimized pa-
rameters of the DFT.

The resulting variants are step-wise compared to the
original DFT algorithm, using the challenging VOT2013
evaluation kit [I]. For each change of the original al-
gorithm, the performance improves. The so proposed fi-
nal version of the algorithm, Enhanced Distribution Field
Tracking (EDFT), is faster than the original method and is
more robust against outliers, while achieving at least the
same accuracy. EDFT compares also favorably to other
state-of-the-art methods on the VOT2013 challenge.

1.1. Related Work

Visual object tracking is based on various aspects in-
cluding appearance representation, motion modeling, ob-
ject modeling, and update rules for all previous aspects. In
the present work we focus on the appearance representation,
which can be in terms of a template or kernel-based. Hybrid
approaches become increasingly common, though.

Template-based approaches make use of intensity val-
ues, color values, gradient information, or other simple fea-
tures in a spatial grid [3]. These methods suffers typically
from outliers, which may be addressed using robust met-
rics [15], and non-smooth objective functions, which may
be addressed by smoothing [14].

Kernel-based approaches, in the simplest case
histogram-based methods, integrate information over
the image patch [5]. These methods are often more robust
than template-based ones, but suffer from ambiguities
caused by the loss of spatial structure [11]. This is miti-
gated by the use of spatially varying kernels or higher order
statistics [4], thus going toward hybrid methods.

Combining spatial structure and kernel-based estimates
in a hybrid approach allows to balance the trade-off be-
tween specificity of the template-based approach and the
sensitivity of the kernel-based approach. Indeed, the reso-
lution of the spatial grid and the bandwidth of the kernel are



strongly coupled and can be recomputed on the fly [6]. In
Distribution Field Tracking (DFT) [20], a method based on
smoothed local histograms, it has been shown that a care-
ful choice of parameters lead to state-of-the-art tracking re-
sults. The computation of local kernel-based features be-
comes very efficient if using integral images, and real-time
performance can be achieved [16].

Smoothed local histograms, or Averaged Shifted His-
tograms (ASH), are closely related to kernel density esti-
mators [19] and smooth histograms, in particular Channel
Representations (CRs) [10]. Due to the frame-properties of
the latter, transformations of the template (rotation, scaling)
can be directly mapped to localized CRs, called Channel-
Coded Feature Maps, which can then be used for tracking
under affine transformations [ 12] — however at a larger com-
putational effort. Similar to frame-based features, wavelet
features such as Haar features have been used successfully,
however not in combination with simple distance measures,
but using boosting techniques [2].

1.2. Contributions

In the present work we concentrate on fast hybrid ap-
proaches for tracking using a fixed size window. In partic-
ular, we extend Distribution Field Tracking (DFT) in three
ways:

e By careful analysis of the DFT implementation, we
improve the search window selection and the motion
prediction computation.

e Using the theory of Averaged Shifted Histograms
(ASH) [19], we replace the smoothed histograms
with smooth bins as used in Channel Representations
(CRs) [10].

e For the channel-based method, we systematically de-
rive the parameters that are equivalent to the optimized
parameters of the DFT.

The resulting method, Enhanced DFT (EDFT), is evaluated
on the VOT2013 Challenge Dataset [1] and is compared to
state-of-the-art methods.

2. Methods

In order to make the paper self-contained, we add short
technical descriptions of the DFT method (section 2.1),
ASH (section 2.2), and CRs (section 2.3). Our contributions
and the EDFT method are explained in detail in section 2.4.

2.1. Distribution Field Tracking

Distribution Field Tracking (DFT) [20] is a visual re-
gion tracking method that is based on comparing smoothed
local histograms of the image patch. Histograms are one

122

of the most simple forms of non-parametric density repre-
sentation. In case of DFT, the image value (grayscale) is
the stochastic variable and its distribution is estimated in
three steps: a) quantizing and binning the value domain;
b) spatial smoothing at different scales; and ¢) smoothing
the bins. Step a) results in a one-out-of b coding d(4, j, k)
(k=1,...,b) of the image I(i,j)

1 ifI(i,j) ==k
0 otherwise

d(i, j, k) M

In the original work it is suggested to use b = 16 quantiza-
tion levels.

The spatial smoothing in step b) makes use of 2D Gaus-
sian kernels A, (i, ) at two scales 05 = 1 and o5 = 2

ds(i,j, k)= (d(-,, k) * ho)(1,7) forallz,j. (2)
The smoothing in step c) makes use of a 1D Gaussian kernel
ho, (k) with oy = 10 (with respect to 255 grayscales, thus
or = 0.625if b = 16)
dss(i, 5, k) = (ds(i, g, ) * ho, ) (k) fork=1,...,b.
3)
The so computed function dss (4, j, k) is denoted as distri-
bution field (DF) in the sequel and its subscript is omitted
for simplifying the notation.

During the tracking, the DF of the template, dyoder, 1S
compared to the DF of a local window in the current frame,
dy, within a local search and a coarse-to-fine strategy. The
distance measure used is the sum of absolute differences,

i.e. the Ly distance between dnodel and dy

Ll(dmodeladf) = Z |drnode1(ia.j7 k) - df(27]7k)| . (4)

4,5,k

The displacement is estimated coarse-to-fine by local search
of the minimum L error within a window of maximum dis-
placement (30 pixels in the original work). When the best-
fitting position has been found, the current template dy,odel ¢
is updated using the current DF d; using linear weights
A = 0.95 for the previous template and (1 — \) = 0.05
for the update

dmodel,tJrl(iaja k) - )\dmodel,t (i,ja k) + (1 - )‘>df (ia ja k)
&)
Due to the density-based comparison, the method is ro-
bust against outliers, and due to the template-update, the
method can also deal with continuous changes of object as-
pects and the lighting. All parameters have been optimized
using cross-validation on a dataset with 11 sequences [20],
which shares 2 sequences with the VOT2013 dataset (david
and face).



2.2. Averaged Shifted Histograms

The construction of DFs combines pooling steps and
weighted averaging. The exact statistical characteriza-
tion of the final descriptor is thus not straightforward, but
falls within the theory of Averaged Shifted Histograms
(ASH) [19]. At each spatial position, the result from (2) in
step b) is a (weighted) histogram. Thus, the bin smoothing
in (3) results in an averaging of histograms.

According to ASH theory [19], asymptotic properties of
density estimates by averaged histograms are superior to or-
dinary hlstograms To start with, a set of m shifted his-
tograms' f1(z), ..., fm(2) with bin-width h is generated,
such that the relative shift is 4 /m. For the unweighted ASH,
the m histograms are averaged in each point

Zfz

The ASH is piece-wise constant in intervals of width h/m.
If we now assume a fine histogram §(x) on these intervals,
we may calculate the ASH from the latter as [18]

(6)

Fasu(z;m)

m—1

-2, (-

i=1—m

1
m

Fasu(z;m) >§($+i) )
Or to put it into signal processing terms, the histogram val-
ues fz are obtained by convolving g with a rectangular ker-
nel of width m, and the ASH is obtained by convolving §
with a triangle-kernel of width 2m — 1 (which is obtained
by convolving the rectangular kernel with itself).

For the weighted ASH, the isosceles triangle in (7) is
replaced with a more general weighting function w,, (¢) > 0
that sums to one

m—1
Z W (1) g(x + 1) .

i=1—m

®)

Fasw(z;m)

Compared to ordinary histograms with comparable compu-
tational effort, the ASH has a lower Asymptotic Mean Inte-
grated Squared Error (AMISE) [18], pp. 119-121. If w,, is
chosen as a Gaussian kernel, the weighted ASH is identical
to the DF feature pooling (3). On the other hand, taking the
limit of infinitesimal narrow bins, we obtain a kernel den-
sity estimator (KDE) if we place the kernel at the n data

samples x;, j € {1,...,n}, see (5.14) in [18]
) , 9

k(G

where K (-/h) is obtained from lim,,; oo Wy (+). Thus, in
expectation values sense, DFs become kernel density esti-
mators.

hm fASH x;m)

'In our text we throughout identify histograms and the corresponding
density estimate since the latter is defined as the relative count divided by
the bin width.
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2.3. Channel Representations

Another efficient method to approximate kernel den-
sity estimators in expectation sense are Channel Repre-
sentations (CRs) [10], also called population codings [17],
a biologically inspired data representation. Regular CRs
have a probabilistic interpretation in terms of smooth his-
tograms [22, 8], i.e., the kernel functions used for binning
the data are smooth instead of rectangle functions. Possi-
ble choices are (besides Gaussian kernels) cos? kernels or
quadratic B-splines [9]. An easily accessible introduction
to the topic is given in [7].

If we assume bin centers with spacing h, the coefficients
of the CR are computed as

17’L
ck:%ZIK(xj/hfk) EeN. (10
=

Thus, CRs are similar to KDEs, but establish a discrete
function over the bin-centers (like histograms) instead of a
continuous function. Therefore, the sum above is evaluated
only once when adding the sample z;, in contrast to KDEs,
where the sum over all ; has to be evaluated for each z.
Thus, CRs are more efficient to compute if the number of
samples is large and the dimensionality is moderate.

CRs are also a limit case m — oo of ASHs, but in-
stead of placing the kernel functions at the samples, they
are placed at the coarse grid of the ASH. From sampling
theory it is known that lowpass-filtered signals can be sub-
sampled without loss of information. In this case, the kernel
function K acts as a lowpass-filter on the underlying distri-
bution (a regularizer) and therefore the coarser grid of the
ASH is sufficient to represent the density with high accu-
racy. In expectation sense, the coefficients in the channel
representation are equivalent to the kernel density estima-
tor evaluated at discrete points [8] and thus the limit of the
ASH

E{cy} = lim fasu(k;m) . (11)

The major practical question in this context is whether CRs
or DFs result in a better, i.e. faster and more accurate,
approximation of a kernel density estimator. Or in other
words: is it better to smooth ordinary histograms or to com-
pute histograms with smooth bins? This question will be
addressed below and for this purpose we will calculate the
CR parameters that are equivalent to the DF parameters as
described above. For this calculation, we need the func-
tional description of the applied kernel function. We chose
a quadratic B-spline over cos? kernels in order to obtain
simpler calculations below:

3/4—1:2 |x] < 1/2
K(z) =< (|| — 3/2)2/2 1/2 < |z| < 3/2 (12)
0 otherwise



2.4. Enhance Distribution Field Tracking

This section contains the main contributions of the
present paper and successively leads to the proposed En-
hanced Distribution Field Tracking (EDFT) algorithm. The
EDFT algorithm is obtained from the DFT method in three
steps, cf. figure 1.

DFT
l constant velocity and
DFTc symmetric window
channel representation
CBDF for computing DF
recursive smoothing of
EDFT motion prediction

Figure 1. Overview of proposed changes and the resulting new
variants of the DFT algorithm.

DFTc In a first step, we improve some details of the DFT
algorithm, resulting in the DFT with constant velocity pre-
diction (DFTc). The original code from the authors extracts
a slightly asymmetric window. This has been corrected in
the DFTc.

For the initialization of the minimization, the original
algorithm uses a prediction based on the correction of the
previous prediction. Instead, the DFTc starts at the posi-
tion predicted by a constant motion model. If the previous
estimated object position (upper left corner of the bound-
ing box) is denoted po1q and the current one as Ppeyw, the
motion prediction my, is given as

my, = Pnew — Pold (13)
so that the predicted position p,, becomes
Pp = Pnew + m, = 2pnew — Pold - (14)

CBDF In asecond step, we replace the explicit histogram
averaging in the DF feature pooling (3) with the encoding
into the equivalent CR (10). The implementation of the CR
is based on the Matlab toolbox (GPL) that is based on [ 3].
The channel-based DFT is denoted as CBDF.

In order to get the CBDF that is equivalent to the DFT
in expectation sense, we choose the bandwidth parameter i
of the CR from the parameters of the DF. Since we consider
only one parameter, we obtain the best approximation by
choosing the same effective variance of the combined ker-
nel. For the DF, this is the Gaussian kernel h,, s (op =10)
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convolved with the original bins used in (1), a rectangle of
width w = 16. Thus we obtain

w/2 w2
= t2) dt = — . (15
Oeff = /t_w/zw O' +t2) —|- 19 (15)
On the other hand, the variance of h™1 K (z/h) is
3h/2 h
/ h=1K(z/h)x?dx = — (16)
3h/2 2

so that the bandwidth (in relation to values =z
{0,...,255}) should be chosen as

h =20 = 4af+——4\/ L 2203 . (17)

However, small variations of ~ have no significant impact
on the final results.

Finally, since the channels with lowest and highest index
are outside the encoded interval, the CR consists of b =
[256/h] + 2 = 14 channels, encoding the interval I,1ue =
[—4.68; 259.68] (the interval of length (b — 2)h centered
around the original interval).

€

EDFT In a third step, we regularize the predicted motion
by a simple smoothing filter. This improves the continuity
of the motion prediction beyond the second frame and helps
to avoid being trapped in local minima. The new predicted
motion my, ,ew is computed from the previous one my, o1q
and the old and new positions (pe1q respectively ppew) as

My new = (mp,old + Pnew — pold) . (18)

2
This simple recursive filter leads to a long sustain of motion
predictions. The resulting method, Enhanced DFT (EDFT)
has exactly the same number of independent parameters
as the original DFT method, with the only difference that
the feature kernel variance o is replaced with the interval
length of I,,14e, implicitly determining the bandwidth pa-
rameter h.

3. Experiments

All considered methods have been evaluated according
to the rules of the VOT2013 challenge as specified in the
VOT2013 evaluation kit document [|]. The authors guaran-
tee that they have exactly followed the guidelines and have
not modified the obtained results in any way that would vi-
olate the challenge rules.

3.1. Dataset and Evaluation

The VOT2013 challenge consists of 16 color image se-
quences with 172 to 770 frames: bicycle, bolt, car, cup,



david, diving, face, gymnastics, hand, iceskater, juice,
jump, singer, sunshade, torus, and woman. The sequences
have been selected to make the tracking a challenging task:
objects change aspect or are articulated, the scale and ori-
entation vary, illumination changes and occlusions occur.
Some example frames are shown in figure 2.

Figure 2. Examples from the dataset: singer, sunshade, torus.

The VOT2013 challenge foresees to evaluate three as-
pects of tracking: accuracy, robustness, and speed. The
speed is computed as the average number of frames that are
processed per second. The robustness is determined by the
failure rate. Each time the tracker fails to achieve at least a
partial overlap, the failure count increases and the tracker is
re-initialized after five frames.

The accuracy is computed from the relative overlap
of the ground truth bounding box and the tracked object
bounding box, i.e. the intersection area of the two bound-
ing boxes divided by their joined area. The accuracy is only
evaluated if the tracking has not failed and therefore even
methods that regularly fail do not necessarily have a poor
accuracy. Accuracy evaluation starts 10 frames after (re-)
initialization.

In total, three different experiments are preconfigured.
Experiment 1, baseline, runs the tracker on the sequences
as they are with ground truth position as initialization. Ex-
periment 2, region noise, runs the tracker as before but with
perturbated initialization (10% of the bounding box size) in
order to test stability with respect to the initialization. Ex-
periment 3, grayscale, repeats experiment 1 after converting
the sequences to grayscale. Since the considered methods
only consider grayscale information, Experiment 1 and 3
are supposed to give the same result. All runs are repeated
15 times, which however only differ if the tracking method
is non-deterministic or for experiment 2.
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3.2. Comparisons

We compare the results of the proposed EDFT method
with three state-of-the-art methods: the original DFT
method [20] as published on the authors’ project page”,
Mean-Shift Tracking [5] as provided by the VOT2013 chal-
lenge, also available at Matlab Central®, and Multiple-
Instance Learning [2], available as OpenCV beta version*.

Since EDFT has been derived from DFT in three steps,
cf. section 2.4 for details, we also evaluate the impact of
each step: a) We compare the original DFT algorithm with
our constant velocity prediction version DFTc. b) We com-
pare DFTc with the, in expectation value sense, equivalent
channel-based algorithm CBDF. ¢) We compare CBDF with
EDFT using its modified motion prediction.

All methods have been evaluated using their standard pa-
rameter settings: The DFT parameters are chosen accord-
ing to the cross-validation optimization [20], the proposed
methods use the same parameters or the equivalent param-
eters as derived in section 2.4. MST and MIL are applied
with the standard parameters as downloaded.

The experimental environment consists of one In-
tel Xeon X5675 (3.07GHz), in a multicore machine
with108GB shared RAM, running CentOS 6.4 64-bit.
All algorithms except for MIL, which is implemented in
C++/OpenCV, are native Matlab implementations and are
executed with Matlab R2013a.

3.3. Results
Table 1. Experiment DFT region_noise
accuracy | robustness | speed (fps)

bicycle 0.46 0.73 8.53
bolt 0.68 4.27 7.87
car 0.42 0.80 9.61
cup 0.70 0.20 7.06
david 0.60 1.07 5.09
diving 0.34 3.87 7.55
face 0.75 0.00 4.70
gymnastics | 0.52 2.93 5.96
hand 0.45 2.73 7.46
iceskater 0.33 1.27 4.54
juice 0.72 1.27 7.03
jump 0.58 0.13 6.70
singer 0.36 0.27 3.17
sunshade 0.59 3.20 6.70
torus 0.73 0.67 7.09
woman 0.61 1.40 7.21

Zhttp://people.cs.umass.edu/~1lsevilla/
trackingDF.html

3http://www.mathworks.com/matlabcentral/
fileexchange/35520-mean-shift-video-tracking

4https://github.com/opencv-gsoc/gsocll_tracking



Table 2. Experiment MST region_noise

accuracy | robustness | speed (fps)

bicycle 0.37 1.93 15.50
bolt 0.45 1.27 11.43
car 0.43 1.00 19.40
cup 0.69 0.00 21.55
david 0.50 2.07 30.69
diving 0.31 6.40 18.17
face 0.67 0.00 15.91
gymnastics | 0.39 8.93 20.61
hand 0.48 0.93 17.30
iceskater 0.55 3.87 25.42
Jjuice 0.63 1.20 23.43
jump 0.54 0.00 17.16
singer 0.44 4.27 21.80
sunshade 0.65 1.80 14.52
torus 0.42 0.87 14.11
woman 0.53 5.53 44.54

Table 3. Experiment MIL region_noise

accuracy | robustness | speed (fps)

bicycle 0.51 0.07 7.49
bolt 0.58 6.87 7.73
car 0.41 0.00 7.68
cup 0.63 0.53 7.89
david 0.48 0.07 8.33
diving 0.36 3.20 8.70
face 0.53 0.00 7.90
gymnastics | 0.53 3.73 9.08
hand 0.42 1.93 7.86
iceskater 0.54 0.07 8.48
juice 0.58 0.00 7.95
jump 0.56 0.27 7.78
singer 0.33 0.00 9.48
sunshade 0.54 2.60 7.76
torus 0.50 3.07 7.78
woman 0.59 3.80 9.72

We perform the analysis on the noisy initialization re-
sults with respect to accuracy, robustness, and speed, see
tables 1, 2, 3, 4, 5, and 6. The baseline/grayscale results are
not further considered because the region noise results are
more significant, see [21] for a detailed argumentation.

The results of the comparison to the state-of-the-art
methods are summarized in table 7 , where mean and me-
dian values for all three measures and the four methods
DFT, MST, MIL, and EDFT are listed for the noisy initial-
ization experiment.

In order to analyze what exactly caused the improved
performance of EDFT compared to the original DFT
method, the intermediate results of each step from sec-
tion 2.4 are summarized in table 8.
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Table 4. Experiment EDFT region_noise

accuracy | robustness | speed (fps)

bicycle 0.44 0.00 18.45
bolt 0.72 0.93 16.28
car 0.42 0.53 17.91
cup 0.73 0.00 14.17
david 0.66 0.40 11.04
diving 0.36 4.07 12.17
face 0.77 0.00 10.58
gymnastics | 0.54 2.60 9.58

hand 0.48 1.47 13.45
iceskater 0.40 3.80 8.78

juice 0.58 0.00 13.60
jump 0.60 0.00 12.90
singer 0.36 0.33 6.04

sunshade 0.62 2.40 11.27
torus 0.76 0.00 14.56
woman 0.60 1.87 14.81

Table 5. Experiment DFTc region_noise

accuracy | robustness | speed (fps)
bicycle 0.44 0.07 12.14
bolt 0.71 1.00 10.75
car 0.42 0.67 11.39
cup 0.73 0.00 9.70
david 0.62 0.67 7.08
diving 0.37 3.40 9.09
face 0.77 0.00 6.39
gymnastics | 0.56 3.13 6.83
hand 0.51 1.73 9.64
iceskater 0.41 3.87 5.27
juice 0.58 0.00 8.93
jump 0.60 0.00 9.10
singer 0.36 0.27 3.81
sunshade 0.63 2.27 8.77
torus 0.76 0.07 10.29
woman 0.59 1.13 8.81

3.4. Discussion of Results

As stated above, due to the higher significance of re-
sults, we only consider the results from the noisy initial-
izations (see also [21]). Whenever a result is characterized
as significant, the p-value of the t-test is below 1%. Strictly
speaking, the p-value larger than 1% only implies that the
null-hypothesis (the results stem from the same distribution)
cannot be rejected at 1% significance level, but we use the
common notion of significant difference if p < 1%. The p-
values have been computed on the basis of single tracking
runs, i.e. 16 x 15 = 240 runs in total.

As it can be seen from table 7, DFT and EDFT perform
significantly better than MST and MIL concerning accu-



Table 6. Experiment CBDF region_noise

accuracy | robustness | speed (fps)

bicycle 0.44 0.00 17.92
bolt 0.68 1.73 15.86
car 0.42 0.60 17.69
cup 0.73 0.00 14.17
david 0.66 0.40 11.28
diving 0.36 3.73 12.63
face 0.77 0.07 10.67
gymnastics | 0.54 2.73 9.18

hand 0.49 1.20 13.40
iceskater 0.40 4.13 8.80

juice 0.58 0.00 13.65
jump 0.60 0.00 12.69
singer 0.38 0.40 6.03

sunshade 0.62 2.80 11.57
torus 0.76 0.07 14.32
woman 0.60 1.87 14.41

Table 7. Summarized results for the region noise experiment, com-
parison to state-of-the-art (best scores in boldface)

method DFT | EDFT | MST | MIL
mean accuracy 0.55 0.57 | 0.50 | 0.51
median accuracy 0.59 059 | 049 | 0.53
mean robustness 1.55 115 | 250 | 1.64
median robustness | 1.17 0.47 1.54 | 0.40
mean speed 6.64 | 12.85 | 20.72 | 8.23
median speed 7.05 | 13.18 | 18.79 | 7.90

Table 8. Summarized results for the region noise experiment, anal-
ysis of the DFT improvements (best scores in boldface)

method DFT | DFTc | CBDF | EDFT
mean accurracy 0.55 0.57 0.56 0.57
median accurracy | 0.59 0.59 0.59 0.59
mean robustness 1.55 1.14 1.23 1.15
median robustness | 1.17 0.67 0.50 0.47
mean speed 6.64 8.62 | 12.77 | 12.85
median speed 7.05 9.01 | 13.05 | 13.18

racy. The accuracy of DFT and EDFT does not differ sig-
nificantly. Similarly, MST and MIL show insignificant dif-
ference of accuracy.

For robustness, EDFT obviously outperforms DFT and
MST significantly. EDFT has a better mean robustness
score than MIL, but MIL has a better median robustness
score than EDFT. In general, a high discrepancy between
mean and median indicates the presence of outliers. Thus,
MIL shows fewer tracking failures than EDFT on the major-
ity of cases, but in the remaining cases, MIL fails more often
than EDFT. This is confirmed by comparing the numbers
for the individual experiments in tables 3 and 4. Applying
the t-test shows that EDFT is significantly better than MIL,
despite MIL having the better median. Quite surprisingly,
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the robustness of DFT and MIL do not differ significantly.

The observation from table 7 that EDFT has up to the
significance level the same accuracy as DFT, but has signif-
icantly better robustness can be explained from the evalua-
tion setup. As argued in section 3.1, the accuracy measure
might even increase in case of growing number of tracking
failures, because the failure cases are not considered in the
accuracy calculation. Thus, EDFT can be considered as at
least as accurate as DFT if both succeed to track, but EDFT
is significantly less likely to fail than DFT.

For the computational speed, all differences are signifi-
cant and MST is fastest, EDFT second, MIL third, and DFT
slowest. Thus, to summarize, EDFT produces the best re-
sults in accuracy and robustness for the second best speed.
DFT produces the best result in terms of accuracy and sec-
ond best in terms of robustness, but is also slowest. MIL
produces the least accurate results and second best robust-
ness for the second highest computational cost. Finally
MST produces the least accurate and robust results at the
lowest computational cost.

While accuracy remains at the same level by going from
DFT to EDFT, speed and robustness improve significantly.
Using table 8, we analyze which steps lead to this signifi-
cant improvement. Going from DFT to DFTc, i.e. by using
a symmetric search window and the constant motion pre-
diction, both robustness and speed improve significantly.
Closer analysis shows that the constant motion prediction
is often more accurate and thus fewer local search steps are
required. Also the risk to end up in a local minimum is
reduced.

Replacing DFs with CRs, i.e., comparing DFTc and
CBDF, does not influence robustness significantly, which is
to be expected from the asymptotic equivalence of the two
methods. However, the CR-based approach is significantly
(50%) faster, which is also expected from the theory. Thus,
the observed results can be considered as a positive verifi-
cation of the theoretic findings.

The smoothed motion prediction (18) in EDFT improves
the robustness and speed significantly compared to CBDF.
The improvement can be explained with the same argument
as the improvement when going from DFT to DFTc: The
more accurate the prediction, the fewer iterations are re-
quired (better speed) and the lower is the risk for ending
up in a local minimum (robustness).

Thus, EDFT is superior or equal to all compared meth-
ods in all measures except for speed in the case of MST.
Note that the parameters of EDFT have not been tuned to
the dataset, but have been derived directly from the pro-
posed DFT parameters. Therefore, further performance im-
provement by parameter tuning is possible.

We have also compared other modifications of the algo-
rithm according to [12], using downsampling of the spatial
domain (channel-coded feature maps — CCFMs), Hellinger



and Euclidean distance, as well as extending to color im-
ages using RGB channels and using cos? basis functions.
Without giving the details here, all results were inferior to
or at least not significantly better than using dense CRs, the
L, -distances, and B-spline channels.

However, we assume that cross-validation optimization
of parameters might change the relative ranking. The pa-
rameters as obtained from section 2.4 are well suited for the
L -distance and full resolution, but might be suboptimal for
CCFMs and other distance measures. The poorer perfor-
mance of the color-based variant can also be explained by
the suboptimal parameters and possibly by the color char-
acteristics of the dataset.

4. Conclusion

Visual tracking of objects under varying lighting condi-
tions and changes of the object appearance, such as articu-
lation and change of aspect, remains a challenging problem
with room for improving the state-of-the-art. In the present
paper we have used the theoretic connection between distri-
bution fields, averaged shifted histograms, and channel rep-
resentations to derive an enhanced computational scheme
for distribution field tracking. This enhanced distribution
field tracking method outperforms state-of-the-art methods
in the VOT2013 challenge. It achieves highest accuracy and
robustness at the second highest speed. Future extensions
will address adaptive windows sizes, embedding of color
information, and more adaptive model update schemes.
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