
 

 
Abstract 

 
Tracking by detection techniques have recently been 

gaining popularity and showing promising results. They 
use samples classified in previous frames to detect an 
object in a new frame. However, because they rely on self 
updating, such techniques are prone to object drift. 
Multiple classifier systems can be used to improve the 
detection over that of a single classifier. However, such 
techniques can be slow as they combine information from 
different tracking methods. In this paper we propose a 
novel real-time ensemble approach to tracking by 
detection. We create a diverse ensemble using random 
projections to select strong and diverse sets of compressed 
features. We show that our proposed ensemble tracker 
significantly improves the accuracy of tracking while not 
using any additional information than that available to the 
single classifier; thus requiring little extra computational 
overhead. Our results also show that employing our 
multiple classifier system with feature subsets gives 
significantly better results than directly combining the 
features. 
 

1. Introduction 
We deal with the problem of object tracking from a 

video stream. Object tracking is an important task in many 
applications such as robotics, surveillance, augmented 
reality and traffic sensing. However, creating a generic 
object tracker is challenging due to the restrictions on time 
and computations, and the lack of information about the 
object and its surroundings. In recent years tracking by 
detection has gained wide popularity in the literature and 
has yielded promising results [1][2][3][4][5]. Tracking by 
detection treats the tracking problem as a binary 
classification task. In each frame a classifier is used to 
classify patches of the scene as object or background. 

Tracking by detection can be performed in an offline or 
online manner. In this paper we are concerned with the 
latter. Offline detection requires training a supervised 
learner beforehand, which will then be used to detect the 
object throughout the sequence. In online detection, the 

tracker is automatically updated in a semi-supervised 
manner using information from previous frames. Online 
tracking is useful for adapting to changes in the object or 
the background. Moreover, it may be necessary if there are 
not enough labeled examples or time to train a supervised 
classifier in advance. However, since this approach is self 
learning (i.e. uses its own predictions for online training), 
tracking by detection is prone to update errors. False 
positives used to update the classifier cause the detection 
to degrade. Moreover, self updating with slightly 
inaccurate detections over time can lead to the tracker 
drifting away from the object into the background. 

Multiple Classifier Systems (MCS) are a machine 
learning paradigm based on building ensembles of 
classifiers to improve upon the performance of a single 
classifier. MCS have been used in tracking by detection 
applications to improve the accuracy and robustness of 
tracking. For example, Boosting can be used to add a 
number of classifiers to form a strong tracking ensemble 
[5][6][7][8]. Visentini et al [9] propose a more flexible 
approach than boosting that constructs an ensemble by 
promoting pairwise disagreement between individual 
classifiers. Other approaches include combining multiple 
learning algorithms or feature sets to exploit different 
information. We will review some of these techniques in 
section 2.   

A key condition to creating a successful classifier 
ensemble is diversity. Diversity, which entails a degree of 
disagreement among different classifiers, provides wider 
knowledge and is more robust due to tolerance to errors of 
single classifier drift. If the classifiers were similar, there 
would be no gained information from combining them. 
Minku et al [10] show that diversity in online learning 
algorithms reduces the error when concept drift occurs, 
and that high diversity is necessary to deal with severe 
drifts.  

 Moreover by assigning classifiers with different areas 
of expertise, classifier ensembles can be accurate in a 
variety of situations and robust to dramatic changes in the 
object or the environment. For example, a common 
problem in tracking is adapting to changes in the object. If 
the model is rapidly adaptive, it may adopt background 
information and so can easily drift. If the model is rigid, 
the object may no longer be recognized when concept drift 
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(change in the object) occurs. Using different experts with 
varying degrees of rigidity can alleviate this problem. 
Nishida et al [11] use an ensemble of online and offline 
classifiers, and a drift detection mechanism to deal with 
concept drift and recurring concepts. The same idea can be 
applied to problems where the environment changes rather 
than the object (such as changes in lighting) rather than 
using one model to fit all situations. 

In this paper we propose a novel approach for real-time 
robust object tracking from video streams. We aim to use 
multiple classifier systems to perform tracking by 
detection that is robust against drift and changes in the 
object. Random projections provide a strong but sparse 
representation of the original signal and so are suitable for 
use in ensemble methods. By using Random, sparse low 
dimensional projections we can build a diverse ensemble 
while maintaining real-time performance. We show that 
our method of creating ensembles satisfies the conditions 
of having strong and diverse classifiers, and is adequate 
for use in a semi-supervised online problem. We 
investigate infusing further diversity to the ensemble by 
changing the speed with which the individual classifiers 
adapt to concept drift. Fusion methods are also 
investigated to maximize the tolerance of the final output 
for individual errors. Quantitative results show that the 
proposed ensemble tracker significantly improves the 
accuracy of single classifier tracking. The results also 
show that employing our multiple classifier system with 
feature subsets gives significantly better results than 
directly combining the features. 

The paper is organized as follows: in the next section 
we survey related work. Section 3 explains preliminary 
concepts and techniques where we explain the theoretical 
hypothesis behind our contribution. Section 4 describes 
the proposed method. In Section 5, we present our 
experiments and obtained results compared to single 
classifiers and the case when features are directly 
combined. Section 6 concludes the paper. 

2. Related Work 
In this section we survey related work, illustrating the 

benefits of employing multiple classifier systems in 
tracking and the necessity of diversity in such systems. We 
also outline the challenges of integrating several models 
for real-time robust tracking.  
 
2.1.1 Multi-Cue Tracking 

 
One form of ensembles used in object tracking is multi-

cue tracking. In this case, multiple feature sets such as 
intensity changes and color maps are extracted and used to 
train the constituents of the ensemble. Triesch et al [12] 
use 5 visual cues to construct ensemble of trackers. The 
decisions of the classifiers are fused using Democratic 

Integration (DI) [13] where all cues agree upon common 
position estimation; and then use this estimation to adapt 
the parameters of the individual cues and redistribute their 
weights in the ensemble. In order for democratic voting to 
yield robust decisions, it is assumed that environmental 
changes in the scene only affect a minority of the 
ensemble. Wu et al [14] also use multiple visual cues 
providing shape and color representations of the object. 
By integrating a number of rough visual cues using co-
inference they achieve a rich representation of the object 
based on the hypothesis that the inference in a higher 
dimensional state space can be factorized by several lower 
dimensional subspaces in an iterative fashion. 

Spengler et al [15] use a multi cue ensemble to achieve 
more robust tracking. They utilized information from 
different sources to train the classifiers constituting the 
ensemble. Each classifier trained by a different cue 
proposes its independent estimation of the target. They try 
both Democratic Integration and Condensation [16] as 
fusion strategies. They report that Democratic Integration 
is sensitive to false positives. Upon the tracking of false 
positives the internal parameters will adjust towards this 
false model. Due to the self-adaptive nature of the system, 
it will continue to accumulate error and not recover. 

Kwon et al [17] use both visual cues and motion cues to 
create a tracking model. Moreover, they employ different 
template models for object representation. A set of 
observation models (or visual cues) is obtained by 
applying various feature extraction methods. Sparse 
principal component analysis (SPCA) is used to reduce the 
dimensionality of the feature sets and encourage diversity 
among the visual template models. Similarly, different 
motion models are employed to deal with smooth and 
abrupt motion of the object.  The observation and motion 
models are combined to produce a number of basic 
trackers which are fused using an interactive Markov 
chain Monte Carlo framework to produce the final tracker. 

 In general, it can be noted that multi cue approaches 
produces robust results due to incorporating different 
information from varying sources. However, it may be 
time consuming due to the need to extract several feature 
groups. For example Kwon et al report that it takes 1-5 
seconds per frame to run the tracker [17].  
 
2.1.2 Multiple Method Tracking 

 
Stalder et al [18] divide the problem into three tasks, 

namely detection, recognition and tracking. Each task is 
assigned to a different classifier. An offline classifier is 
used to reliably find the object of interest. A supervised 
online classifier provides trustworthy recognition. Updates 
are performed conservatively. Finally the tracker employs 
a semi-supervised online classifier that compromises 
reliability to be able to adapt to concept drift. Santner et al 
[19] use trackers with varying degrees of adaptability to 
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cope with concept drift while maintaining robustness. 
Template matching (NCC) is used as a static tracker to 
detect the sample closest to the original object. Online 
Random Forests (ORF) act as a moderately adaptive 
appearance based tracker. A mean shift optical flow 
tracker (FLOW) represents the far end of the adaptability 
scale to adapt to fast appearance changes. The three 
trackers are fused by a rule engine: ORF overrules FLOW 
if it has confidence above a given threshold. ORF is 
updated only if it overlaps with NCC or FLOW to avoid 
wrong updates. 

Siebel et al [20] combine multiple tracking hypotheses 
to track people more robustly. A motion detector is used to 
separate moving objects from the background, and then 
three models cooperate to produce the final tracking 
hypothesis: A region detector for tracking all moving 
regions detected by the motion detector. A head detector 
looks for heads in the detected regions and helps to 
initialize and validate tracking for a person. Finally, an 
active shape tracker detects and tracks the outline of a 
person. 

As with multi-cue tracking, using multiple algorithms 
can be computationally intensive as it usually needs to 
linearly combine the run-time costs of several algorithms. 
To alleviate this problem, Santner et al [19] implement 
their method to run in parallel on multi core GPUs to 
achieve real time performance. 

Contrary to related work, the proposed approach creates 
a diverse ensemble without utilizing multiple tracking 
algorithms or feature extraction techniques.  Diverse 
classifier ensembles are created using only the information 
provided for a single tracker, which saves computational 
time and allows for the possibility of further combining 
the tracker with other approaches. 

3.  Preliminaries 

3.1. Diversity 
Diversity is an important requirement for creating 

successful ensembles since if all the constituents of an 
ensemble are similar then there would be no added benefit 
from combining them. Nevertheless, there is no unified 
method for measuring diversity, or even a unified 
definition for that matter [21]. Some authors try to 
establish, through theoretical analysis or heuristics, the 
importance of diversity in ensembles. For instance, 
Hansen and Salamon [22] show that diversity and 
accuracy of the individual classifiers is essential for a 
majority voting classifier ensemble. By using the binomial 
theorem [], given that all classifiers have a probability of 
correctly classifying an instance �� � ��, and assuming 
that their errors are statistically independent, the 
probability of the ensemble incorrectly classifying and 
instance is given by: 

 
where M is the total number of classifiers, k is number 

of classifiers with incorrect predictions about the sample 
and p is the probability of a wrong prediction by the 
individual classifiers. Using majority voting as a fusion 
rule, more than half the ensemble must be wrong in order 
for the ensembles decision to be wrong. Assuming the 
individual classifiers perform better than random guess, 
the probability for ensemble misclassifications given by 
Eq. (1) is very low for sufficiently large ensembles. As the 
number of classifiers in the ensemble increases, the 
probability for error becomes smaller. This calculation of 
the probability of misclassification is made under the 
condition that the classifiers are statistically independent. 
Such a condition may not be feasible in real applications; 
nevertheless, Eq. (1) gives theoretical backing to the 
intuition that diverse predictors combined by voting will 
improve upon the performance of single predictors. 

In the context of tracking, Li et al [23] make similar 
assumptions and show that the error of a directly 
combined ensemble of classifiers tends to 0 as the size of 
the ensemble grows. Given an ensemble where the 
probability maps of the predictors are linearly combined, 

the decision of the ensemble for sample x is calculated as: 
 
where � is the number of classifiers, �	
���
� � ����� is 
the class prediction of classifier � for sample 
 at frame � � � and ��
���
� is the class output of the ensemble for 
sample 
 at frame � � �. Lemma 1 shows that ��
���
� can 
converge to the ground truth �
���
� exponentially [23]. 
 
Lemma 1. Taking the average of the predictions from all 
classifiers as calculated in Eq(2), the average is bounded 
in a PAC sense. Assuming that the n trackers are 
independent and unbiased, then ��
���
� � ��
���
� as � � �� 
 
Proof. For any small � � � with Hoeffding inequality , we 
get that �����
���
� � �
���
�� � �� �  !"#�� �$%�. 
 

However linearly combining the outputs of the 
classifiers has a large draw back in that a single wrong 
prediction by a classifier can sway the whole ensemble to 
the wrong decision if it has high confidence compared to 
the rest of the ensemble [23]. 
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Studies of diversity extend to multiple classifier systems 
in semi-supervised learning. Co-training is a semi-
supervised learning algorithm that uses two views of the 
data to teach each other in an iterative online manner [24]. 
As an example in a web classification task, features 
extracted from body of the page and features extracted 
from links pointing to the page serve as different cues.  
Blum and Mitchell [24] put forth two requirements for 
successful co-training; firstly that each view should be 
sufficient for classification, and secondly that the two 
views are independent given the class. The requirement 
for independence of the views has been relaxed by Balcan 
et al [25], but nonetheless maintained conditions for 
disagreement between the views in order for the respective 
features to hold complementary information. We will 
further discuss co-training and the ability of random 
feature subspaces to satisfy the diversity conditions for 
multi view semi supervised learning in the next segment.  

3.2. Random Subspace Method 
Random Subspace Method (RSM) is a technique to 

create lower dimensional feature subsets using random 
selection [26]. It was originally designed to split high 
dimensional features among an ensemble of decision trees. 
However, it can be used for feature selection and 
dimensionality reduction in general [27][28]. Breiman 
[29] argues that random forests can be favorable to other 
ensemble creating techniques such as bagging and 
boosting as they are simpler and faster while maintaining 
similar or better accuracy and robustness. An upper 
bound for the generalization error of random forests 
given as [29]:  
 

where :; is the mean value of the pairwise correlation 
between the classifiers and & is the strength (or accuracy) 
of the ensemble. Although the bound is likely to be loose, 
the equation shows that the two ingredients involved in the 
generalization error for random forests are the strength of 
the individual classifiers, and the diversity of the 
ensemble; the higher the strength and the lower the 
correlation, the lower the error of the ensemble [29]. 

Random selection is also proven useful in online semi-
supervised learning. When two sufficient cues are not 
available for co-training, random splitting is employed. 
Nigam and Ghani [30] showed that random splitting can 
be successful if there is sufficient redundancy in the 
original feature space. Moreover, Slivka et al [31] employ 
a random subspace method to create an ensemble of semi-
supervised learners. They show that creating an ensemble 
of co-training classifiers each employing a different 
random split can improve the performance. Even though 
no new features are added but merely the same features 

are split randomly several times, the ensemble is diverse 
enough to improve the performance. 

3.3. Random Projections 
Random projections are a method of projecting a high 

dimensional space to a lower dimensional space while 
preserving most of the information in the original signal. 
The theory relies on the Johnson-Lindenstrauss lemma 
[32] that states that with high probability the distance 
between a pair of samples in a high dimensional space is 
preserved if they are projected onto a randomly selected 
subspace with sufficient dimensions [33]. A random 
matrix R satisfying the Johnson-Lindenstrauss lemma can 
project compressive signals such as images onto a lower 
dimensional space without losing most of the information 
[34]. This allows for the use of robust features in 
detection without the computational cost that comes with 
high dimensional feature spaces. 

A random matrix R of size m × n projects data from an 
m dimensional space to an n dimensional space where n is 
much smaller than m. R is usually a Random Gaussian 
matrix with zero mean and unit variance. However, to 
further reduce the computational cost, a sparser random 
matrix is employed where a member of R, rij is given by 
the equation:  

This matrix satisfies the Johnson-Lindenstrauss lemma 
for s= 2 or 3 [32]. For s=2, half the matrix is zeros and 
therefore half the computations for the projections may be 
ignored. For s=3, two thirds of the matrix is zeros. This 
not only saves computational load but also memory as 
only the non-zero elements of the matrix R are stored. 

4. Proposed Method 

4.1. Ensemble  
4.1.1 Classifier Diversity   
We propose to create a diverse ensemble by using random 
projections to create lower dimensional representations of 
Haar-like features [35]. Haar-like features are often used 
in object detection; however, they occupy very high 
dimensions and are therefore computationally intensive. 
For a single random matrix to maintain the information 
from Haar-like features, the number of projected 
dimensions should satisfy the Johnson-Lindenstrauss 
lemma [32]: 

<= � �:;�� � >%�7>% (3) 
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Zhang et al [33] calculate the lower bound for n to be 1600 
but they report that 50 gives good results for tracking. 

We use multiple random matrices to project Haar-like 
features into lower dimensional features spaces. The key 
to this approach is the ability of the compressed features to 
maintain the information in the original signal in a sparse 
representation. If the projections do not represent the 
original signal, the classifiers cannot be sufficient for 
classification. On the other hand, if we use high 
dimensional projections, all the projected feature subsets 
will carry the same information. Such tradeoff between the 
accuracy and diversity is essential for successful classifier 
combination. For this reason, artificially infusing diversity 
in a classifier may result in poor performance due to 
increased individual error [36]. Random projections 
present good representations of the original signal. 
However, with a low dimensional projection, the classifier 
is very sensitive to the random matrix. The performance 
may vary greatly according to the matrix used (this is clear 
in the results section). This allows us to capitalize on the 
conditions of accuracy and diversity by employing Sparse 
random matrices using Eq (4) to project high dimensional 
features to low dimensional feature spaces (much lower 
than the lower bound of the Johnson-Lindenstrauss 
lemma). The accurate representation of the projections 
guarantees with high confidence the strength of the 
individual classifiers. Additionally the low dimensional 
and sparse nature of the projections provide features 
subsets that are diverse enough to hold different 
information. 
 To further make use of the multiple classifiers, the 
classifiers are updated at different rates. This way each 
classifier has different degree of adapting to change. This 
increases the diversity among the ensemble and enables it 
to robustly deal with concept drift. 
 
4.1.2 Classifier Fusion 
Classifier fusion in tracking is different than fusion in 
other classification tasks in that the ensemble needs to 
agree on a single position for the object. A majority vote 
only considers the best candidate from each classifier and 
neglects the classifier predictions on the rest of the 
selected samples. Owing to individual errors a consensus 
is hard to reach among the best candidates. It is useful then 
to utilize the classifiers’ decisions for more samples in the 
voting process. Direct combination of classifier outputs 
compares the scores of all candidates and selects the 
sample with the highest average score. However, this 
approach is not robust to individual errors as it is sensitive 
to classifier confidences and one confident incorrect 

prediction can mislead the ensemble into a wrong 
decision [23]. 

To overcome these limitations we use a ranking based 
method to combine the classifiers. The 10 most 
confidently predicted samples are selected and assigned 

ranks based on the equation: 

where n is the number of classifiers, C is a constant and �	?  is the position of sample i in the top 10 list for 
classifier j. The lists are ordered in descending order of 
prediction confidence, so the most confident sample is 
assigned position 1 and consequently has the highest rank. 
If a sample i is not present in the list for classifier j then �	?  = C and so it is not assigned a rank by that classifier. 
The Constant C controls how much the position of i in the 
list contributes to the rank. For example J - ��means that 
a sample that is number 1 on the list of only a single 
classifier has a higher rank than a sample that is number 
10 on the lists of 9 classifier. As C becomes larger, the 
number of classifiers that assign i a rank becomes more 
important than its position in the lists.  

After assigning ranks, the sample i with the highest 
rank ,	 is chosen as the new position of the object. This 
way our ranking based fusion is robust against confident 
but incorrect predictions. Even if the individual selections 
for all classifiers are inaccurate, a majority of the 
classifiers can still agree on a sample in their top 10 lists 
and assign it a higher rank than the top candidates. This 
tolerance to error encourages us to add diversity to the 
ensemble at the cost of robustness of individual classifiers 
such as varying update rates, where highly adaptable 
learners are very prone to drift.  

4.2. Algorithm 
We treat the tracking problem as a classification task. 

Given the bounding box for the object in the first frame, 
positive samples are gathered near the object and negative 
samples surrounding the object. These samples are used to 
train multiple classifiers each with features projected from 
a different random matrix. Patches are sampled around the 
previous position and each classifier produces a prediction 
for the detected samples. For each classifier the same 
random matrix used for the training samples is used for the 
detected samples. For classifiers we use the ratio classifier 
in [33]. The outputs of the classifiers are fused using Eq(6) 
to select the final output of the ensemble. 

In frame � � � positive and negative samples are 
generated relative to the position chosen by the ensemble 
in frame � and are used to update the classifiers. The 
predictions of individual classifiers do not directly update 
the rest of the ensemble so there is no risk from the 

 � � K L �  M�% � �N7OP QR S 
 
(5) 

 ,	 - .�J � �	?�8
?  

 
(6) 
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classifiers becoming more similar over time. The sample 
generation step which takes a lot of computational time is 
unified for all classifiers, and the different random 
matrices are generated once at the start of the algorithm, 
so using multiple classifiers adds little computational over 
head to the single classifier approach and runs in real time. 

The pseudo code for our algorithm is shown below. 
 

Algorithm 
 Given: Bounding box B at frame t 
    Array of Random Matrices T - UT�V V T8W 
    Array of Ratio Classifiers X - UX�V V X8W 
 Do: 

� Sample a positive sample set P and a negative 
sample set N with respect to B. 

� Use R to generate n Training sets Y�V V Y8 from P and 
N. 

� Update classifiers X�V V X8 using Y�V V Y8 respectively. 
� In frame � � �sample a set of Image patches D 

around B. 
� Extract feature sets from D using R and use each 

classifier in H to perform predictions on the samples 
in D. 

� Fuse the outputs of classifiers X�V V X8 using Eq(6) 
to produce a rank ,	 for each sample i of D 

 
Output: bounding box of sample i with maximum rank  ,	 

5. Experiments 

5.1. Experimental Setup 
The proposed method is applied on a number of 

benchmark sequences and quantitative evaluation is 
presented. We compare the diverse ensemble approach to 
using a single classifier. A single classifier trained using 
random projections has been shown to compare favorably 
with state of the art tracking techniques in [33]. For a fair 
comparison, since the classifiers are sensitive to the 
random matrix used to extract the features, we use the 
same random matrices used by the single classifier for the 
ensemble. For each experiment, 100 random matrices are 
generated and the single-classifier tracker is run on the 
sequence 100 times each time using a different random 
matrix. The average performance of the runs is reported. 
For the ensemble approach, each classifier is assigned one 
of the 100 random matrices. The experiment is repeated 
until the random matrices run out and the average 
performance is reported. In our experiments we use 
ensembles of size 3, 5 and 10. We also compare our 
approach to a single classifier that uses 10 times the 
number of features used by each classifier in the ensemble. 
This is to evaluate the benefits of using multiple classifier 
systems over directly combining the features. Again the 
experiment is run 100 times and the average is reported. 

For each sequence, the parameters are optimized on the 
single classifier and remain fixed for all experiments on 

the sequence. The parameters for the tracker are Z: the 
radius for drawing positive samples from around the 
bounding box B, [�H�S�M: the inner and outer radius for 
drawing negative samples around B, \ the radius for 
sampling patches to detect the new position of the object, ]: the learning rate for updating the classifiers, where the 
lower the learning rate, the faster the classifier is updated. 
The parameters used for each sequence are provided in 
Table 1. The number of features n for each classifier is 50. 

 
Sequence � � � � � 
David indoors 4 8 30 8 0.9 
Lemming 4 120 150 70 0.9 
Sylvester 4 8 30 20 0.85 
Tiger2 4 8 30 20 0.9 
Cow 4 120 150 70 0.9 
Face 4 8 30 20 0.9 
Twinings 4 8 30 20 0.9 
Sunshade 4 8 30 20 0.9 
Car 4 8 30 20 0.9 

Table 1: tracker parameters for different sequences 
 

The ensemble experiments are carried out one time with 
the fixed � used by the single classifier and another time 
where the learning rate for classifier i is given as ),	 - �V^ �� _̀ �a � �V^�. Where n is the number of 
classifiers. So the learning rates of the classifiers are 
uniformly distributed from 0.5 to �. The experiments are 
also repeated once for C in Eq (6) = 11 to give higher 
weight to the individual classifiers confidence, and once 
with C =100 to give a higher weight to the consensuses of 
the ensemble. We quantify the performance on the 
sequences using a measure of center location error (CLE). 
In this case, the Euclidian distance in pixels between the 
center of the detected bounding box and the provided 
ground truth is calculated. 

All experiments are conducted on an i7-920 2.66GHz 
machine running Matlab on Windows 7. The single 
classifier trackers with n=50 and n=500 run at ~32 and 14 
frames per second (FPS) respectively. While the ensemble 
classifier trackers of size 3, 5 and 10 run at ~25, 20 and 14 
fps respectively. 

5.2. Results 
Table 2 presents the results for our experiments using 

different approaches. The b��c)$de�column shows the 
average error (and standard deviation) for the single 
classifier with n=50. b��c)$dee shows the results of a 
single classifier with n=500. The letter E signifies an 
ensemble; the number following E indicates the size of the 
ensemble. The superscript shows the value of C and the 
subscripts S and D indicate if the learning rate is static 
(fixed for all classifiers) or dynamic (each classifier has a 
different learning rate) respectively. Bold numbers 
indicate the best results and Italics indicate the second best 

117117



 

Sequence b��c)$de b��c)$dee fOg�ee fOg�� fOh�ee fOh�� f^g�ee f^g�� f^h�ee f^h�� f��g�ee f��g�� f��h�ee f��h�� 

David 17.1 13.5 12.3 13.1 13.4 13.5 9.5 10.7 15.2 15.7 9.5 9.4 16.4 14.9 
Lemming 70.6 58.2 46.2 50.5 58.3 55.3 44 39.8 53.8 59.9 27.8 51.3 40.26 42.5 
Sylvester 19.6 13.2 9.3 10.2 15.8 16.3 8.3 8.3 15.9 16.9 7.7 7.9 12.8 14 

Tiger2 17.7 17.2 18.1 16.2 16.5 16.1 17.4 19.1 15.2 16 19.3 19.1 15.7 14.8 
Cow 32.1 30.6 25.9 26.9 27.1 28 29.2 28.6 27.4 27.1 28.7 29.6 28.7 26.5 
Face 27.1 20.3 24.42 25.7 23.7 22.5 22.2 23 23.7 22.5 21.8 20.7 20.5 20.8 

Twinings 11.9 10.3 11.6 11.2 12.8 13 10.7 10.8 11.4 12 9.9 11.1 11.3 11.4 

sunshade 20.3 15.7 11.9 11.7 16.5 18.3 13.8 12.9 16.7 21 12.1 11.4 16.3 18.1 

car 6.6 4 5.4 5.3 5.3 5.2 4.9 5 4.5 4.1 4.9 4.9 3.8 4.1 
Average 

error 24.7 20.3 18.3 18.9 21 20.9 17.7 17.5 20.4 21.6 15.7 18.3 18.4 18.5 

Average 
SD 12.2 7.5 6.9 8.7 8.9 9.8 7.2 6.8 8.5 9 2.5 4.9 6.8 7.7 

Table 2: Center location error (CLE) and standard deviation for single and multiple classifier tracking
 

The results clearly demonstrate the improvement in 
performance when using classifier ensembles compared to 
a single classifier. It is also clear that as the size of the 
ensemble increases, the error is reduced. Table 2 also 
shows that the ensemble approach outperforms directly 
combining the features for a single classifier. This is true 
for all sequences except Face. Moreover, b��c)$dee is 
often outperformed even by ensembles of size 3 and 5 
which use at most half of the features used by the single 
classifier. In very rare cases some ensemble approaches 
are outperformed by the single classifier. For example for 
Tiger 2 sequence, the ensembles with dynamic learning 
rates may degrade the performance while the ensembles 
with static learning rates outperform the single classifier. 
This is attributed to the addition of rapidly adaptive 
classifiers which are not suitable for the dataset and cause 
the tracker to drift towards the background. Therefore, as 
the ensemble grows, the error becomes higher because the 
ensemble is comprised of more classifiers with low 
learning rates. On the other hand the Twinings sequence 
gives better results with dynamic learning rates than static 
ones. Table 2 shows that using more diverse ensembles 
with varying learning rates generally yields better 
performance and has a lower average error than static 
ensembles. However there is no clear pattern 
demonstrating the effect of combining the classifiers with 
different values of C.  
 It is important to note that the standard deviation of b��c)$de is very high compared to that of b��c)$dee. This 
is due to the looser representation provided by the lower 
dimensional projections, which makes it suitable for MCS. 
It is also noteworthy that the ensemble approach 
significantly reduces the standard deviation of the error 
and that it becomes smaller as the size of the ensemble 
increases due to increased robustness to individual errors. 
 Figure 1 shows qualitative results for diverse ensemble 
tracking. Red bounding boxes represent the predictions of 
individual classifiers while green bounding boxes show 
the decision of the ensemble tracker. The results show that  

 
the tracker can adapt to rapid transformations such as 
scaling, rotation and off plane rotation which significantly 
changes the appearance of the object. By observing the 
decisions of the individual classifiers and the fused 
decision, it is clear that the ensemble approach is robust 
against outliers (which may result because the classifier is 
sensitive to the random matrix) and that the final decision 
is more accurate than the average of the individual 
decisions. Moreover, Figure 1 shows that a diverse 
ensemble with different learning rates can cope with 
different situations such as occlusion and 3D rotation. In 
the lemming sequence, the object is totally obscured in 
sample (b); sample (c) shows the target being reacquired 
on its reappearance while one classifier is adapted to the 
background due to the absence of the object. Sample (d) 
shows the highly adaptive classifiers keeping track of the 
object during off plane rotation and scaling while less 
adaptive classifiers drift towards the background. On the 
other hand, in the cow sequence in sample (b), the 
classifiers with low learning rate rapidly adapt to the 
surroundings and drift towards the hand, while the less 
adaptive classifiers keep track of the object accurately. 
This shows that different learning rates enable the tracker 
to cope with different situations and that the ensemble is 
tolerant to faults from different classifiers. 
 

 
Figure 1: Samples for tracking results on 2 sequences.  
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6. Conclusions and Future Work 
This paper proposes a robust multiple classifier 

approach to tracking by detection. The proposed approach 
provides the robustness associated with ensemble  
classifiers without needing additional information than  
that available for a single classifier. The conditions of 
sufficiency and diversity required for training classifier 
ensembles are satisfied by applying different sparse 
random matrices to project feature sets. 

Individual classifier predictions are fused using a rank 
based method that employs the consensus of the ensemble 
members to alleviate independent errors. Quantitative 
experiments show significant improvement in error and 
variance over single classifiers. The ensemble approach is 
also shown to outperform directly combining multiple 
features sets. The tracking ensemble is real time and can 
be further merged with different tracking modules. In the 
future we aim to use the ensemble as a member of a multi 
method tracking ensemble. We also intend to adapt the 
parameters of the tracker automatically to suit the dataset. 
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