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Figure 1: Some colonoscopy images: normal (left) and abnormal (right).

Abstract

Local Binary Patterns (LBP) and its variants are widely
used for texture classification. In this paper we propose a
new variant of LBP descriptor called the extended Gaus-
sian filtered Local Binary Patterns (xGF-LBP) which is ro-
bust to illumination changes, noise and captures more in-
formative edge-like features for classification. Experiments
on a colonoscopy image dataset with 2100 images for bi-
nary (‘normal’ or ‘abnormal’) classification show that the
proposed xGF-LBP descriptor significantly outperforms the
standard LBP descriptor and its considered variants.

1. Introduction

Colorectal cancer is the second leading cause of cancer
death in the world [1]. Adenoma detection rate (ADR), in
terms of lesion detection, is a surrogate marker for quality
of colonoscopy [15]. A reliable image processing system
detecting abnormalities (including polyps, cancer, ulcers,
etc.) in colonoscopy videos would be a useful screening
tool to improve ADR by providing a consistent, repeatable
and quantitative second opinion [13]. Here, we concentrate
on normal-abnormal frame classification, a challenging task
as abnormalities in colon vary in size, type, color, and shape
(Figure 1).

Methods proposed for colonoscopy image classification
are mainly focusing on feature design. Texture, color, shape
and their combinations have been used in colonoscopy im-
age analysis as features. Gray level co-occurrence ma-
trices (GLCM) (e.g., detection of precancerous polyps in
[14]), Local binary patterns (LBP) (e.g. normal vs ab-
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normal colonoscopy image classification in [20]), Texture
Spectrum (e.g. normal-cancer classification in [7]), etc. are
used as texture features. Statistics of color values in dif-
ferent color channels (e.g. color histograms for bleeding
detection in [8]), shape features (e.g., ellipses approximat-
ing contours for polyps detection in [6]) and combination
of color, texture and/or shape features (e.g. Crohn disease
classification in [9]) are also applied for colonoscopy image
classification.

Local Binary Patterns (LBP)[17] is an efficient texture
descriptor. Several variants of LBP have been proposed in
the literature to improve its performance in classification.
Due to its discriminative power and computational simplic-
ity, LBP is proven to be a good descriptor for colonoscopy
image classification and outperforms other considered fea-
tures proposed in the literature for colonoscopy image anal-
ysis [20]. However, the standard LBP and its variants may
not be robust to large illumination changes which often
happens during colonoscopy with lighting source changed
or adjusted. In this paper we propose a new variant of
LBP called the extended Gaussian filtered Local Binary Pat-
terns (xGF-LBP) which is robust to noise and illumination
changes. In our formulation the standard LBP can be con-
sidered as a special case of xGF-LBP. We experimentally
show that the proposed representation not only is robust
to noise and illumination changes but also outperforms the
LBP and its other variants on a colonoscopy dataset with
2100 images.

In the following, LBP and its relevant variants will be
first introduced (Section 2) in order to explicitly compare
with the proposed new feature (Section 3), with quantitative
comparison shown later (Section 4).



2. Local Binary Patterns

LBP[17] as a powerful texture descriptor has been
widely applied to texture classification, face recognition
[5], and medical image classification [20], etc. While
many variations of LBP have been proposed, e.g. uniform
LBP[16] and BlockLBP[12], here we only review LBP and
the most relevant variants.

LBP with N uniform sampling points on a circle of ra-
dius R around a 2D point p. in a gray image I can be de-
fined as:

N
LBPn r(Pc) Z gnx2""Y  where, ¢, = {

ey
1. and I,, respectively represents the intensity values at the
center point p. and the n-th sampled image point. [, is
bilinearly interpolated when the sampling point is not coin-
cided with a pixel coordinate. Since this operator gives 2%
different labels an image can be represented as a histogram
with 2% bins.

To make LBP robust to noise, a three level thresholding
is applied in Local Ternary Patterns (LTP) [22] by the in-
troduction of a user specified threshold 7 (Equation 2). The
histogram representation of an image by LTP is obtained by
splitting each LTP into two LBP and then concatenating the
two LBP-based histograms.

1 IL,>I1.+71
gn(T) = 0 |In—-1I]<7 2)
-1 I, <I.—71

However, LTP may be sensitive to illumination changes.
When a scene illuminated by a single distant light source,
the observed luminance image I(z,y) at point (z,y) can
be approximated as the product of the reflectance image
R(x,y) and the illuminance image s(z,y) [2], i.e.,

I(z,y) = s(z,y)R(z,y) + G(z,y) 3)

An ideal LBP should be robust to the change in illumina-
tions s and the Gaussian noise G. While LTP is robust to
noise with the introduction of the threshold 7, it is sensitive
to the changes in illumination s, where the same threshold 7
(Equation 2) may result in different LTP for an image under
different illumination conditions (see Figure 2(c)).

To handle the variation in illumination, a variant of LTP
called the Scale Invariant Local Ternary Pattern (SILTP)
has been proposed in [11], i.e.,

SILT Py g(Pe,w) = ®N_ b, (w)
where, b, (w) =< 10 I, < (1 —w)l,
00 otherwise

L I, > L
0 In<lI

185

where w is the scale factor and @ denotes concatenation op-
erator of the 2-bit binary strings b,,. Note that SILTP is not
designed particularly for image classification. In fact, the
“2-bit’ codes can be converted to ‘ternary’ patterns to gen-
erate a histogram representation for an image. In addition,
SILTP does not consider the possible effect of noise, i.e.,
the threshold value is fixed to O as in LBP, which may lead
to a representation sensitive to noise (Figure 2(d)).

Different from LBP and its variants, the proposed new
LBP variant, called extended Gaussian filtered local binary
patterns (xGF-LBP), is robust to both noise and illumination
changes by capturing edge-like features.

3. Extended Gaussian-Filtered LBP

We first extend the standard LBP by adding a threshold
parameter 7 and a scale factor w, i.e.,

N
x-LBPN g(pPe, w, T) Z x o1 5)

where,

(’wT)— 1 wxI,—I.>T1
I\ T) =1 0 otherwise

In the extended LBP (i.e., x-LBP), w can account for illu-
mination changes and 7 can account for noise (e.g., Fig-
ure 2(e)). The avoidance of ‘ternary pattern’ in x-LBP
makes it easy and efficient to generate a histogram repre-
sentation for an image as by the standard LBP. In fact, the
standard LBP can be seen as a special case of x-LBP with
w=1and T =0.

(6)

3.1. Effect of parameters

Here we qualitatively show that the proposed x-LBP can
capture edge-like features in an image by approximate pa-
rameter setting. Figure 3 shows a noisy CT brain image and
the x-LBP codes obtained with different parameter settings.
While the standard LBP (Figure 3(f)) codes are very noisy,
changing the threshold values produces a better representa-
tion (Figures 3(e) and 3(g)). Changing both the threshold
and the weights leads to an even better noise-reduced LBP
(Figure 3(b)), with meaningful edge-like features preserved
and noises reduced.

Figure 4 shows a colonoscopy image under two different
illumination conditions (Figures 4(a) and 4(b)) as well as
and its LBP and x-LBP representations. It is clear that the
original LBP codes (second column) are very noisy com-
pared to the x-LBP (last two columns). With appropriate
parameter setting, X-LBP codes are also robust to illumina-
tion variations (e.g., the two very similar x-LBP representa-
tions in the last column).
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(a) Image patches (b) LBP (c) LTP (d) SILTP (e) x-LBP

Figure 2: A demonstrative example for the effect of illumination change and noise on (b) LBP, (¢) LTP (7 = 5), (d) SILTP (w = 0.1), and
the proposed (e) generalized LBP (w = 0.9, 7 = 5). (a) Top:original image patch with 3 x 3 pixels (i.e., s = 1 and G = 0 in Equation 3);
Bottom: the transformed image patch with a different illumination (s = 2) with noise added to the pixels in red. LTP is robust to noise but
not to illumination changes. LBP and SILTP are robust to illumination but not to noise. The proposed x-LBP is robust to both noise and
illumination.

(a) a noisy CT scan image  (b) x-LBP 7 = —15,w = 0.8  (c) x-LBP 7 =0,w =0.8 (d) x-LBP 7 = 15,w = 0.8

e) x-LBP 7 = —15,w =1

() LBP (r =0,

Figure 3: x-LBP of a CT image with different parameter settings.
One LBP code (with range [0, 255]) is generated for each pixel
and represented using a heat map, where color red indicates higher
values and color blue indicates lower values.

(h) x-LBP 7 = 0,w = 0.9

(f) LBP

(e) image (a) under different il-
lumination

(¢) x-LBP 7 = 10,w = 1

Figure 4: x-LBP of two colonoscopy images under different il-
luminations with different parameter settings. (the illumination
changed image (e) is generated by applying a constant illumina-
tion field (s = 2) to the original image (a) according to Equation
3).

3.2. Extended Gaussian-Filtered LBP (xGF-LBP)

Gaussian filtered LBP (GF-LBP) has been proposed [19]
to capture a larger neighborhood information and reduce
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noise effect, where at each sampling point a Gaussian fil-
ter is applied to collect intensity information from an area
larger than the original single pixel. Figure 5 shows an ex-
ample for the generation of GF-LBP, where the local neigh-
borhood is quantized radially into three resolutions (radii),
and at each resolution a set of (N = 8) sampling regions
(indicated as circles) are considered. A LBP code is con-
structed at each resolution by sampling the neighborhood at
the centers of the solid circles, after a Gaussian filter with
standard deviation proportional to the radius of the circle is
applied to each circle’s center [19]. Such a sampling pat-

Figure 5: The Gaussian filtered sampling points.

tern of GF-LBP is similar to the spatial structure of recep-
tive field of human retina, and has been widely adopted in
recently developed visual features in computer vision, like
FREAK [3], BRISK [10], and DAISY [23]. The combi-
nation of the sampling pattern with the proposed x-LBP is
called xGF-LBP.

3.3. Image representation based on xGF-LBP

Denote by c a particular color channel (e.g., ¢ € {1,2,3}
for a color image), and by m a particular resolution (e.g.,
m € {1,2,3} in Figure 5), and by h(c, m) the x-LBP his-



togram of the an image I at the particular ¢ and m (which
can be generated as the standard LBP). Then the image
can be easily represented by concatenating the histograms
h(c,m) of x-LBP over all the resolutions and the color
channels, resulting in the larger-dimensional histogram H
of xGF-LBP. The final image representation is then obtained
as a normalized version of H to make the features from dif-
ferent images to the same scale. Here we apply the L2 and
power normalizations [18]:

vH

H <« ,
([H][,

)

where /H represent the square root operation on each com-
ponent of H. Unlike LTP where the final histogram repre-
sentation of an image doubles the size of the GF-LBP his-
togram, in our case the dimensionality of the final feature
vector is same as in the GF-LBP.

4. Experiments

This section describe the experimental settings and mul-
tiple experimental comparisons between the proposed xGF-
LBP and relevant features in classification of colonoscopy
images as normal or abnormal.

4.1. Experimental setup

The dataset contains 1050 normal and 1050 abnormal
colonoscopy images, where the abnormal images contain
various types of lesions or bleedings (Figure 1). Each
image is rescaled by preserving its aspect ratio such that
the maximum height is 300. For each image, xGF-LBP
is extracted at every pixel in each color channel with
the sampling pattern shown in Figure 5, where a three-
resolution version was used with radii = {1,2.43,5.44}
and 8 sampling points were considered at each resolu-
tion, and 2D Gaussian filters of {(window size = 3 X
3,standard devision = 0.38),(window size =
7 x 7,standard devision = 0.85)} were applied for
the 2" and 3" resolutions respectively [19]. Gaussian fil-
ter is not applied for the first resolution level. Once the
xGF-LBP is extracted, the histogram of xGF-LBP is used
as the representation for the image (see Section 3.3). For
all other LBP variants (including standard LBP and LTP), a
similar process is applied to generate the corresponding his-
tograms for each image. In all the cases the uniform pattern
histogram representation [16] is considered as it captures
some meaningful patterns such as edges, corners, etc. and
reduces the dimensionality of the final histogram represen-
tation.

With the extracted histograms as image features, SVM
classifier is trained (using the LibSVM toolbox [4]) with
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the exponential chi-square kernel:

K (H,,Hy) —exp< VZ > ®)

where H; and H5 are d-dimensional histograms to repre-
sent any two images, and Hy; and Hs; are the i-th compo-
nent for the two histograms. The kernel parameter () and
the regularization parameter (C') of the soft margin SVM are
learned based on a 5-fold cross validation on the training
data. Classification performances are measured based the
percentage of correctly classified images on the test dataset.
Every classification result is based on the average over 10
experimental runs.

le HQ’L
le + H21

4.2. Classification using xGF-LBP

This section evaluates the classification performance of
the poposed xGF-LBP, in comparison with the following
baselines:

(1) LBP: the standard LBP.

(2) LTP: different threshold values 7 € {5, 10, 20, 30} were
tried and the best classification performance was reported.
(3) DoG-LBP: Since the proposed xGF-LBP captures edge-
like features, we also applied DoG-LBP [21], where a
difference-of-Gaussian (DoG) is applied to an image to em-
phasizes the edges and LBP is then computed from the DoG
filtered image. For the two (‘inner’ and ‘outer’) Gaussians
in the DoG filter, both the scale o; of the inner Gaussian
and the scale o5 of the outer Gaussian are chosen from the
set ¥ = {0.25,0.5,1,2}, such that 01 < o;. Any of the
two different window sizes {5 x 5,7 x 7} is tried for both
Gaussians in DoG. The best classification performance was
reported based on the different combinations of scales and
window sizes.

For xGF-LBP, the best performance was reported
based on the different combinations of the thresh-
old = € {-10,-5,0,5,10} and the weight w €
{1.4,1.2,1,0.8,0.6}. The size of the histogram features
for LBP, DoG-LBP, and the proposed xGF-LBP is 531
(3 colors x 3 resolutions x 59 histogram bins), the his-
togram size for LTP doubles (i.e., 1062). For the classifi-
cation, for each experimental run, a set of [V training im-
ages were randomly selected from each of the two classes,
and the remaining images were used for testing, where
N € {50, 100, 200, 300, 400, 500}

Figure 6 shows that the histogram based on the proposed
xGF-LBP gives the best performance (with w = 0.8 and
7 = 0) and significantly outperforms other LBP versions.
LTP gives a better performance (with 7 = 10) than LBP
and DoG-LBP, and DoG-LBP gives the worse result. Table
1 shows the effect of the parameters (w and 7) when 500 im-
ages from each class are considered for training. It shows
that varying the threshold value (r € —10,0,10) when
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Figure 6: Experiments with the proposed XxGF-LBP and other
LBP variants.

w = 1 does not affect the classification performance. How-
ever, varying w results in different performance, with max-
imumly about 3% improvement compared to the standard
LBP. Such improvement may result from the illumination
robustness of the proposed xGF-LBP. During colonoscopy,
the movement of the camera and lighting source inside the
colon may lead to the imaging of the colon mucosa under
different lighting conditions. The next experiment will fur-
ther support the illumination robustness of xGF-LBP.

Table 1: The effect of w and 7 in xGF-LBP (accuracy =+ std)

w

- 1.4 12 1 0.8 0.6
-10 92.1+0.7 | 9204+0.5 | 91.3+0.5 | 90.6 £0.7 | 91.7+ 1.2
0 93.9+1.3 | 9394+0.8 | 91.0+0.5 | 944+0.9 | 93.1+0.6
10 93.0+£0.9 | 91.5£0.7 | 91.0+£0.7 | 921+£0.6 | 91.1 £0.6

4.3. xGF-LBP under different illuminations

This experiment investigates whether the proposed xGF-
LBP is robust to illumination changes, where a set of im-
ages (500 normal and 500 abnormal) were used for classifier
training, but the remaining images were artificially changed
the illumination as the test images. For any original test im-
age I, the illumination-changed image I; is created by mul-
tiplying the intensity values of I by an illumination field s (a
constant illumination field s = X\ was applied for the whole
image) as in Equation 3. The intensity values of I; which
are greater than 255 are cropped to 255. Figure 8 shows
some of the examples with different illumination factors .

With the new illumination-changed test images, the same
experiment as in Section 4.2 were repeated and the re-
sults are shown in Figure 7. One can see that classifica-
tion performance based xGF-LBP is robust (approximately
constant) to different illuminations, while the performance
based on LBP and LTP significantly degrades when the il-
lumination decreases or increases. It is a bit surprise that
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Figure 7: Classification performance of different methods un-
der different illumination conditions.
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Figure 8: An image under different illumination conditions (orig-
inal image is given by A = 1).

LBP performs poorly with illumination changes because in
general LBP is believed to be robust to illumination. Figure
9 uses an exemplar patch to illustrate the possible reason
for the sensitivity of LBP to illumination changes. Figure
9(b) shows the patch 9(a) under a different illumination (the
values are multiplied by 0.5). The pixel values are rounded
to its integer representations to make sure they are in in-
teger set [0,255]. As a result of round-off errors, the the
patches shown in Figure 9(a) and Figure 9(b) give different
LBP representations lead to decrease in classification per-
formance.

18(20| 9 1(1]|0 9 (10|5 111
10(10|7 =) 1 0 5|5 |41 0
11| 9 | 8 1({0]|0 6 (5|4 1i(1]0
(a) a patch and its LBP repre-  (b) illumination changed

sentation version of (a) and its LBP

representation

Figure 9: LBP codes of a patch under different illuminations. The
shaded codes shows the codes which are affected by illumination.

5. Conclusions

In this paper we proposed a new variant of LBP,
called xGF-LBP, which is robust to noise and illumination
changes. Based on the experiments on a colonoscopy image
dataset, we showed that the proposed method outperforms
other LBP variants and robust to illumination changes in the



binary classification task. Future experiments will be focus-
ing on testing the proposed feature on different datasets and
on a dataset which is affected by both noise and illumina-
tion.
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