

Abstract

In the paper we present a method for segmentation of

insects from the Insect Soup images. The method enables
reliable segmentation of insects of variable size, shape
and color. After segmentation, a set of properties are
assigned to each segmented insect which enables
classification into different categories. The approach was
successfully applied on two different types of real life
images: images from the Insect Soup Challenge and
images acquired from traps in the field using low
resolution cameras.

1. Introduction
Insect classification belongs to the same category as

image categorization in computer vision. The problem is
known for being very challenging, and a general solution
does not exist. Categorization is difficult for several
reasons: objects that belong to the same category do not
look exactly the same, they can be viewed under different
angles, they might vary in size, and they can be occluded.
Knowing the position of each object of interest is very
useful information and can be used to support accurate
classification.

In this paper we present a method for segmentation of
insects from the insect soup imagery. The segmentation
method and its extension to handle small and faint objects
are described in the following chapters. Next, examples of
simple classification are given. Finally benefits, issues,
and potential improvements of the proposed method are
discussed.

2. Segmentation Method
Images given for Insect Soup Challenge are of high

quality. The background is reasonably even on most of the
images. Images are mostly noise free and do not require a
lot of preprocessing. The only preprocessing step we do is
applying a statistical filter to all images. The filter sorts
the pixels in a 20x20 patch surrounding each pixel i and
replaces i with the 220th pixel value in the sorted patch. In
this way we remove small objects that mostly represent

noise, we smooth the image and even the background.
Segmentation consists of two steps: coarse-global and

fine-local segmentation. In the first step we use a global
thresholding method. The result of this simple
thresholding is a binary image, where white part
represents the background (see Figure 1b) and black parts
indicate the foreground (insects, bugs etc). Next we
calculate the size and bounding box of each object in the
foreground. We eliminate small objects as these are
mostly noise. For the remaining objects we extend the
bounding box by 30 pixels on each side in order to capture
the whole insect’s body. Finally we apply Seeded Region
Growing Algorithm (SRG) [1] separately for each object,
defined by the extended bounding box. SRG is a robust
and fast algorithm for segmentation. It does not require
any parameter tuning but it does require the input of seeds
for background and foreground. Seeds for the patch within
the extended bounding box are defined as follows. Pixels
on the edge (3 pixels wide) represent samples for the
background and the object itself represents the foreground.
Pixels on the edge that belong to any other foreground
objects are excluded from background seeds. After
applying SRG more details are segmented correctly
compared to the coarse first step segmentation. Results of
both segmentation steps are shown on Figure 1 (b, c). In
Figure 1a, each segmented object is indicated by a
bounding box. Figure 1b shows results after coarse
segmentation, and Figure 1c shows segmentation results
after applying SRG, where comparatively more details are
segmented correctly.

3. Handling small and bright objects
While the majority of objects are not sensitive to the

global threshold value or size of the statistical filter used
in preprocessing, small and bright objects are. Statistical
filtering in the preprocessing step removes small objects
that represent noise. Unfortunately it also removes tiny
insects. To identify regions where small objects are
present, we rerun the segmentation with settings that are
more fitted for small and bright objects. For statistical
filtering we use a 10x10 patch size and we replace the
middle element with the 70th element. The global
threshold is also increased in order to capture bright
objects. After coarse segmentation all objects are slightly

Insect Soup Challenge: Segmentation, Counting, and Simple Classification

Katarina Mele

Computational Informatics, CSIRO
Riverside Life Sciences Centre, 11 Julius Avenue, North Ryde, NSW, 2113

Katarina.Mele@csiro.au

2013 IEEE International Conference on Computer Vision Workshops

978-0-7695-5161-6/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.28

168

2013 IEEE International Conference on Computer Vision Workshops

978-1-4799-3022-7/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.28

168

enlarged. To enlarge objects we use dilation where the
structuring element is disk with radius 10 pixels. Next, we
eliminate objects that include insects detected in first run
of segmentation. In this way we concentrate only on
objects that were not detected in the first iteration of
segmentation. The remaining steps are exactly the same as
those for detecting bigger objects.

A result of this two iteration process is shown in Figure
2. While parameters used for segmentation in the first
iteration fail to identify small insects, parameters for small
and faint objects used in second iteration identify the vast
majority of them.

4. Object properties and classification
Each image in a given dataset consists of several

different types of insects. If we want to distinguish among
them or analyze different visual properties, we have to
calculate a set of descriptors for each segmented insect.
We have chosen a set of standard descriptors (e.g. size,
solidity, minor axis length, major axis length, min pixel
value, average pixel value, eccentricity, perimeter etc.)
which enable us to classify objects into simple classes.
More details about the descriptors can be found in Matlab
help [3]. All the descriptors are exported into Weka files.
Weka is an open source program that enables further data
visualization and exploration using different machine
learning techniques [2].

5. Results and discussion
The only parameter that we need to set for the whole

segmentation process is the global threshold in the first
iteration. It is important that it captures at least part of
each object and at the same time does not capture too
much which can cause merging of two or more separate
objects into one. It turns out that unless we want to capture
very small and bright objects in the first segmentation
iteration, the value of the global threshold does not need to
be set very carefully. The second iteration of segmentation
can often correct errors from first iteration adding objects

that were missed. Figure 3 shows an example of the two
iteration segmentation with different global thresholds
used in the first iteration. We used threshold 400 for the
left side and 600 for the right. Note that we worked with
grayscale images that were obtained from RGB images
simple by summing pixel values from all channels. One
can notice that fewer objects were detected in the first
iteration with lower threshold, and more in the second
iteration. While segmentation with the higher threshold
detected more objects initially in the first iteration.
However, when we combine results from both iterations,
the results are almost the same.

Figure 1: (a) Original image with bounding box around each segmented object. Segmentation is a result of both segmentation steps.
(b) Results after first step of segmentation. (c) Results after second step of segmentation. Insect in the right bottom corner is enlarged
in order to see the difference between the two steps of segmentation. SRG captures more details than simple thresholding.

 (a) (b) (c)

Figure 2: Example of two iteration segmentation. Objects
detected in the first iteration are marked with blue bounding box
while object detected in second iteration are marked with cyan.

Figure 3: Left side of the image is the result of using lower
threshold in the first iteration, and the right side is a result of using
higher threshold in the first iteration. Blue bounding boxes are
results of first and cyan of second iteration.

169169

The second iteration of segmentation is designed to
capture small and faint objects. Its global threshold is
fixed to value 700. As insect extremities are usually very
faint and thin, they are not captured in the segmentation
results of the first iteration. However, they are often
picked by second iteration and marked as tiny insects. (For
example, see the two insects in the top right corner of
Figure 2). These examples represent the majority of false
positives and can be eliminated using similar procedures
used for neurite detection. In a similar way that neurites
are attached to the cell body of a neuron, insect extremities
are attached to an insect’s body. For example HCA-vision
[4] enables reliable analysis of such data. Once extremities
are identified we can easily eliminate false positives that
represent insect extremities and not small insects.

The plate shown in Figure 4 is a very hard example for
automatic image analysis. Insects are close together and
there are many examples where they are touching

oroverlapping. A lot of debris is present in the plate, such
as broken wings and other insect parts. The trap was most
likely in the field for a longer period, and insects probably
got damaged when they tried to escape from the trap, or
their bodies decayed over time. One of the solutions to this
problem is to change the sticky plate before it gets too
crowded and the insects’ bodies decay, which would make
image analysis easier and more accurate. One can notice
that the majority of insects with dark bodies are segmented
correctly while insects with bright bodies are missed on a
lot of occasions. The reason for this is that regions at the
global segmentation in the second segmentation iteration
are not separated and they merge together. As it is likely
that part of the merged region was already detected in the
first iteration the whole region is simply discarded. This is
not a problem for isolated small/faint insects which are
mostly correctly detected in the image.

More results of the two iteration segmentation are given
in Figure 5 and supplementary material. Note that accurate
segmentation also enables trivial counting of objects in the
plate.

Examples of simple classifications are shown in Figure

6. Figure 7 shows segmentation examples from low
resolution cameras. It also indicates basic classification
where we eliminate false positives (marked with yellow).
The lure was also segmented but successfully removed
based on color. False positives were removed based on
size and shape.

An example of data exploration using Weka is shown in
Figure 8. The example shown here is for the image
depicted in Figure 5 (middle image). We can see that that
solidity separates insects into two groups – two peaks in
the graph (Figure 8, left bottom corner). Solidity is a scalar
specifying the proportion of the pixels in the convex hull
that are also in the region. When we looked into the two
classes we noticed that the generated masks for one class
are much more precise than masks for the second class.
We cannot classify the insects based on this knowledge
however we can guide the whole classification process
towards more accurate results. Masks with solidity close
to 1 are mostly outliers – they fill the whole bounding box
and look more like a square than an insect.

Figure 4: Example of a very challenging plate for automatic
image analysis.

Figure 5: Three examples of two iteration segmentation. The method can successfully deal with vast variety of sizes as well as with
certain degree of clutter. In the last image even beetles that are close together are correctly separated.

170170

6. Conclusion
We presented a method for segmentation and simple
classification of insects from insect soup images. While
the method is able to reliably segment and count most of
the reasonably sized insects in the images, it can be
improved when it comes to crowded regions with a lot of
small and bright objects. Calculated descriptors enable a
basic classification according to visual similarity; however
this can be improved by incorporating domain specific
knowledge. The system is a great foundation for a
sophisticated automated system that would enable an
automatic or semiautomatic classification of insects caught
in traps and significantly speed up the sorting and
cataloguing of insects from the insect soup imagery.

References
[1] R. Adams, L. Bischof Seeded region growing IEEE Trans.

Pattern Anal. Machine Intell., 16 (6): 641–647, 1994.
[2] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,

I. H. Witten; The WEKA Data Mining Software: An
Update; SIGKDD Explorations, 11(1), 2009.

[3] MATLAB 2013a. The MathWorks, Inc., Natick,
Massachusetts, United States.

[4] D. Wang, R. Lagerstrom, C. Sun, L. Bischof, P. Vallotton,
and M. Götte, HCA-Vision: Automated Neurite Outgrowth
Analysis, Journal of Biomolecular Screening, 15(9):1165-
1170, October 2010.

Figure 7: Example of a simple classification based on size (left image) and based on average color (right image). In the left image
larger objects are marked with red bounding box, while smaller objects are marked with blue bounding box. In the right image
darker insects are marked with blue bounding box and brighter with red bounding box.

Figure 6: Examples of segmentation and object classification of images from low resolution cameras.

Figure 8: Masks classification based on solidity. Red squares
represent masks with high solidity (>0.75) and the blue one
masks with low solidity value.

171171

