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Abstract

Automatic analysis of rodents behaviour has received
growing attention in recent years as rodents are the refer-
ence species for large scale pharmacological and genetic
screenings. In this paper we propose a new method to
identify prototypical high-level behavioural patterns which
go beyond simple atomic actions. The method is embed-
ded in a data mining pipeline thought to support behavi-
oural scientists in exploratory data analysis and hypothesis
formulation. A case study is presented where the method
is capable of learning high-level behavioural prototypes
which help discriminating between two strains of mouse
having known differences in their behaviour.

1. Introduction and Related Work

As already observed in many other disciplines, an in-
creasingly wide quantity of data is being collected in many
sectors of biological sciences. In particular, this has been a
challenge in reference to the recent generation and study of
an enormous amount of genetically modified mice around
the world. While this opens huge opportunities for under-
standing the specific mechanistic role played by gene and
gene mutations, scientists have to face new challenges to
analyse them, especially when relevant information can-
not be captured by simple statistics. This is often the case
when dealing with complex phenomena such as relations,
sequences, co-occurring events or repetitive patterns, es-
pecially if they are evolving over time. This observation
calls out for new advanced methods for data mining which
can support scientists in the stage of formulating new hypo-
theses. We hereby propose a method to support behavioural

scientists in the complex task of understanding important
traits of mice behaviour. This is achieved by summarising
with an intelligible representation the statistical structure
automatically extracted from the data.

While large datasets are required to evaluate behaviours
in a statistically significant way, extensive video footage
poses serious issues to be solved. First of all, the enorm-
ous amount of time required for watching wide video col-
lections makes it impractical in most cases. For this reason
the experiments are commonly confined to short time inter-
vals. Secondly, it is almost impossible to evaluate complex
phenomena like the occurrence of specific behavioural pat-
terns by simply watching a video, especially if they extend
over long time periods. Except for simple cases, mathemat-
ical formalism is needed to capture this type of information
which might otherwise be lost.

The interest of both the computer vision community and
the biological scientists in automatic analysis of mouse be-
haviour is witnessed by the increasing number of publica-
tions appearing in the field. Jhuang et al. [6] presented a
computer vision system trained to recognise eight types of
actions from video recordings of single mice living in their
home cage. Burgos-Artizzu et al. [2] proposed a system to
automatically recognise thirteen different actions relevant
to mouse social interactions. In this case the dataset con-
sists of a large collection of 10-minute videos showing two
interacting mice. Weissbrod et al. [13] went beyond that
and combined computer vision and a radio-frequency iden-
tification system to obtain actions of both individual mice
and groups while interacting. Giancardo et al. [5] presented
a machine learning system for mouse tracking capable of
finely quantifying social and non social behaviours of mul-
tiple mice interacting for long periods of time.

2013 IEEE International Conference on Computer Vision Workshops

978-0-7695-5161-6/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.33

197

2013 IEEE International Conference on Computer Vision Workshops

978-1-4799-3022-7/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.33

197



Figure 1. Pipeline of the proposed method. In order to address behavioural studies of different kind, action classification is considered as
an independent module. Different action classification systems could be used for different studies. Detailed descriptions of each module
are provided in Section 2.

While the common trend is focusing on single actions,
the importance of behavioural patterns composed by a set
of actions should not be overlooked. Many examples can
be found in nature and one is the honeybees waggle dance.
While the single actions of turning left and right carry no
meaning if considered by themselves, the dance as a whole
indicates direction and distance of new food sources. Be-
havioural patterns have also been investigated in ants by
Reznikova et al. [12] who considered how simple actions
(or behavioural units) are combined in hunting routines.
Looking for patterns of actions is therefore important and
can give a richer interpretation of the observed behaviours.
This is especially true when studying phenomena linked to
social interaction in animals. For this reason, we expect
that fragmenting mice behaviour in single actions might res-
ult in a loss of information. Moreover, sequences of ac-
tions [8] and the repetition of behaviours [9] are important
to highlight important features of animal behaviour which
cannot be captured by analysing single actions independ-
ently. The work by de Chaumont et al. [3] goes in this
direction as some of the events detected by the proposed
system are the concatenation of two different elementary
actions. In addition, the authors report an analysis of the
transitions between successive actions as performed by two
mouse strains and show the emergence of different patterns.
While interesting, this work still focuses on single actions
(or sets of two actions) which are codified in the system. An
attempt to gain flexibility is the work proposed by Kabra et
al. [7] where actions are not built into the model but learnt
at runtime on the basis of what the experimenter annotates
as interesting. This allows to perform a considerably wider
variety of analyses but still requires knowledge about what
behaviour the scientist is interested in.

In this paper we propose a method aimed at moving bey-
ond these works by inferring behavioural prototypes span-
ning long time periods without any human intervention.
This is especially useful both when interesting behavioural
patterns can only be appreciated over long time intervals,
and when such behaviours are not known a priori. Spe-
cifically, we present a pipeline for exploratory data analysis

in mice behavioural experiments. Such behaviour-oriented
data mining could be very useful to get a first understanding
of the data and can guide the formulation of hypothesis and
the subsequent design of further experiments.

The core of the method is represented by a Bayesian
Nonparametric model (a Dirichlet Process Mixture of Mul-
tinomials) which is able to find an appropriate collection of
behavioural prototypes in a completely unsupervised way.

These prototypes are then used to characterise mice be-
haviour and present the user with a high level aggregation
of the data capturing salient behavioural features.

The paper is structured as follows: methodological de-
tails are provided in Section 2. A case study applying our
pipeline to look for known behavioural traits of autism in
mouse models is presented in Section 3, followed by con-
cluding remarks in Section 4.

2. Behaviour Analysis with Dirichlet Process
Mixtures

We assume that there exist a collection of prototypical
behaviours that mice follow with some variation. The hy-
pothesis is that mice follow these behaviours in different
proportions and that the way of mixing them is useful to
characterise important traits of the mouse itself.

Such behaviours must necessarily be at a higher level of
abstraction than atomic actions in order to capture richer
information. For this reason, behavioural patterns are
commonly represented by neuroscientists as histograms of
atomic actions over the entire experiment. In order to
achieve a finer level of granularity, we compute histograms
of actions over shorter time windows whose length is signi-
ficant for the observed phenomena (see Sec. 3 for details).
Underlying this choice is the assumption that the sequence
of the behavioural prototypes is important, while the se-
quence of atomic actions is not stable enough to carry high-
level significant information.

While we assume that a collection of behavioural proto-
types exists, we do not impose any constraint on their shape
or number. In particular, we allow such collection to include
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potentially a countably infinite number of behaviours. To
do so, we build a Bayesian Nonparametric model capable
of inferring both the appropriate number of prototypes and
their shape. Given the specific formulation of the problem,
the model used is a Dirichlet Process Mixture of Multino-
mials. Even though alternative models like K-means exist,
they would require to fix the number of the behavioural pro-
totypes beforehand. This is a strong limitation as the choice
would necessarily be arbitrary and could cause wrong res-
ults. Figure 1 presents the pipeline of the proposed method.
Each stage is described in detail in the following sections.

2.1. Action Classification

Behaviours are considered to be high-level entities ob-
tained by aggregating lower-level atomic actions. Any ac-
tion classification system can be used in our pipeline which
is independent of its specific formulation. For the experi-
mental part of this work we relied upon the method by Gi-
ancardo et al. [5]. What happens briefly is that in each ex-
periment a group of four mice is placed in an open arena and
their activity is recorded for about one hour with a thermal
camera. Individual mice are tracked and frame-by-frame
action labelling is performed by a classifier (random forest)
working on a pool of features. These include relative dis-
tance between mice, mice shape and movement measure-
ments. For further details please refer to [5].

A set of eight actions of interest are recognised by the
system. Six of them focus on the following social inter-
actions: nose-to-body, nose-to-nose, nose-to-back, mouse
above another mouse, mice standing together, mouse fol-
lowing another mouse. The remaining two actions pertain
mice not interacting with others: walking alone, standing
alone.

2.2. Building Behaviour Descriptors

Once action classification has been performed on a
frame-by-frame basis, behaviour descriptors are obtained
for each mouse. This is done by computing histograms of
atomic actions over overlapping time windows spanning the
whole video recording. The length of these time windows
is fixed according to the phenomena scientists want to ana-
lyse. The amount of overlap is chosen to avoid introducing
artefacts due to the specific time slicing.

2.3. Inferring the Behavioural Prototypes

As previously mentioned, a Bayesian model is built to
describe the generative process of the observed behaviours.
Since behaviours are described as histograms of actions, it
is natural to model them as Multinomial distributions.

From a generative point of view, we assume that there
exist a possibly infinite mixture of Multinomial distribu-
tions (each one representing a behavioural prototype) from

which observations (i.e. actions) are generated. The histo-
grams obtained as behaviour descriptors can hence be seen
as empirical estimates of the parameters of the Multinomial
representing the latent behaviour. The generative process is
outlined in Figure 2. Thanks to the Dirichlet Process [4],
the number of mixture components is unbounded [1] and is
found during inference along with their parameters.

Inference is performed by Gibbs sampling [11] and
the details of the specific algorithm are presented in Al-
gorithm 1. Basically all the behavioural descriptors are
considered as observations and the Gibbs sampler finds the
mixture of Multinomial distributions which is needed to ex-
plain the observed behaviours. This is done by iteratively
sampling the assignment of observation to mixture compon-
ents on the basis of the conditional distributions ci|c−i, yi,
where ci is the assignment of observation i, c−i is the as-
signment of all the observations except for i, and yi is the
value of observation i. Specifically, the probability of as-
signing observation i to component c given c−i, yi is

P (ci = c|c−i, yi) = b
n−i,c

N − 1 + α

∫
F (yi, φ)dH−i,c(φ)

(1)
while the probability of generating a new component c∗ as-
sociated to observation i is

P (ci = c∗|G0(φ), yi) = b
α

N − 1 + α

∫
F (yi, φ)dG0(φ)

(2)
where b is a normalising constant which can be ignored in
the computation, n−i,c is the number of observations as-
signed to component c except for observation i, N is the
total number of observations, α is the concentration para-
meter of the Dirichlet Process, F (yi, φ) is the likelihood of
yi given the parameters of the associated mixture compon-
ent, G0(φ) is the prior over the mixture components’ para-
meters and H−i,c is the posterior over parameters φ given
the prior G0 and all the observations associated to compon-
ent c except for i.

In our specific parametrisation we have that F (yi, φ) ∼
Multinomial and G0(φ) ∼ Dirichlet. Thanks to con-
jugacy of these two distributions we obtain that H−i,c ∼
Dirichlet and that the integrals in equations 1 and 2 admit
a closed form solution.

It is important to underline that the model is completely
unsupervised and is hence suitable to perform data mining
in situations like the one described, obtaining relevant in-
formation from data without imposing any constraint a pri-
ori.

2.4. Visualisation

In order to make the obtained behavioural prototypes
useful, a proper visualisation needs to be presented to
the scientists interested in the analysis. The visualisation
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Figure 2. Outline of the data generation and inference processes. The data generation process describes how actions are generated from
the collection of behavioural prototypes. The proposed method deals with the inference process estimating the latent behavioural patterns
from the observed actions.

Algorithm 1: Gibbs Sampler
i observation index
t iteration index
yi value of observation i
c component index
c∗ index of new component
ci component assignment of obs. i
c−i component assignment of all the obs. excluding i
n−i,c number of obs. assigned to comp. c except for i
N number of observations
T number of iterations
Kt number of mixture component at iteration t
ci|c−i, yi distribution of ci given c−i and yi
◦ is the conditioning set c−i, yi
• is the conditioning set G0 (φ) , yi

for t = 1 . . . T do
/* Sample observation-to-component

assignment */
for i = 1 . . . N do

if Observation i is the only one associated to
component c then

Remove component c from the current mixture
model

for c = 1 . . .Kt do
P (ci = c|c−i, yi)← eqn. (1)

P (ci = c∗|G0(φ), yi)← eqn. (2)

Draw a new value for ci from the conditional
distribution ci|c−i, yi ∼ Discrete with parameters
(P (ci = 1|◦), . . . , P (ci = Kt|◦), P (ci = c∗|•))

if ci = c∗ is picked then
Add a new component to the mixture model

should be customary to the specific task, but in general
colour coding of the behaviours can help understanding
whether specific patterns tend to appear.

3. Experiments and Results
In order to evaluate whether the method is able to detect

different types of behaviour, we analysed recordings com-
ing from two different strains of mice: C57B/6J (commonly
used as the reference background strain in genetically mod-
ified mice) and BTBR T+tf/J (a mouse model of autism-like
behaviours). The two types of mice are known to have dif-
ferent behaviours [10] and serve well to our purpose. In par-
ticular, when compared to C57B/6J, BTBR T+tf/J mice are
known to show repetitive and stereotyped patterns of beha-
viour and high inactivity levels [10]. A decreasing motility
over time is also reported [6].
In order to test our system, a dataset with recordings from
BTBR T+tf/J and C57B/6J has been used. Basically, four
mice of the same strain were placed in an open-field arena
and recorded for one hour with a thermal camera at 30 fps.
Two cages of each strain were involved in the study, each
having four mice. Every mouse was tracked and frame-
by-frame action labelling was performed by the automated
classifier. The obtained action labelling is taken as an in-
put to find the behavioural prototypes. While Giancardo et
al. [5] focused on atomic actions, in this work we go bey-
ond that and focus on behavioural patterns. These patterns
capture richer information than single actions through their
distribution, which can express important aspects concern-
ing how the animal is modifying its behaviour.

As a first stage, action histograms (i.e. our behaviour
descriptors) are computed over 5-minute time windows
sliding over the entire sequence with a 75% overlap between
consecutive ones. This period of time has been chosen in
order to capture interesting aspects of mice behaviour while
avoiding the huge variability that would have been obtained
considering shorter intervals. The high overlap, on the other
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(a) BTBR cage 1 (b) C57B/6J cage 1

(c) BTBR cage 2 (d) C57B/6J cage 2

(e) Behavioural Prototypes

Figure 3. Results obtained by analysing the behaviours of BTBR and C57B/6J mice. 3(a)-3(d) show the classification of the behaviour of
16 different mice. Each line represents the recording of a single mouse and is divided in coloured squares representing the 5-minute time
windows used for computing the behavioural descriptors. Each square is assigned the colour of the behavioural prototype associated to the
time window. 3(e) shows the inferred behavioural prototypes.

hand, reduces the importance of the specific windowing and
the likelihood of introducing artefacts due to the particular
splitting.
Once the behaviour descriptors are computed for each
mouse of each experiment, they are pooled together as the
observations coming from the Mixture of Multinomials.
The Gibbs sampler is then run on these observations in order
to find the behavioural prototypes. Since the percentage of
time spent by mice in performing the eight different actions
is considerably different, the Dirichlet prior over the Mul-
tinomial parameters is built to reflect this imbalance. The
results presented have been obtained setting α (see eqn.1
and 2) to 1 to favour the emergence of a compact set of pro-

totypical behaviours.

Figure 3 reports the obtained results. Figures 3(a)-3(d)
represent four different experiments which were considered
in the analysis. Each line within the plots represents the
complete recording of a single mouse and is composed by
a sequence of coloured squares representing the 5-minute
time windows. Such squares are colour coded on the basis
of the behavioural prototypes they are associated with (see
Figure 3(e)). The prototypes are ordered so that the ones
with a higher proportion of motion-related activities (walk
alone and following) are on the red end of the colour-map,
while the blue end is associated to more static behaviours.

As previously discussed, the aim of the work is finding a
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set of prototypical behaviours which can help neuroscient-
ists finding interesting and recurrent patterns in animal be-
haviour. As a case study we analysed the recordings from
BTBR T+tf/J and C57B/6J mice as they present demon-
strated and clear differences in behavioural patterns (e.g.
repetitive stereotypical behaviours and high inactivity levels
in the BTBR T+tf/J strain).

By analysing the behaviour classification in Figure 3 we
can observe the following:

1. The behaviour of BTBR mice tends to be more homo-
geneous (cross experiment) w.r.t. that of C57B/6J.

2. BTBR mice show a short initial period of high motility
(characterised by the red colours) and then are more
static and inactive (blue prototype characterised by
high percentage of Stand Alone action i.e. inactivity).
C57B/6J mice, on the other hand, have considerably
higher motility throughout the whole recording.

3. BTBR mice tend to be more repetitive as shown by
the fact that they keep performing the same behaviour
for longer periods of time (i.e. the lines show longer
segments with constant colour).

These three observations are basically revealing the charac-
terising traits of the two mouse strains previously described.
This suggest that the presented method is capable of finding
behavioural prototypes capturing important and discrimin-
ating aspects of mice behaviour.

4. Discussion and Future Work
In this paper a pipeline to support behavioural scient-

ists in data mining and exploratory data analysis has been
presented. By modelling behaviours at a higher level of ab-
straction with respect to single actions, the proposed meth-
odology aims at capturing richer information than other pre-
vious systems performing automatic classification of single
independent actions. Being based on a Dirichlet Process
Mixture, the model can infer behavioural prototypes in a
completely unsupervised way, learning both their number
and their shape from data.

A case study has been considered to evaluate whether the
method could highlight differences in the behaviour of two
strains of mouse. As reported in the experimental section,
the inferred behavioural prototypes allow to visually assess
the presence of traits characteristic of the autism-relevant
BTBR mouse model. This result suggests that the method
is capable of extracting interesting structure from the data
and aggregating it in a way which is useful to scientists.

Given the promising results obtained, future work will be
aimed at evaluating the method in other data mining tasks
on behavioural experiments. Moreover, given its flexibility,
the model could be tested in other domains characterised by
phenomena evolving over time.

In conclusion, this new system might provide a new and
highly effective tool in the assessment of complex behavi-
oural patterns, applicable in large pharmacological and ge-
netic screenings in mouse studies.
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D. Scheggia, F. Papaleo, and V. Murino. Automatic Visual
Tracking and Social Behaviour Analysis with Multiple Mice.
PLoS ONE, 8(9), September 2013. 1, 3, 4

[6] H. Jhuang, E. Garrote, X. Yu, V. Khilnani, T. Poggio, A. D.
Steele, and T. Serre. Automated Home-Cage Behavioural
Phenotyping of Mice. Nature Communications, 1, Septem-
ber 2010. 1, 4

[7] M. Kabra, A. A. Robie, M. Rivera-Alba, S. Branson, and
K. Branson. JAABA: Interactive Machine Learning for
Automatic Annotation of Animal Behaviour. Nature Meth-
ods, 10(1), January 2013. 2

[8] J. Kain, C. Stokes, Q. Gaudry, X. Song, J. Foley, R. Wilson,
and B. de Bivort. Leg-tracking and Automated Behavioural
Classification in Drosophila. Nature Communications, 4,
May 2013. 2

[9] M. Langen, M. J. Kas, W. G. Staal, H. van Engeland, and
S. Durston. The Neurobiology of Repetitive Behavior: Of
Mice. . . . Neuroscience and Behavioural Reviews, 35:345–
355, 2011. 2

[10] H. G. McFarlane, G. K. Kusek, M. Yang, J. L. Phoenix, V. J.
Bolivar, and J. N. Crawley. Autism-like Behavioural Phen-
otypes in BTBR T+tf/J mice. Genes, Brain and Behaviour,
pages 152–163, 2008. 4

[11] R. M. Neal. Markov Chain Sampling Methods for Dirich-
let Process Mixture Models. Journal of Computational and
Graphical Statistics, 9(2):249–265, June 2000. 3

[12] Z. Reznikova, S. Panteleeva, and Z. Danzanov. A New
Method for Evaluating the Complexity of Animal Behavi-
oural Patterns Based on the Notion of Kolmogorov Complex-
ity, with Ants’ Hunting Behavior as an Example. Neurocom-
puting, 84:58–64, 2012. 2

[13] A. Weissbrod, A. Shapiro, G. Vasserman, L. Edry, M. Dyan,
A. Yitzhaky, L. Hertzberg, O. Feinerman, and T. Kim-
chi. Automated Long-Term Tracking and Social Behavioural
Phenotyping of Animal Colonies within a Semi-Natural En-
vironment. Nature Communications, 4, June 2013. 1

202202


