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Abstract

This paper presents a novel stereo-based visual odom-
etry approach that provides state-of-the-art results in real
time, both indoors and outdoors. Our proposed method
follows the procedure of computing optical flow and stereo
disparity to minimize the re-projection error of tracked fea-
ture points. However, instead of following the traditional
approach of performing this task using only consecutive
frames, we propose a novel and computationally inexpen-
sive technique that uses the whole history of the tracked
feature points to compute the motion of the camera. In
our technique, which we call multi-frame feature integra-
tion, the features measured and tracked over all past frames
are integrated into a single, improved estimate. An aug-
mented feature set, composed of the improved estimates, is
added to the optimization algorithm, improving the accu-
racy of the computed motion and reducing ego-motion drift.
Experimental results show that the proposed approach re-
duces pose error by up to 65% with a negligible additional
computational cost of 3.8%. Furthermore, our algorithm
outperforms all other known methods on the KITTI Vision
Benchmark data set.

1. Introduction
Accurate estimation of the motion of a mobile platform

is an essential component of many robotic and automotive

systems, and visual odometry is one of the most accurate

ways of obtaining it. Visual odometry has been gaining in-

creasing popularity over the last decade, as evidenced by

the large number of publications on the topic [24] as well

as the release of open data sets made available for objective

performance comparison [8, 18]. In this paper, we present

a novel stereo-based visual odometry method that provides

state-of-the-art results in real time, both indoors and out-

doors.

∗Currently at Renesas Electronics Corporation, Japan.

Our proposed method follows the procedure of comput-

ing optical flow and stereo disparity to minimize the re-

projection error of tracked feature points. However, instead

of performing this task using only consecutive frames (e.g.,

[3, 21]), we propose a novel and computationally simple

technique that uses the whole history of the tracked features

to compute the motion of the camera. In our technique,

the features measured and tracked over all past frames are

integrated into a single improved estimate of the real 3D

feature projection. In this context, the term multi-frame fea-
ture integration refers to this estimation and noise reduction

technique.

This paper presents three main contributions:

• A statistical analysis of the feature tracking error that

helps us identify its properties and design an appropri-

ate model to reduce tracking drift (Section 4.1).

• A feature propagation technique that reduces the ego-

motion drift over time while maintaining a high inter-

frame motion accuracy (Section 4.2).

• A predictor/corrector technique to detect and correct

tracking errors (Section 4.4).

Our experimental results in Section 5 show that our new

proposed approach reduces pose error by up to 65% with

a negligible additional computational cost of 3.8% over the

baseline algorithm. Furthermore, our algorithm shows an

average translational error of 1.62% of the traveled dis-

tance and 0.0062 deg/m rotational error on the KITTI Vi-

sion Benchmark data set [8], outperforming all other known

visual odometry methods1.

2. Related Literature
The literature on visual odometry computation is huge,

and we will review only the most representative publica-

tions. A complete and detailed review can be found in [24].

1http://www.cvlibs.net/datasets/kitti/eval odometry.php
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The first to approach the estimation of camera motion

from visual data was Moravec [20] establishing the pipeline

of the structure from motion problem. Since then, a vari-

ety of different approaches have been proposed in the lit-

erature. Methods relying on inter-frame point correspon-

dences typically use detectors/descriptors such as SIFT [5],

SURF [15], FAST [11], Harris [13, 21], and even custom

designed detectors [9]. Optical flow methods such as KLT

[23] and dense scene flow [2] are also typically used. Strate-

gies such as the bucketing technique [28] further help dis-

tribute the features more uniformly on the image space to

improve the conditioning of the optimization problem [15].

Other techniques involve segmenting features based on dis-

tance to solve rotational and translational components inde-

pendently [13], or even avoiding explicit triangulation using

quadrifocal image constraints [6].

Ego-motion drift reduction is an important property of

visual odometry approaches. The most popular ways of re-

ducing drift are Simultaneous Localization and Mapping

(SLAM) and Bundle Adjustment (BA). SLAM methods

[7, 16] can reduce the drift by detecting loop-closure in

cases where the same scene is visited more than once. BA

methods optimize only camera poses and the position of

features over a number of recent frames [27]. Since the

computational cost rapidly increases with the number of

frames [24], a small number of frames is usually used for

real-time applications [26].

The fusion of visual odometry with other positioning or

motion sensors such as GPS [23], absolute orientation sen-

sor [22], or IMU [12, 17, 26] can improve the positioning

accuracy.

Our new proposed stereo-based method differs from pre-

vious work through the introduction of an augmented fea-

ture set that contains the accumulated information of all

tracked features over all frames, allowing the reduction of

the drift of the estimated motion. In contrast to BA, the

computational cost is not only negligible in absolute terms,

but also independent of time and linear with the number of

tracked features. Additionally, our proposed drift reduction

technique is simple and can be easily incorporated into most

visual odometry methods.

3. Visual Odometry Estimation
In this section, we introduce the baseline stereo visual

odometry algorithm to define the mathematical symbols

that will be used later in the paper. We follow here the same

approach as in [3].

3.1. Least Squares Solution

Our algorithm follows the standard dead-reckoning ap-

proach of estimating the rigid body motion that best de-

scribes the transformation between the sets of 3D points ac-

quired in consecutive frames. The total motion over time is

then obtained by the concatenation of the individual motion

estimates.

A set of tracked feature points mi,t = (u, v, d)T for

i = 1, 2, ..., n from the current frame and the corre-

sponding set of feature points, mi,t−1 = (u′, v′, d′)T for

i = 1, 2, ..., n, from the previous frame are obtained, where

(u, v) is the detected feature location on the left image and

d is the stereo disparity. The goal of the visual odometry

problem is to estimate the rotation matrix R and the transla-

tion vector t that satisfy the rigid body motion of the tracked

points, i.e.,

g(mi,t) = Rg(mi,t−1) + t (1)

where g() is the stereo triangulation equation that calculates

the 3D point in Euclidean space. Instead of minimizing the

residuals in Euclidean space, where error covariances are

highly anisotropic [19], a better approach is to work on the

image space where the error is similar in all three dimen-

sions (see Figure 1). In order to get the objective function,

we first apply the projection equation h() = g−1() to both

sides of Equation 1 to obtain

mi,t = r(mi,t−1) (2)

with

r(mi,t−1) = h(Rg(mi,t−1) + t). (3)

In general, Equation 2 will not hold under the presence of

noise, for which the weighted residual is

e(mi,t−1,mi,t) = wi||r(mi,t−1)−mi,t||, (4)

with a reprojection error variance of w−2
i . Note that we

apply a simple scalar weighting. We found experimentally

that using the full inverse covariance matrix has little impact

on the motion estimate. The least squares objective function

is then
n∑

i=1

e(mi,t−1,mi,t)
2. (5)

In order to minimize Equation 5, the rotation matrix R
is parametrized by the rotation vector r = (ωx, ωy, ωz)

T

and the translation vector as t = (tx, ty, tz)
T . Thus, the

parameter for minimization is the six-dimensional vector

x = (ωx, ωy, ωz, tx, ty, tz)
T .
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Figure 1. Learned pdf of the feature inter-frame tracking error.

Red: measured. Blue: fitted Laplacian pdf.
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The least squares solution of Equation 5 is computed us-

ing the Newton optimization method. Outliers are handled

by an iterative least squares procedure as described in [3].

4. Reducing Drift by Multi-frame Feature In-
tegration

Visual odometry is a dead-reckoning algorithm [14] and,

therefore, prone to cumulative errors. The current pose of

the platform is obtained from the previous pose by adding

the last observed motion, which leads to a super-linear in-

crement of the pose error over time, as shown in [22].

One solution to this problem is to compute visual odom-

etry as a bundle adjustment algorithm [27]. BA imposes ge-

ometrical constraints over multiple frames, thus providing a

global optimal estimate of all camera poses at once. How-

ever, the computational cost of BA algorithms increases

with the cube of the number of frames used for computation.

A common approach, known as local BA, uses a small num-

ber of frames to limit the computational complexity [26]. In

this section, we present a novel method that uses the whole

history of the tracked features with a computational com-

plexity that increases linearly with the number of tracked

features and is independent on the number of frames.

In the next sections, we will first analyze the characteris-

tics of the tracking error and then propose a simple method

to reduce tracking error and, consequently, ego-motion drift

error.

4.1. Characteristics of Measured Features

Tracking features from frame to frame in sequence is

also a dead-reckoning process and, therefore, affected by

the same accumulation of errors. The process of tracking

usually requires detecting a feature in the first image and re-

detecting it in the second image. The same process is then

repeated between each pair of consecutive images. Every

tracking step adds a cumulative error to the feature position,

which is propagated to the estimated motion of the camera

through the non-linear system that relates feature positions

to camera motion (i.e., Eqs. 2-5).

In order to understand this cumulative tracking error,

we have performed an experiment using the synthetic New

Tsukuba dataset [18]. In this experiment, 4,096 features

are detected with the Harris corner detector [10]. FREAK

descriptors [1] are computed on the detected keypoints

and matched between consecutive frames by brute-force

combinatorial search. When a new feature is first detected

(i.e., it has no previous associated keypoint), the corre-

sponding original ground truth 3D point is obtained. At

each frame, the ground truth projection of the original 3D

point is calculated using the ground truth motion. Finally,

the ground truth projection is then compared with the

measured position of the feature. We have performed two
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Figure 2. RMSE of inter-frame feature position as function of the

survival age.
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Figure 3. Total reprojection error as a function of the age for fea-

tures with a survival age of exactly 40 frames.

analyses. In the first analysis we found the probability

density function of the error, while in the second analysis

we evaluated the dependency on time of the tracking error.

Probability density function of the error. Figure 1 shows

the inter-frame error probability density function for each

component of the tracked features for all features tracked in

the data set. From these plots, we see not only that all prob-

ability density functions have a Laplacian-like distribution

(blue fitted curve), but also, and more importantly, that

they are zero-mean. This is an important property, since

the sample mean of tracked positions provides us with a

simple unbiased estimator of the feature position. In order

to compute the sample mean, all past tracked positions of a

feature must be transformed to the current frame. Section

4.2 addresses this problem.

Tracking error dependency. In order to analyze the accu-

mulated tracking error over several frames, we have com-

puted the distribution of the accumulated Euclidean projec-

tion error as a function of the survival age of the feature. As

in the previous experiment, in all cases the error has a zero-

mean, Laplacian-like distribution, with a standard deviation

as shown in the red curve of Figure 2 (the green curve in the

figure will be described in the next section). Figure 2 shows

that features that die younger, on average, have a larger er-

ror that those that can be tracked over several frames. The
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Figure 4. Example of multi-frame feature integration and motion estimation. See end of Section 4.2 for details.

reason for this behavior is that some features are more track-
able than others, i.e., features that can be tracked longer

possess some (unknown) property that makes them easier

and more accurate to track. However, within the set of fea-

tures that survive a specific number of frames, the accu-

mulated reprojection error for a feature tracked n frames is

equivalent to n times the inter-frame RMSE, as shown in

the red curve of Figure 3 that corresponds to features with a

survival age of 40 frames. We have verified the same linear

relationship with all features with survival ages smaller than

40 frames. Therefore, error at each tracking step is constant

and independent of the previous step, i.e., the inter-frame

tracking error is homoscedastic.

These two analyses show that the inter-frame feature

tracking error of the features is zero-mean, independent of

the age, and identically distributed (the same is true for KLT

and SURF features, as we could verify performing the same

experiments addressed in this section). From these observa-

tions, we conclude that the unweighted sample mean is an

unbiased optimal estimator of the feature position. In the

next section, we use this important property of the features

to improve the motion estimation accuracy.

4.2. Augmented Feature Set

To reduce the drift caused by the tracking error, we in-

troduce an augmented feature set m̄i,t for i = 1, 2, ..., n.

The new feature m̄i,t, which we call an integrated feature,

is obtained by the sample mean of all previous measured

positions of feature mi transformed into the current frame.

With this new augmented set, we establish a new set of fea-

ture correspondences to be included in the camera motion

optimization. The new objective function finds the optimal

rotation and translation by minimizing two sets of feature

correspondences:

1. Measured-to-measured. The same correspondence

mi,t−1 ↔mi,t defined in Section 3.1.

2. Integrated-to-measured. The new correspondence

m̄i,t−1 ↔mi,t.

Equation 5 is expanded to include the additional set of cor-

respondences:

α

n∑

i=1

e(mi,t−1,mi,t)
2 + β

n∑

i=1

aie(m̄i,t−1,mi,t)
2 (6)

where α and β are weighting factors such that α + β = 1,

and ai is the age of the feature at time t− 1. At each frame,

after the rigid body motion between current and previous

frame has been estimated, we update the integrated feature

incorporating the new propagated measurement mi,t−1 into

the sample mean:

m̄i,t =
r(mi,t−1) + ai r(m̄i,t−1)

1 + ai
(7)

Observe that when the feature is first detected, ai = 0
and m̄i,t = r(mi,t−1).

The first term in Equation 6 is the same as in Equation

5 and contributes to estimate the motion observed between

current and previous frames. The weighting factor wi, im-

plicit in e() and defined in Equation 4, is obtained from the

age of the feature as the inverse (i.e., 1/x) RMSE of Figure

2. The second term corresponds to the augmented feature

set and contributes to reduce the drift produced over multi-

ple frames. The normalized weighting factors α and β can

be used to change the balance of the contributions of each

term. We have performed experiments using synthetic and

real data and found that uniform weighting of both terms

(i.e., α = β = 0.5) provides the best results.

The reduction on the feature tracking error for integrated

features can be seen in green curves of Figures 2 and 3.

Figure 4 depicts the proposed multi-frame procedure. At

Frame 1, a feature (circle) is first detected and then tracked

by the optical flow algorithm in Frame 2 (circle). The cam-

era motion between Frames 1 and 2 is obtained using all

available correspondences between both frames (other fea-

tures are not shown for clarity purposes). At this point, the

feature in Frame 1 is propagated to Frame 2 (inverted trian-

gle) using the optimized rotation matrix and translation vec-

tor. Since the feature is new, the integrated feature (square

in Frame 2) is equivalent to this first observation. The real
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measured feature (circle) in Frame 2 is then tracked to the

next frame. Now, two correspondences are established be-

tween Frames 2 and 3 (red and green lines), both of which

are used by the optimization algorithm to obtain the camera

motion (i.e., R2 and t2). The same propagation process is

now applied to transform both, measured (circle) and inte-

grated (square) features from Frame 2 to Frame 3 (obtaining

the two triangles). The sample mean is updated by Equation

7, giving the new integrated feature (the square on Frame

3). The same optimization and propagation process is then

repeated until the feature cannot be tracked any more.

4.3. Computational Complexity

The computational complexity of our proposed algo-

rithm is given by the additional time required by the least

squares method to find a solution with the augmented fea-

ture set, plus a small overhead for calculating the integrated

features (i.e., Eq. 7). Therefore, the computational com-

plexity of this multi-frame integration approach is simply

O(n) for n features.

4.4. Outlier Rejection and Measurement Correction

In addition to the multi-frame feature integration, we ap-

ply two techniques to improve tracking accuracy. The first

technique evaluates the innovation of the measurements,

providing a measure of the accuracy of the tracked feature.

The second technique applies an n-sigma threshold to the

tracked feature position to check for tracking errors and

correct them.

Tracking accuracy via innovation analysis. Equation 7

updates the mean of the integrated feature incorporating

the propagated observation from the previous frame. We

define innovation as the distance between the prediction

r(m̄i,t−1) and the observation r(mi,t−1) that will be

incorporated into it (i.e., the length of the yellow line in

Fig. 4). A small innovation value is a good indicator of

the consistency of the new observation with the estimation.

We keep the mean of the innovations at each step as a

measure of the tracking reliability. If the mean of the

innovations becomes larger than a predefined threshold,

the feature is marked as lost and considered a new detection.

Correction of inaccurate measurements. Tracking mis-

matches and inaccuracies are common, and their early de-

tection is important to avoid their propagation to future

frames, and consequently, to the position estimates. After

the integrated feature has been updated by Equation 7, we

calculate the distance between the integrated feature and the

tracked feature at the current time t (i.e., distance between

square and circle within the same frame in Fig. 4). If the

distance is larger than a predefined threshold, the tracked

feature (i.e., the circle) is discarded and replaced with the

integrated feature. A new descriptor must be computed at

this point, since the feature has changed position. This adds

a small additional computational overhead to the algorithm,

as we will show later in the experimental results. If the cor-

rection occurs more than a certain number of consecutive

times (e.g., 3 frames in a row), the feature is considered un-

stable, and the feature is marked as lost.

Both thresholds mentioned above were found by param-

eter optimization using the training data sets of the KITTI

Vision Benchmark suite [8].

5. Experimental Results
In this section, we evaluate our proposed approach using

two data sets with ground truth and compare it with the tra-

ditional method to obtain an estimate of the improvements.

5.1. Experimental Setup

Implementation. We have implemented the proposed

method in C++ using OpenMP technology, the Intel

Performance Primitives library, and the OpenCV library.

For feature tracking, we compare results using KLT [25]

and two state-of-the-art descriptors: SURF [4] and FREAK

[1]. Since FREAK is just a feature descriptor extractor,

we use Harris [10] as keypoint detector. The keypoints

are matched between consecutive frames by brute-force

combinatorial search. Stereo disparity is measured by local

correlation using a rectangular window centered on the

feature position. Up to 4,096 features are tracked between

consecutive frames.

Methods. In the following sections we compare the follow-

ing three methods:

- ORG. The algorithm as presented in Section 3 [3].

- MFI. The new proposed multi-frame integration

algorithm using the augmented feature list as described in

Section 4.2.

- MFI+. The multi-frame integration algorithm includ-

ing the techniques addressed in Section 4.4.

Data sets. We evaluate our proposed methods with two

datasets. The first one is the synthetic New Tsukuba Stereo

Dataset [18]. In this dataset, a stereo camera is flown

around an office environment. The data set is provided

with four illumination settings, from which we chose the

“fluorescent” version. The second data set is the KITTI

Vision Benchmark Suite [8]. These data were captured by

driving different traffic scenarios in and around the city of

Karlsruhe, Germany. The performance of our proposed

approach is evaluated on both data sets in the following two

sections.

Evaluation criteria. We use the evaluation method rec-

ommended by KITTI dataset: we compute translational
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Figure 6. Results on loop sequences

.
and rotational errors for all possible subsequences of length

(5,10,50,100,150,...,400) meters and take the average of

them. Since the traveled distance in the New Tsukuba data

set is smaller, we compute the error using the same path

sub-lengths but using centimeters as the unit measure.

5.2. New Tsukuba Stereo Dataset

Figure 5(a) shows the translation and rotation error of

the three evaluated methods on the New Tsukuba Stereo

dataset. Table 1 shows the corresponding improvements

over the original method. Our new multi-frame feature in-

tegration method reduces the translation error by up to 63%

and the rotation error by up to 53% with respect to the tra-

ditional approach. The techniques introduced in Section 4.4

further extend the improvements by an additional 2%. Har-

ris+FREAK is consistently the best tracker in this data set.

To further demonstrate the contribution of our multi-

frame method on the drift reduction, we prepared two spe-

cial data sets that plays forward a part of the New Tsukuba

Stereo dataset, and then plays it backward to the first frame.

The idea is to evaluate the drift of the camera at the end of

each loop. If there is no drift at all, the camera position and

angle should revert to zero.

We prepared two types of loop sequences for this pur-

pose. In the first loop sequence there is a large portion of

the scene that remains within the field of view of the camera

so features can be tracked continuously on this region. We

use frames 300 to 323 of New Tsukuba dataset for this loop

sequence. The data set contains 50 full loops (i.e., 2,400

frames), and we check the position and angle error at the

end of every loop (i.e., every 48 frames). We call this data

set “Loop A”.

In the second loop sequence, which we call “Loop B”,

the field of view completely changes between the first and

last images (before playing backwards), so no feature can be

tracked continuously throughout a loop. We use the frames

850 to 885 of New Tsukuba data set. The complete data set

contains 50 loops (i.e., 3,600 frames), and we evaluate the

position and angle error at the end of every loop (i.e., every

72 frames). We use Harris+FREAK as the feature tracking

method.

Figures 6(a) and 6(b) show the results on the loop se-

quences, where it can be seen that a significant improve-

ment is obtained by the multi-frame integration. The results

show that less drift occurs on data set Loop A, where fea-

tures can be tracked over long periods of time. When the

feature survival is limited, as in Loop B, the improvements

are still substantial.

Figure 7 shows the reconstructed paths using Har-

ris+FREAK, in which one can see the improved alignment

of our new proposed method over the baseline algorithm.

Table 2 shows the processing time comparing the ORG

and MFI+ methods. For this experiment we used an Intel

Core i7 2.70 GHz with 4 Cores. The additional processing

time required by the new algorithm is just 1.9 ms (3.2% of

the total time), of which 1.5 ms correspond to the time is

Table 1. Improvements on the New Tsukuba data set

KLT SURF Harris+FREAK

MFI
Translation 62.8% 54.7% 59.6%

Rotation 53.0% 45.6% 47.1%

MFI+
Translation 65.0% 58.0% 62.2%

Rotation 55.5% 54.6% 51.2%
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needed to compute new descriptors when corrections occur,

as mentioned in Section 4.4.

5.3. The KITTI Vision Benchmark Suite

Figure 5(b) shows the average translation and rotation er-

ror for the original and new proposed methods using the 11

training data sets provided by the the KITTI Vision Bench-

mark Suite. Table 3 shows the relative improvements with

respect to the original algorithm.

Our proposed algorithm is up to 12% better in transla-

tion and 24% better in rotation than the original algorithm.

As with the New Tsukuba data set, the best results were ob-

tained with the Harris+FREAK tracker. On the other hand,

SURF performs better than KLT in this data set. This is be-

cause of the large illumination changes in the KITTI data

sets that the standard KLT can not handle.

The improvements shown in Table 3 are smaller than in

the New Tsukuba data set. We think that there are two main

reasons for it. First, features can be tracked longer in the

New Tsukuba data set, providing more improvement on the

motion estimate. Second, all parameters of the algorithm

were tuned using the KITTI training data sets, which might

not necessarily be optimal for New Tsukuba, leaving less

space for improvement on an already optimal configuration.

Table 2. Processing Time (ms)

Tracking Stereo VO Other Total

Original 35.6 3.8 8.4 1.4 49.2

MFI 37.1 3.8 8.8 1.4 51.1

Table 3. Improvements on the KITTI data set

KLT SURF Harris+FREAK

MFI
Translation 5.8% 5.2% 9.2%

Rotation 20.3% 17.1% 23.7%

MFI+
Translation 9.4% 8.5% 12.1%

Rotation 20.3% 17.1% 23.1%
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Figure 9. Reconstructed path of KITTI 13

Regardless of all this, our proposed approach outper-

forms all other visual odometry methods known up to the

submission date of this paper. The translational error on

the evaluation data set is 1.62% of the traveled distance and

0.0062 deg/m rotational error2.

Figures 8 and 9 show the path reconstructions for the

KITTI Vision Benchmark data set Nrs. 0 and 13, from

which the drift reduction of the MFI+ method is clearly vis-

ible.

6. Summary

In this paper, we have presented a new multi-frame tech-

nique that integrates the whole history of the tracked fea-

2While this paper was under review, the evaluation criteria on the

KITTI Benchmarking Suite changed. The current errors for MFI+ are

1.30% for translation and 0.0028 deg/m for rotation. Under the new error

criteria, our proposed method still outperforms all other VO methods.
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ture points to reduce ego-motion drift while maintaining a

high inter-frame motion accuracy. Our proposed approach

is shown to be the best performing algorithm using the chal-

lenging KITTI Vision Benchmark data sets. The multi-

frame technique relies on two very important properties of

the feature tracking noise: the error is zero-mean and ho-

moscedastic. We have verified these properties for a va-

riety of tracking methods including SURF, FREAK and

KLT. Based on these findings, we have defined an unbiased

optimal estimator of the real feature position and created

an augmented feature set with those estimates. The aug-

mented set establishes a new set of correspondences in the

least squares objective function. Our proposed algorithm is

computationally inexpensive and can be easily adapted into

most VO approaches relying on feature tracking.

References
[1] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina

keypoint. In International Conference on Computer Vision
and Pattern Recognition, pages 510–517, 2012.

[2] P. Alcantarilla, J. Yebes, J. Almazn, and L. Bergasa. On

combining visual SLAM and dense scene flow to increase

the robustness of localization and mapping in dynamic en-

vironments. In International Conference on Robotics and
Automation, pages 1290–1297, May 2012.

[3] H. Badino and T. Kanade. A head-wearable short-baseline

stereo system for the simultaneous estimation of structure

and motion. In IAPR Conference on Machine Vision Appli-
cation, pages 185–189, June 2011.

[4] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up

robust features (SURF). Computer Vision and Image Under-
standing, 110(3):346–359, June 2008.

[5] C. Beall, B. Lawrence, V. Ila, and F. Dellaert. 3d reconstruc-

tion of underwater structures. In International Conference
on Intelligent Robots and Systems, October 2010.

[6] A. I. Comport, E. Malis, and P. Rives. Accurate quadrifo-

cal tracking for robust 3d visual odometry. In International
Conference on Robotics and Automation, April 2007.

[7] A. J. Davison. Real-time simultaneous localisation and map-

ping with a single camera. In International Conference on
Computer Vision, pages 1403–1410, October 2003.

[8] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the KITTI Vision Benchmark Suite. In

International Conference on Computer Vision and Pattern
Recognition, 2012.

[9] A. Geiger, J. Ziegler, and C. Stiller. Stereoscan: Dense 3d re-

construction in real-time. In Intelligent Vehicles Symposium,

pages 963–968, June 2011.

[10] C. Harris and M. Stephens. A combined corner and edge

detector. In 4th Alvey Vision Conference, 1988.

[11] A. Howard. Real-time stereo visual odometry for au-

tonomous ground vehicles. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems.

[12] E. S. Jones and S. Soatto. Visual-inertial navigation, map-

ping and localization: A scalable real-time causal approach.

International Journal of Robotics Research, 30(4):407–430,

April 2011.

[13] M. Kaess, K. Ni, and F. Dellaert. Flow separation for fast

and robust stereo odometry. In International Conference on
Robotics and Automation, pages 973–978, May 2009.

[14] A. Kelly. Linearized error propagation in odometry. The
International Journal of Robotics Research, 23(2):179 – 218,

February 2004.

[15] B. Kitt, A. Geiger, and H. Lategahn. Visual odometry based

on stereo image sequences with RANSAC-based outlier re-

jection scheme. In Intelligent Vehicles Symposium, June

2010.

[16] G. Klein and D. Murray. Parallel tracking and mapping for

small AR workspaces. In International Symposium on Mixed
and Augmented Reality, pages 1–10, November 2007.

[17] K. Konolige, M. Agrawal, and J. Solà. Large scale visual
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