
Video Object Segmentation by Salient Segment Chain Composition

∗ Dan Banica1, ∗ Alexandru Agape1, Adrian Ion2, Cristian Sminchisescu3,1

1Institute of Mathematics of the Romanian Academy
2Vienna University of Technology, 3Lund University

{dan.banica, alexandru.agape}@imar.ro, ion@prip.tuwien.ac.at, cristian.sminchisescu@math.lth.se

Abstract

We present a model for video segmentation, applicable to
RGB (and if available RGB-D) information that constructs
multiple plausible partitions corresponding to the static and
the moving objects in the scene: i) we generate multiple
figure-ground segmentations, in each frame, parametrically,
based on boundary and optical flow cues, then track, link
and refine the salient segment chains corresponding to the
different objects, over time, using long-range temporal con-
straints; ii) a video partition is obtained by composing seg-
ment chains into consistent tilings, where the different in-
dividual object chains explain the video and do not over-
lap. Saliency metrics based on figural and motion cues, as
well as measures learned from human eye movements are
exploited, with substantial gain, at the level of segment gen-
eration and chain construction, in order to produce com-
pact sets of hypotheses which correctly reflect the qualities
of the different configurations. The model makes it possible
to compute multiple hypotheses over both individual object
segmentations tracked over time, and for complete video
partitions. We report quantitative, state of the art results in
the SegTrack single object benchmark, and promising quali-
tative and quantitative results in clips filming multiple static
and moving objects collected from Hollywood movies and
from the MIT dataset.

1. Introduction
Video segmentation, in full generality, is the problem

of partitioning a video into several spatio-temporal vol-

umes, region chains, or tubes. While such a definition

makes the connection to space-time clustering natural, it is

less attractive when the objective is to identify the spatial

support of the important static and moving objects of a

scene, over time. Central to this relevant special case–with

the promise to open path to semantic video analysis and

∗The first two authors contributed equally

categorization–is not so much just the capacity to partition

the video somehow, without substantial control over the

properties of the regions being generated, but being able to

focus on important salient structures and persistently iden-

tify them over time. This becomes significantly harder than

being successful in any single image or frame of the video

(the special problem of image segmentation), as the prob-

ability of a ‘temporal lucky strike’ becomes diminishingly

low. Scenes with not just one, but multiple static or moving

objects, further drive down probabilities of generating good

quality partitions, which are salient for human perception,

and thus, for effective object learning and categorization.

In this paper we propose a compositional approach to video

partitioning within a framework that offers consistent infer-

ence for multiple video interpretations. Our segment and

chain measures combine the notion of trained figural and

motion Gestalts as well as the one of saliency based on hu-

man fixations. We show that such an approach generalizes

well and offers a strong signal to separate and consistently

rank spatial and temporal chains that are perceptually rel-

evant (in their object coverage), from ones that are not.

Technically our methodology relies on per-frame segment

generation at multiple scales, using boundary and differ-

ential motion cues (optical flow), within a parametric max

flow framework, followed by dense matching across frames

by combining long-range search in order to compute stable

and salient segment chains (SSC), and jointly refining such

chains using appearance and location cues. Finally SSCs

are combined into complete video interpretations based

on techniques that rely on generating multiple cliques in

a graph where the SSCs are nodes and the connections

are drawn between spatially non-overlapping components.

This approach produces state of the art results in the Seg-

Track dataset [28], for single object segmentation, and

promising results in clips containing both static and moving

objects, from the MIT dataset [16], and in Hollywood clips.

Related Work. There is substantial prior work for figure-

ground video segmentation, as well as for generating spatio-
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temporal superpixel partitions, or for motion segmentation.

Segmenting a single foreground object from a video has

been approached using initialization by a user [27, 8], or

automatically, by producing a pool of video object hypothe-

ses [12, 17, 10]. A possible pipeline includes a figure-

model extraction using color, appearance, shape, and mo-

tion cues, derived from a prior clustering of segments over

the entire video, and a final energy minimization in a bi-

nary MRF [12]. Alternatively a maximal weighted clique

framework was used to optimally link segments in each

frame [17], but the mutual exclusion constraint used allows

only one segment to be selected in each timestep, and does

not provide multiple scene layout interpretations. While

these approaches can produce good quality video segmen-

tations of single moving objects, computing a video seg-

mentation for the multiple object case is not straightfor-

ward, as the generated segmentations are likely to overlap

and vary in quality. Approaches to multiple object video-
segmentation involve clustering at the level of pixels or su-

perpixels, using color and motion cues [9, 29, 14] or long-

term trajectories [15]. These encounter difficulties due to

the small spatial support used to extract features, leading

to over segmentations. To consider larger spatial support

when extracting features, [23, 22] compute multiple seg-

ment hypotheses independently for each frame, then [23]

solve for the final video segmentation directly. In contrast

[22] compute single-object video segment hypotheses over

a few frames and combine those into the final video seg-

mentation using soft constraints as high order terms in an

MRF. Both methods lack a notion of saliency to drive the

selection process; while multiple hypotheses for image seg-

mentation are obtained in each frame, a single video parti-

tion is generated. To avoid the non-overlap constraints be-

tween segments, but still have appropriate spatial support

to build object models, [4] request hand-labeling the first

and last frames, then used for the initial model extraction,

and to propagate those labels in an MRF. Alternatively, [20]

compute long term trajectories of detected feature points,

cluster them into object hypotheses, and propagate the cor-

responding labels form pixels on the trajectory to the rest of

the video.

Differently from existing work, our video segmentation

framework is automatic and applies to both static and mov-

ing objects. We focus on multiple figure-ground hypotheses

(as opposed to superpixels), extend CPMC [6] with opti-

cal flow and (if available) depth, and integrate appearance,

motion, and saliency information, over all processing steps.

Our SSC generation approach tracks segments using dense

matching and long-range constraints, rather than cluster-

ing segments over the entire video [12] or using a maxi-

mum weight clique (MWC) [17] to solve segment compe-

tition. We enforce the consistency (non-overlap condition)

between the individual SSC hypotheses as hard constraints

in a MWC framework, as opposed to soft-constraints in

[22]1. We also provide an inference process for multiple

video segmentation hypotheses, as opposed to just one.

2. Salient Segment Chain Construction
Given a collection of frames {f1, . . . , fN} of a video, a

Salient Segment Chain (SSC) is a set of K > 0 segments

c = {st1 , ..., stK} corresponding to K consecutive frames

ft1 , . . . , ftK , with each st ∈ c a segment of frame ft. To

build SSCs we (1) generate for each frame ft a pool of

object segment hypotheses St, (2) match and link the

segments corresponding to all pairs of consecutive frames,

to obtain an extended pool of coarse SSCs that use only

segments from S = ∪St, (3) rank the coarse SSCs using

low and mid-level features, retaining the top scoring, and

finally (4) refine each of the retained SSCs using appear-

ance and location cues.

1. Segment Pool Generation, St. To generate the seg-

ment pool St for frame ft we extend the Constrained Para-

metric Min Cuts method (CPMC) [6]. CPMC generates

a large pool of figure-ground segmentations by applying

constraints at different locations and scales in the image

(frame), scores them using mid-level properties and returns

the top ranked following diversification. Segments are gen-

erated by solving a family of optimization problems for en-

ergies of the form:

Eλ(L) =
∑
lx∈L

Dλ(lx) +
∑

lx∈L,ly∈N (lx)

Vxy(lx, ly) (1)

where L is a labeling of the pixels of the image into fore-

ground or background, λ ∈ R selects the problem instance

to be solved, the unary term Dλ defines the cost of assign-

ing a particular pixel to the foreground or the background,

and the pairwise term Vub penalizes the assignment of dif-

ferent labels to similar neighboring pixels. To leverage mo-

tion and learned saliency cues, we extend CPMC in multiple

ways: we add motion seeds to constrain certain pixel-labels

to foreground, augment the smoothness constraint in eq. 1

with optical flow, and extend the features used for scoring

and ranking segments with Gestalt features extracted on op-

tical flow.

CPMC uses simple, content independent strategies to

place foreground and background seeds. For the segmenta-

tion of moving objects, we cluster the optical flow vectors

computed using [3], and place additional foreground seeds

for each connected component corresponding to a cluster.

The original pairwise term Vxy in eq. 1 adds the penalty

g(x, y) = exp
[
−max(BI(x),BI(y))

σ2

]
if two neighboring

1Hard constraints have been previously used for tracking [1], with fo-

cus on object trajectories, where they were enforced on bounding-boxes,

between consecutive frames only, rather than on segments and over an en-

tire video.
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Figure 1: Impact of adding motion information to the

smoothness term in CPMC. Detail from the first frame of

the birdfall sequence used in our experiments. First row,

left to right: original image, optical flow, and best segment

obtained for the ground-truth object, a falling bird. Second

row: contour detector applied on the original image and on

the optical flow representation, followed by their combina-

tion using max. Strong edges are shown in red. Notice that

the strong contours detected directly on the image do not

highlight the ground-truth object, while the motion-based

contours provide a good estimate of its boundary.

pixels x, y are assigned different labels, where BI is the

output of a trained contour detector [13, 18] computed for

the image I at a given pixel. We modify this term to use

motion information and define the augmented penalty

g′(x, y) = exp
[
−max(BI(x),BI(y),BOF (x),BOF (y))

σ2

]
,

where BOF is the output of a global contour detector

[13, 18] computed on the HSV representation of the optical

flow (see also fig. 1). Another extension that we propose

here is to use depth data when available, which may be

acquired through devices such as Kinect. In order to take

advantage of depth information we maximize in the formula

for g′(x, y) over two additional terms: BD(x) and BD(y),
where BD represents the output of the contour detector

computed on the depth image. Fig. 2 illustrates how better

segment pools are obtained using CPMC-3D, our CPMC

extension which uses depth information.

Segment scores are originally computed based on a com-

bination of graph partition, region and Gestalt properties,

with corresponding parameters trained, category indepen-

dently, on object segments computed from static images.

We adjust these scores using two features that are sensitive

to video inputs. The first one uses a saliency detector that

predicts human fixations [19], trained on the Hollywood

dataset. The feature value for each segment is set to the

average detector responses for all pixels in that segment.

Figure 2: Using depth cues notably improves CPMC seg-

ment quality. Left to right: original image, best segment ob-

tained from CPMC, best segment from CPMC-3D, ground

truth. The images are from the NYU Depth V2 dataset [24].

The second feature is obtained by computing Gestalt fea-

tures in [6] on the HSV optical flow representation. These

features highlight regions with salient motion, and penalize

segments with parts that move similarly to the background.

The final segment score is a linear combination of the

original image, saliency and flow-based scores:

qs(s) = αI · I(s) + αS · S(s) + αF · F (s) (2)

Running the modified CPMC model, which we denote

CPMC-OF (or CPMC-3D and CPMC-OF-3D if depth is

available), we obtain for each frame ft, a set St of segment

hypotheses with scores qs(s).

2. Segment Modeling, Matching and Linking. We gener-

ate a large pool of coarse SSCs, each constructed using only

segments from S = ∪St. A total of |S| SSCs are produced,

one corresponding to each segment in S. The term coarse is

used to differentiate from the refined SSCs, computed later,

which are not restricted to segments in S . Coarse SSCs

correspond to paths in a trellis, where each node (segment)

at time t is connected with (all) nodes at times t − 1 and

t + 1. We generate SSCs by starting at each segment sti
2

and growing in both directions as described below.

Each segment is modeled using its position (1st order

moment), size and LAB color histogram. The pairwise dis-

tance d(si, sj) between two segments si, sj is computed as:

d(stki , stlj ) = dr(s
tk
i , stlj ) + dc(s

tk
i , stlj ) (3)

dr(s
tk
i , stlj ) =

∑
p

λp · σ(|p(stki , stlj )|, τp|tk−tl|) (4)

σ(x, τ) =
1

1 + exp(−x−τ
τ )

(5)

2The superscript t is used to denote the frame number, and the subscript

the index in St. We might omit any of them, if clear from context.
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where dc(s
tk
i , stlj ) is the Euclidean distance between the

normalized LAB histograms of the two segments, and dr
sums over normalized region properties p (area, position

of the centroid, height and width of the bounding box of

the segment) a sigmoid function on the difference between

the properties of the two segments. This sigmoid is used

to heavily penalize changes in shape or position above a

threshold τp|Fi−Fj | that depends on the distance between

the frames of the segments and on the considered property.

Overall, the distance defined in eq. 3-5 is small for seg-

ments with similar LAB color histograms, whose size and

position did not change too much over a few frames.

Given an SSC c = {st1 , . . . , stK} the distance of a seg-

ment sj ∈ ftK+1 to c is given by:

D(sj , c) = rmean
(
d(sj , s

tK−m+1), . . . , d(sj , s
tK )

)
(6)

where rmean stands for robust-mean and equals the mean,

after removing the largest and smallest values in the list. For

sj ∈ ft1−1, D(sj , c) = rmean (d(sj , s
t1), . . . , d(sj , s

tm)).
Using segments from more than one time-step and the

rmean function increases robustness against segmentation

errors in hard-to-segment frames where the set S might not

contain a segment to match.

To build an SSC, we initialize with a segment stj and

grow at both ends by greedily adding the segments in

ft1−1, ftK+1 to minimize D. The indexes t1, tk are updated

to always match the first and last frame indexes in the SSC.

If the minimizing value is above a threshold d0, growing in

that direction is abandoned and the segmented object is as-

sumed to have disappeared from the scene or become fully

occluded.

Given our trellis structure, other inference strategies for

generating SSCs, can also be envisioned. For m = 1 our

model has only pairwise terms and the Viterbi algorithm

can efficiently find a global optimum for each initialization

segment stj . However, most of the times this optimal so-

lution contains high scoring sub-chains corresponding to

different objects, which are connected by a few weak links.

This leads to poor segmentation results and very similar

SSCs, each one also very close to the globally optimal

SSC obtained without imposing a particular segment stj .

Increasing the penalty incurred when selecting a poor link

can partly mitigate this problem, but choosing an appropri-

ate threshold can be problematic. The reason for choosing a

greedy strategy is because of low computational complexity

when the number m of past frames considered is larger than

1. The model can also be made more powerful by including

long-range terms.

3. Coarse SSC Scoring and Ranking. Each coarse SSC c
is associated a score given by:

qc(c, α) =
∑
st∈c

αuqu(s
t) +

∑
st,st+1∈c

αpqp(s
t, st+1) (7)

where the unary term qu(s
t) is the segment score given by

eq. 2, and the pairwise term qp is the matching score in

eq. 6. To make the matching scores in qp independent of

the order in which segments where initially added to c, this

is recomputed for all segments in c as if they were all added

in chronological order.

To select a set of high quality SSCs, we first rank all

coarse SSCs in decreasing order of their score qc in eq. 7.

However, if they exist, very similar SSCs are assigned simi-

lar scores by qc and end up in consecutive or close positions

in the ranked SSC list. Our aim is to obtain a set of high

quality and diverse SSCs, and address this issue by re-

ranking them using a Maximal Marginal Relevance (MMR)

measure [5], using per frame average segment overlaps as

the redundancy measure. This leads to an increase of the

highest quality when considering top k ranked SSCs, e.g.

for k = 200 by 50% on the ’cheetah’ video we used in

experiments. Finally, we retain the top scoring 150 SSCs,

as ranked by the MMR measure.

4. SSC Refinement. The retained coarse SSCs cover the

objects in the video reasonably well, but may be sensitive

to the quality of the initial segments in S. However, even

for cases where in certain frames no appropriate segment

is generated for an object, the matching strategy with m >
1 could in principle overcome this issue, to produce high

quality SSCs. The segmentation in difficult frames can then

be improved by propagating information from neighboring

frames in the SSC. Therefore, for each retained coarse SSC

cc we compute a refined SSC cr over the same video frames

as cc, but not constrained to include the original segments

in S. Each segment s′t ∈ cr is obtained from s′t−1 and st

by solving a binary labeling problem:

L∗ = argmax
L

∑
x∈ft

φu(lx) +
∑

x∈ft,y∈N (x)

φp(lx, ly) (8)

where L ∈ {0, 1}|ft| is a labeling of the pixels of ft, φu,

φp are unary and pairwise potentials, and the neighborhood

N (x) contains the 4-connected neighbors of x. The unary

potential φu(lx) is computed from appearance (color) and

location priors. The color prior is obtained using Gaussian

mixture models. The pixels from the refined segment in the

previous frame are used as foreground samples. The loca-

tion prior is generated using an Euclidean distance trans-

form on the union of st and the projection of s′t−1 in frame

t. To refine segments in the first frame we define s′1 = s1

and consider s1 as its projection. The pairwise potential

φp(lx, ly) is a contrast dependent smoothing term similar to

Vxy(lx, ly) in eq. 1, but using the union between the bound-

aries given by a global contour detector [13, 18] and the

optical flow boundaries. Fig. 3 shows examples of these po-

tentials and the segments that generated them, together with

the final optimization result. s′t is taken to be the pixels in

L∗ that have been assigned the foreground label 1.
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Figure 3: Visualization of our SSC refinement process. First

row, left to right: location prior, color prior, foreground

prior, and boundaries used in defining pairwise terms. Sec-

ond row: segment in frame t− 1 used to generate the color

model, projection of this segment to frame t, the segment

from the coarse SSC corresponding to frame t, and the final

refined segment in frame t.

3. Segment Chain Composition
At this point we have computed a pool of refined SSCs,

each corresponding to an object from the video, throughout

its lifespan. We define a Video Partition (VP) as the set v of

refined SSCs such that (i) no two SSCs in v overlap, and (ii)

v cannot be extended using SSCs from the pool. We further

define a potential function over the set V of all possible VPs

as:

Γβ(v) =
∑
c∈v

β�u γu(c) +
∑

c∈v,c′∈N (c)

β�p γp(c, c
′) (9)

where β = [β�u β�p ]
� are the parameters of the model,

the neighborhood N (c) contains all refined SSCs that have

neighboring segments with c in at least one frame (i.e.

segments that would overlap when dilated a few pixels),

and γu, γp are unary and pairwise potentials, respectively.

The unary potentials capture the individual qualities of the

SSCs, β�u γu(c) = qc(c, α) (see eq. 7). The pairwise po-

tentials capture the affinity of different SSCs and make use

of per frame individual segment affinities, using the mea-

sure defined in [11]. This measure takes into account joint

region properties such as relative area, position and orien-

tation, as well as features to signal occlusion boundaries.

Inference is cast as optimization over maximal cliques, in a

graph connecting all non-overlapping refined SSCs. Mul-

tiple solutions are computed and ranked by their scores

Γβ(v). See [11] for details on the inference procedure.

4. Experiments
We evaluate the proposed framework on videos from the

SegTrack database [28], the MIT dataset [16], and Hol-

lywood movies. SegTrack contains videos with a single

moving foreground-object annotated, and is used to quan-

titatively evaluate our SSC generation. No existing dataset

provides annotation for several moving and static objects,

as appropriate for the computed VPs 3. We thus use clips

with multiple static and moving objects from the MIT

dataset [16] (only a few objects are annotated) and Holly-

wood movies, to report quantitative and qualitative results

for the multi-object case. To sum up, we use 6 videos from

the SegTrack dataset 4, 9 videos from the MIT dataset, and 2

short clips from Hollywood movies, more than 600 frames

in total.

The validated parameter values are: in eq. 2, αI = 1,

αS = 1.2, αF = 3; in eq. 4, τpf = 0.1, λp = 10 for p

= normalized area, respectively τpf = 0.1 · f , λp = 5, for

the other normalized region properties p (centroid, width

and height); when constructing SSCs, in eq. 6, we consider

m = 5 segments from nearby frames; a large threshold d0
was used, imposing for the SSCs to span over the entire

video-sequence. For eq. 7 and eq. 9, αu = 1, αp = −0.5,

βu = [αuαp]
�, βp = 1.

In the following we discuss the main steps of our frame-

work (see sec. 2 and 3 for details). We report results using

pixel-error (number of pixels that have been wrongly la-

beled as foreground/background, smaller is better), overlap

(intersection over union, larger is better) and RandIn-

dex [21]. When selecting from several candidates, first
corresponds to quality of the highest ranked configuration

that has an overlap with the ground-truth larger than 0.5

(the same methodology as [12]), best corresponds to the

highest quality configuration.

Segment generation with CPMC-OF. Table 1 shows re-

sults when including motion cues (CPMC-OF), compared

to using only per frame static appearance information

(CPMC). E.g. for the difficult birdfall video from SegTrack

(see also fig.1), the Best segment computed for the bird,

without motion cues (CPMC), has a rather small overlap

score of 0.31, because of the small foreground object with-

out a strong boundary. Adding motion information leads to

a significant improvement.

Ranking segments and SSCs. Fig. 4 shows segment rank-

ing performance, when using only static, motion, saliency,

as well as all possible features. The latter achieve superior

results. Table 2 shows results for first coarse and refined

SSCs, using only one of the three types of cues (static,

motion, and saliency), as well as all of them. When using

3The Chen Xiph.org dataset [7] provides only semantic ground-truth,

with neighboring objects of the same class indistinguishable. The Berkeley

Motion Segmentation dataset [2] considers only moving objects. The MIT

dataset [16] focuses on objects with distinct motion patterns, having an-

notations only for the static objects that are distinguishable due to camera

motion.
4Following the standard practice, we do not compare on ’penguin’.
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Sequence birdfall cheetah girl monkeydog parachute penguin

CPMC 0.31(229) 0.54(28) 0.77(151) 0.59(60) 0.90(60) 0.58(232)

CPMC OF 0.61(909) 0.64(298) 0.83(651) 0.64(415) 0.90(315) 0.70(672)

Table 1: Results of CPMC vs. CPMC-OF on the SegTrack dataset. For both methods we give averages over all frames, of

the overlap score of our Best segment in each frame (higher is better). In brackets we give the number of segments in the

generated pools. The increase in seeds and boundaries makes the parametric energy in eq. 1 have more breakpoints, which

results in a larger number of segments produced by CPMC-OF. See the text for descriptions of measures.
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Figure 4: Average overlap score for the Best segment, when

retaining the top k ranked segments, on the “cheetah” video.

Saliency and optical-flow features are informative for scor-

ing and ranking segments. Including all three types of cues

induces the best ranking.
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Figure 5: For each frame of the “birdfall” sequence, the

overlap score of the Best CPMC segment, the CPMC seg-

ment included in the best coarse SSC (Best coarse SSC),

and that segment after refinement in the corresponding re-

fined SSC (Best refined SSC).

all three ranking features the quality of the predicted first
coarse SSCs is very close to the quality of the best existing

SSCs. This evaluation uses the entire, coarse SSCs pool

(thousands of chains), and the pool of refined SSCs, gener-

ated from the reduced set of 150 high scoring coarse SSCs.

SSC generation and refinement. Fig. 5 shows for the

’birdfall’ sequence, the overlap score of the generated best

segment in each frame, and the overlap scores of the seg-

ments included in the best coarse SSC, and refined in the

corresponding refined SSC. Considering m = 5 neighbor-

ing frames when growing SSCs helps deal with frames for

which CPMC-OF fails to generate good quality segments.

Based on the predicted best coarse SSC, the refinement

improves the SSC beyond the segments in the pool S.

Single-object segmentation. The computed refined SSCs

correspond to segmentation hypotheses for a single object,

and can be evaluated as such. Table 3 shows results for the

SegTrack single-object video segmentation dataset. The

proposed method achieves state-of-the art results in 4 out

of 5 videos and is competitive on the fifth.

Video Partitions for Static and Moving Objects. Table 4

gives quantitative results obtained on the MIT dataset [16].

The video partition inference mechanism encourages select-

ing SSCs with good mutual affinity (e.g. occlusion bound-

aries), which also have object-like characteristics, as es-

timated using mid-level static descriptors as well as dy-

namic features. Fig. 6 shows visual results for multi-object

video segmentation, in several sequences taken from the

Hollywood-2 and MIT datasets. Notice that our method can

handle both static and moving objects.

5. Conclusion

We have presented a compositional approach to video

segmentation. We have argued that in order for video seg-

mentation to become useful for semantic video analysis,

learning and object categorization, it has to be lifted from

the status of a purely video clustering approach. Along

these lines, we have introduced methodology that incor-

porates a learned notion of object saliency, both static and

dynamic, propagated over time, in order to maximize the

probability of identifying persistent, accurate segments,

over many frames, and for both static and moving objects.

The inference process in this framework provides multi-

ple hypotheses at all processing stages, and leads to state

of the art results not only in the competitive benchmark

SegTrack[28], but also in complex clips extracted from

Hollywood films, and the MIT dataset[16].
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Coarse SSCs Refined SSCs

Static Saliency Motion All Best All
birdfall 0.55 (129) 0.54 (4) 0.54 (2) 0.57 (1) 0.57 0.69 (1)

cheetah 0.51 (30) 0.57 (50) 0.53 (2) 0.53 (1) 0.59 0.60 (1)

girl 0.79 (3) 0.76 (2) 0.81 (1) 0.81 (1) 0.81 0.87 (1)

monkeydog 0.52 (496) 0.52 (376) 0.52 (473) 0.52 (373) 0.52 0.72 (10)

parachute 0.86 (2) 0.50 (7) 0.81 (1) 0.80 (1) 0.86 0.94 (1)

Table 2: The quality of first SSCs when ranking using one of static, saliency, and motion cues, or using all (All), for computed

coarse and refined SSCs, on the SegTrack dataset. The numbers in brackets correspond to the actual position of the first SSC

among the ranked SSCs. The scores for coarse SSCs use the large pool, before reduction, whereas the refined SSCs use the

reduced pool of maximum 150. To show the advantage of using all cues, the score of the Best coarse SSCs is also shown.

First First Coarse Best Best Coarse [17] [12] [28]

birdfall 166(1) 312 166 312 189 288 252

cheetah 661(1) 960 629 827 806 905 1142

girl 1214(1) 1714 1182 1714 1698 1785 1304

monkeydog 394(10) 1264 394 1264 472 521 563

parachute 218(1) 902 218 537 221 201 235

Table 3: Single-object video segmentation results on the SegTrack dataset [28]: our First and Best SSCs, as well as state-of-

the art single-object video segmentation methods Key-seg [12], MWC [17], and MCT [28]. For the comparison we used the

quality of our First segmentation. First selects one of the multiple segmentations using the predicted ranking following the

methodology of [12]. The predicted rank is shown in parentheses. The used measure is pixel error (smaller is better), with

the smallest score in each video marked in bold. The proposed method has the smallest error, with a margin of over 10%,

in 4 out of 5 videos, and is competitive in the fifth. We also give the scores of the computed SSCs before refinement (prefix

’Coarse’).

Acknowledgements This work was supported, in part, by

CNCS-UEFISCDI, under PCE-2011-3-0438.

References
[1] W. Brendel, M. R. Amer, and S. Todorovic. Multiobject

tracking as maximum weight independent set. In CVPR,

2011. 2

[2] T. Brox and J. Malik. Object segmentation by long term

analysis of point trajectories. In ECCV, 2010. 5

[3] T. Brox and J. Malik. Large displacement optical flow: De-

scriptor matching in variational motion estimation. PAMI,
33(3), 2011. 2

[4] I. Budvytis, V. Badrinarayanan, and R. Cipolla. Semi-

supervised video segmentation using tree structured graph-

ical models. In CVPR, 2011. 2

[5] J. G. Carbonell and J. Goldstein. The use of mmr, diversity-

based reranking for reordering documents and producing

summaries. In SIGIR, 1998. 4

[6] J. Carreira and C. Sminchisescu. Cpmc: Automatic object

segmentation using constrained parametric min-cuts. PAMI,
34(7), 2012. 2, 3

[7] A. Y. Chen and J. J. Corso. Propagating multi-class pixel

labels throughout video frames. In WNYIPW. IEEE, 2010. 5

[8] A. Fathi, M. F. Balcan, X. Ren, and J. M. Rehg. Combining

self training and active learning for video segmentation. In

BMVC, 2011. 2

[9] M. Grundmann, V. Kwatra, M. Han, and I. A. Essa. Effi-

cient hierarchical graph-based video segmentation. In CVPR,

2010. 2, 8

[10] G. Hartmann, M. Grundmann, J. Hoffman, D. Tsai, V. Kwa-

tra, O. Madani, S. Vijayanarasimhan, I. A. Essa, J. M. Rehg,

and R. Sukthankar. Weakly supervised learning of object

segmentations from web-scale video. In ECCV Wks, 2012. 2

[11] A. Ion, J. Carreira, and C. Sminchisescu. Image segmenta-

tion by figure-ground composition into maximal cliques. In

ICCV, November 2011. 5

[12] Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video

object segmentation. In ICCV, 2011. 2, 5, 7

[13] M. Leordeanu, R. Sukthankar, and C. Sminchisescu. Effi-

cient Closed-Form Solution to Generalized Boundary Detec-

tion. In ECCV, 2012. 3, 4

[14] A. Levinshtein, C. Sminchisescu, and S. Dickinson. Spa-

tiotemporal Closure. In ACCV, 2010. 2

[15] J. Lezama, K. Alahari, J. Sivic, and I. Laptev. Track to the

future: Spatio-temporal video segmentation with long-range

motion cues. In CVPR, 2011. 2

[16] C. Liu, W. Freeman, E. Adelson, and Y. Weiss. Human-

assisted motion-annotation. In CVPR, 2008. 1, 5, 6, 8

[17] T. Ma and L. J. Latecki. Maximum weight cliques with

mutex constraints for video object segmentation. In CVPR,

2012. 2, 7

289289



car1 car2 car3 dog phone table toy hand person

HGVS [9] 0.602 0.401 0.689 0.260 0.493 0.766 0.809 0.499 0.430

Layers++ [25] 0.612 0.512 0.778 0.964 0.567 0.909 0.832 0.814 0.986

nLayers [26] 0.836 0.589 0.766 0.974 0.578 0.979 0.858 0.881 0.944

Our VP 0.823 0.972 0.771 0.884 0.846 0.919 0.896 0.990 0.930

Table 4: Quantitative evaluation of our video partitions obtained on the MIT dataset [16], using the RandIndex measure

[21]. Motion segmentation or layer-based methods such as [25] and [26] do not attempt to distinguish static objects in the

background, which are also not annotated in the ground-truth of this dataset. Thus, before evaluation, we removed those

SSCs that did not have overlaps larger than 0.5 with any annotated objects. E.g. only the printer and phone are annotated in

the sequence shown in fig. 6, whereas our method segments both moving and static objects.

Figure 6: Visual results of our segmentations in scenes with multiple objects: top and middle row showing ’Goodfellas’ and

’Big Fish’ from Hollywood, bottom row ’phone’ from the MIT dataset. The video partitioning mechanism correctly selected

SSCs corresponding to different objects, both moving and static.

[18] M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. Using con-

tours to detect and localize junctions in natural images. In

CVPR, 2008. 3, 4

[19] S. Mathe and C. Sminchisescu. Dynamic Eye Movement

Datasets and Learned Saliency Models for Visual Action

Recognition. In ECCV, 2012. 3

[20] P. Ochs and T. Brox. Object segmentation in video: A hi-

erarchical variational approach for turning point trajectories

into dense regions. In ICCV, 2011. 2

[21] W. M. Rand. Objective criteria for the evaluation of cluster-

ing methods. JAMSA, 66(336):846–850, 1971. 5, 8

[22] A. V. Reina, S. Avidan, H. Pfister, and E. L. Miller. Multi-

ple hypothesis video segmentation from superpixel flows. In

ECCV, 2010. 2

[23] A. V. Reina, M. Gelbart, D. Huang, J. Lichtman, E. L. Miller,

and H. Pfister. Segmentation fusion for connectomics. In

ICCV, 2011. 2

[24] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

segmentation and support inference from rgbd images. In

ECCV, 2012. 3

[25] D. Sun, E. B. Sudderth, and M. J. Black. Layered image

motion with explicit occlusions, temporal consistency, and

depth ordering. In NIPS, pages 2226–2234, 2010. 8

[26] D. Sun, E. B. Sudderth, and M. J. Black. Layered segmenta-

tion and optical flow estimation over time. In CVPR, pages

1768–1775. IEEE, 2012. 8

[27] D. Tsai, M. Flagg, A. Nakazawa, and J. M. Rehg. Motion

coherent tracking using multi-label mrf optimization. IJCV,

100(2), 2012. 2

[28] D. Tsai, M. Flagg, and J. M. Rehg. Motion coherent tracking

with multi-label mrf optimization. In BMVC, 2010. 1, 5, 6,

7

[29] C. Xu, C. Xiong, and J. J. Corso. Streaming hierarchical

video segmentation. In ECCV. Springer, 2012. 2

290290


