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Abstract

This paper proposes a method to reconstruct the entire
shape of moving objects by using multiple cameras and
projectors. The projectors simultaneously cast static grid
patterns of wave lines. Each of the projected patterns is a
single-colored pattern of either red, green, or blue. Those
patterns can be decomposed stably, compared to multi-
colored patterns. For the 3D reconstruction algorithm, one-
shot reconstruction with wave grid pattern is extended for
entire-shape acquisition, so that the correspondences be-
tween the adjacent devices can be used as additional con-
straints to reduce shape errors. Finally, multiple shapes
obtained from the different views are merged into a single
polygon mesh model using estimated normal information
for each vertex.

1. Introduction

In recent years, as practical and reliable active 3D scan-

ning devices develop rapidly, strong demands on captur-

ing motions of humans or animals as a series of entire 3D

shapes is emerging [7]. Such 3D data can be applied to ges-

ture recognition, markerless motion capture, digital fashion,

and analysis of interaction between multiple humans or an-

imals.

An important technical issue for the entire-shape scan of

a moving object is that a general 3D sensor can only cap-

ture surfaces visible from one direction during one measure-

ment; thus, acquiring an entire shape of an object is difficult.

One approach that has been widely used is aligning a large

number of cameras around the object, and reconstruct the

3D shape with shape-from-silhouette [3, 13] . These pas-

sive measurement systems have achieved major successes;

however, setting up those systems is complicated since they

need a large number of cameras with broad networks and

PCs, and the calculation time is huge.

Active entire-shape measurement systems could be al-

ternatives to overcome the above problems of the passive

methods. However, since active methods use light sources,

interferences between different illuminations become a ma-

jor problem. Several methods that have been proposed un-

til now can be largely separated into two types; one is to

use different colors (i.e., wave-lengths), the other is high-

frequency switching between multiple light sources with

synchronized camera capturing. Since the timing of captur-

ing for multiple light sources are different, temporal inter-

polation is needed for the integration of the shapes [20, 2],

which may limit the extent of the applicability, the latter

method is not suitable to scan fast-moving objects. There-

fore, we take the former option in our method; however, the

former method also has problems.

If each of the light sources project a light pattern with

multiple colors, it is difficult to decompose the light pat-

terns from the captured image in which multiple patterns

are overlapped on a same surface; thus, devices that just

use single-colored pattern is suitable for the system, such as

Kinect. However, just aligning multiple devices with such a

property also has problems, such as inconsistency between

shapes measured by difference devices that come from cal-

ibration errors of intrinsic or extrinsic parameters.

An approach to deal with this problem is using corre-

spondences between multiple patterns projected from mul-

tiple light projectors. As far as we know, there has been no

method that performs this method with single-colored pat-

terns. The method proposed by Furukawa et al. is related to
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this approach [5]; however, it sometimes fails to decompose

the projected patterns because each pattern has two colors.

In this paper, we propose an active entire-shape mea-

surement system in which single-colored patterns are pro-

jected, and correspondences between multiple patterns are

used. To achieve this, we extend one of the spatial-encoding

methods proposed by Sagawa et al. [17], which reconstructs

shapes by projecting a static grid pattern of wave lines, to

entire-shape acquisition. In the system, each projector emits

a single-colored waved-grid pattern with a color of either

red, green, or blue, and the multiple grid-patterns are over-

lapped. The target is captured from multiple cameras. Sim-

ilarly to Sagawa et al. [17], the reconstruction is achieved

by belief propagation (BP) on grid structure, except that

consistencies between multiple devices to suppress errors

of the entire-shape are considered. The contributions of the

proposed method is as follows:

• Decomposition of the pattern illuminated from differ-

ent projectors becomes stable since single-colored pat-

terns with RGB components are used.

• In the process of deciding stereo correspondences with

grid-based BP, correspondences between multiple pat-

terns from different projectors captured from a single

camera is used to stabilize the BP process.

• In the process of entire-shape reconstruction, corre-

spondences between points on different depth im-

ages generated with viewpoints of different projectors

are synthesized, and the errors for the corresponding

points are minimized to improve the shape accuracy.

• Since the normal information for all the vertex is ob-

tained simultaneously, a single and closed polygon

manifold mesh can be efficiently generated with Pois-

son reconstruction methods(e.g., [10]).

From the above contributions, the complexity of the sys-

tem is drastically reduced, the errors between multiple de-

vices can be globally minimized to obtain consistent entire-

shape, and dense and accurate reconstruction is achieved

because errors of pattern decomposition is reduced.

2. Related Work

To capture the entire shape of moving objects, a silhou-

ette based shape reconstruction method using a number of

camera has been widely researched and developed [3]. Al-

though the system have been constructed for various pur-

poses over the world, there are several drawbacks that still

exist for the method, such as complicated and laborious task

for the set-up and the calibration, low quality of silhouette

based reconstruction and huge computational cost.

One simple solution is to use an active light source to

decrease the number of necessary devices. However, con-

sidering the use of multiple lights for capturing the entire

shape, several light sources are projected onto the same ob-

ject and such severe interference of the multiple patterns

makes it impossible to reconstruct the shape with original

active stereo algorithm. To solve the issue, two main ap-

proaches are proposed. The first approach is quickly switch-

ing the light sources and the other is using different wave-

lengths or modulations for each light sources. In terms of

light switching approach, it is reported that 60 fps is real-

ized for the fast moving human as a target [20, 2]. How-

ever, since the technique essentially requires integration of

multiple shapes to be captured at different times, applicable

conditions are limited. Further, synchronous switching of a

number of light sources with multiple cameras is difficult.

For the technique using different wavelengths or modu-

lations for each light source, if many wavelengths are over-

lapped together at the same place, it is difficult to decom-

pose them into the original component. Therefore, reducing

the number of wavelength for each light source is the key for

the approach. For example, since TOF method usually uses

a laser with single wavelength, it is possible to use multiple

of them to capture a wide range [11]. One problem is that

the resolution of one-shot TOF scanner is low [14].

Another example is an active stereo method, which only

uses a limited number of wavelength for scan [15]. In the

method, six sets of Kinect are used for capture the wide

range of the scene. Since they use the same wavelength for

all the devices, it sometimes fails to capture the object. Fur-

ther, for both TOF and active stereo method, since shapes

are reconstructed independently, there remains severe in-

consistency during the integration of multiple shapes if cal-

ibration has some errors.

To solve such inconsistency, instead of independent re-

construction of each shape, simultaneous method for an en-

tire shape scan is proposed [3]. In the method, multiple

parallel lines are projected from each projector and each

camera captures multiple patterns with their intersections.

Since the intersection has some constraint on their original

lines, the shape is reconstructed by using the constraints.

One problem of the method is that it uses two colors for

each projector, and thus, it is overlapped on the same area

of the object surfaces, resulting in erroneous reconstruction.

Recently, active one-shot method is widely researched

and is being developed because of a strong demand to scan

moving objects [18, 21, 12, 1, 9, 16, 19]. Especially, single-

color based one-shot scan is intensively researched since it

is robust on image processing and can simplify the construc-

tion of light source [1, 17]. In this paper, we extend the

single color one-shot scanning technique for the purpose of

entire shape acquisition by using multiple sets of them.
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Figure 1. The proposed system captures entire shape by using mul-

tiple cameras and projectors.

Figure 2. An example of input images

3. Overview
The proposed system consists of multiple cameras and

projectors as shown in Fig.1. Each projector casts a static

wave-grid pattern proposed in [17]. The cameras capture

images synchronously, but no synchronization between a

camera and projectors is required because the projected pat-

tern does not change. A 3D shape at the moment of im-

age acquisition is reconstructed from the single frame of

the cameras.

The proposed method reconstructs a shape basically us-

ing a pair of a camera and projector neighboring each other.

Since a camera shares the field of view with multiple pro-

jectors in the system, multiple patterns from different pro-

jectors can be captured by a camera. In doing so, it is nec-

essary to recognize the correspondence between projector

and detected pattern. While lines of multiple colors are pro-

jected for reconstruction from each projector in [6], the re-

construction with wave-grid pattern uses single-colored pat-

tern for a projector. In this paper, we can therefore assign

different colors for the projectors. Because an off-the-shelf

video projector can cast RGB colors, we locate the projec-

tors so that neighboring projectors do not use the same col-

ors as shown in Fig.1. Fig.2 shows an example of input

images of the system with 6 cameras and 6 projectors. The

details of grid detection from the images are described in

Sec.4.

The second step is grid-based active stereo with multiple

cameras and projectors, which finds the correspondence of

intersection points of the grid patterns (grid points) between

cameras and projectors. Our method is based on the method

proposed in [17], which uses one camera and one projec-
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Figure 3. The extraction of red and blue patterns is improved by

saturating the colors.

tor. If we use multiple cameras and projectors, additional

constraints on the correspondence between two cameras, or

two projectors can be introduced. The details of grid-based

stereo are explained in Sec.5.

The third step is optimization of correspondence by us-

ing all pixels of cameras and projectors. The correspon-

dence given by grid-based stereo is used as initial value and

interpolated by using all pixels to obtain dense 3D shape.

The problem becomes multi-view stereo with cameras and

projectors, but it is simplified due to pattern projection be-

cause initial guess and visibility check are given by grid-

based stereo. The detail is described in Sec.6.

4. Detecting Grid Patterns from Multiple Pro-
jectors

A grid pattern consists of wave lines of two directions

that are perpendicular to each other. The projected patterns

are first detected as curves in a captured image, and the

grid points are calculated from the intersection points of the

curves. Since the connection of grid points is used for find-

ing correspondences, it is necessary to discriminate wave

lines of different directions. We use the method of curve

detection based on belief propagation proposed by Sagawa

et al. [16]. The method separately detects the lines of two

directions even if they have the same color.

Since multiple patterns are observed in a camera image,

it is required to recognize which projector casts the pattern.
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We use the colors for this purpose. The projected pattern

can be red, green, or blue because commercial video projec-

tors are used in our experimental system. The RGB spectra

of both camera and projector usually overlap each other and

it causes the crosstalk between the color components of the

captured image. In Fig.3, we want to extract the patterns

projected as red and blue patterns from projectors in this

image, while the projectors of green pattern are not used

because they are far from the camera to find its correspon-

dence. If we detect lines by using red and blue components

of the input image, the results are affected by the green pat-

tern. The green lines are detected in the result of blue com-

ponent at the side of the head (white circled).

To determine which projector a pattern is emitted from,

we saturate the colors before grid detection as follows:

(h, s, v) = RGB2HSV(r, g, b)

(r′, g′, b′) = HSV2RGB(h, 1, v), (1)

where RGB2HSV and HSV2RGB are functions that con-

verts between RGB and HSV color space, and colors are

represented in the range of [0, 1]. By saturating the colors,

minor components are suppressed. It is avoided that green

lines are detected in blue components.

5. Grid-based Active Multi-view Stereo

This section describes the proposed method of grid-

based active stereo. It is based on a method proposed by

Sagawa et al. [17]. The basic system has a single projector

and a single camera (1C1P). If two cameras can be used, a

method that extends the basic method is proposed in [8] to

improve the robustness and accuracy by introducing addi-

tional constraint between cameras. Since we have multiple

cameras and projectors in this paper, more constraints can

be added to the scheme for finding correspondence on the

graph created by the grid patterns.

5.1. Finding Correspondence with Wave Grid Pat-
tern between Camera and Projector

If the system is calibrated, the epipolar line in the projec-

tor image that corresponds to a grid point in the camera im-

age can be calculated. The true corresponding point of the

grid point on the projector image is the one from intersec-

tion points on the epipolar line. First, the method collects all

intersection points on the epipolar line as the candidates of

correspondence. Since the grid points are connected by the

detected curves, the grid points are regarded as nodes of a

graph. The problem of finding correspondence becomes the

one that chooses the best candidate assigned to each node.

Now, the grid graph detected in camera i consists of

nodes pi ∈ Vi, edges by curve detection (pi, qi) ∈ Ui,

where pi and qi are grid points, Vi is the set of grid points,

grid graph

on camera i

Projec�on

to camera j

Epipolar line

of 

Epipolar line

of 

Projector

Camera i Camera j

: a candidate

: a candidate

: a node of 

camera i

incorrect  edge

edge between 

cameras

edge between

to camera j

between

incorrect edge

cacameras

edge between

cameras

Object surface

: a node of 

camera j

Search area of near 

nodes from

grid graph

on camera j

Figure 4. The edges between pi and pj is generated if they satisfy

geometrical constraint.

and Ui is the set of edges. A grid point pi has the can-

didates of corresponding points tpi ∈ Tpi in the projector

pattern. In the case of 1C1P system, the energy of assigning

corresponding point tpi to each grid point pi is defined in as

follows:

E(Ti) =
∑
pi∈Vi

Dpi(tpi) +
∑

(pi,qi)∈Ui

Wpiqi(tp, tq), (2)

where Ti = {tpi |pi ∈ Vi}. Dpi(tpi) is the data term of

assigning a candidate tpi to pi. Wpiqi(tp, tq) is the regular-

ization term of assigning candidates tpi
and tqi for neigh-

boring grid points pi and qi. The data term is calculated by

comparing the local pattern around the points between cam-

era and projector images. The regularization term is zero if

tpi and tqi are on the same line; otherwise it adds non-zero

cost. Refer [17] for the detailed definition. The assignments

of correspondence are determined by minimizing the energy

accomplished by belief propagation (BP) [4].

5.2. Finding Correspondence with Constraints be-
tween Cameras

If multiple cameras can observe the projected pattern

emitted by a projector, the assignments of correspondence

between projector and camera must satisfy the geometrical

constraint between the two cameras, which is introduced

as the edges that connect graphs of two cameras. This ap-

proach is proposed in [8] and briefly explained here.

Fig.4 shows how to generate edges between two graphs.

First, we detect the wave line in the camera images and cre-

ate the grid graphs. Next, let us determine the correspond-

ing point in the projector pattern of a node pi of camera i,
which is a grid point where two lines intersect. The candi-

dates of the corresponding points tpi ∈ Tpi are the inter-

section points of the pattern on the epipolar line of pi in the

projector image, where Tpi are the set of the candidates for

the node pi. If we assume the correspondence of pi and tpi
,

the 3D coordinates P3D(tpi) for the nodes pi are calculated

by triangulation between camera i and the projector. Next,

the projection of the 3D points P3D(tpi) onto the image

302302



Correspondence is found

No correspondence for this node

pil
pik

Pa�ern from projector l
Pa�ern from projector k

φ

Figure 5. The edges between two graphs in a camera image are

generated.

of camera j is Pj(tpi) as shown in Fig.4. If the node pj of

camera j is close to Pj(tpi), pi and pj can be corresponding

points. Four P3D(tpi) are projected onto camera j in Fig.4.

Since the leftmost Pj(tpi) has no nodes in the search area,

no candidate of correspondence is found. While the right-

most one has a node pj in the search area, the node does not

have the same candidate tpi in Tpj . Since the middle two

projections satisfy the above condition, their nodes are con-

nected to pi. Once the edges between two cameras connect

their graphs, they become a single graph, which enables us

to simultaneously optimize the correspondences search of

two cameras.

By using the constraint between cameras, the energy of

the edges between cameras is defined as follows:

Xpipj (tpi , tpj ) =

{
0 tpi = tpj

μ otherwise,
(3)

where μ is a user-defined constant.

5.3. Finding Correspondence with Constraints be-
tween Projectors

The proposed system uses multiple projectors. If the pro-

jected area overlapped with each other, the correspondence

between projectors can be detected by using camera images.

Fig.5 shows a situation that two patterns are overlapped in

a camera images. If two grid points of different patterns

are projected on the same pixel of the camera, it means that

the two points of projectors corresponds each other. In that

case, the two points have the same depth from the camera.

Since it is not so frequent case that two points are projected

onto the exact same pixel, we determine the corresponding

point pik ∈ Vik of camera i for the projector k the by find-

ing pil ∈ Vil of of camera i for the projector l that satisfy

the following condition:

D(pik, pil) < φ, (4)

where D(a, b) is the distance between points a and b, and φ
is the radius of search area around pik.

The corresponding nodes of two graphs are connected as

the dotted lines shown in Fig.5. Therefore, the two graphs

become one and the assignments are simultaneously opti-

mized by minimizing the energy. The energy of the edges

of projector-projector correspondence is defined as follows:

Zpikpil
(tpik

, tpil
) = τ |di(P3D(tpik

))− di(P3D(tpil
))|,

(5)

where di(P3D) is the depth of the 3D point P3D in the co-

ordinate of camera i, and τ is a user-defined weight.

The total energy with multiple cameras and projectors is

defined by the following equation:

E(T ) =
∑
i

∑
k∈Ap(i)

E(Tik) (6)

+
∑
k

∑
i∈Ac(k),j∈Ac(k)

⎛
⎝ ∑

(pik,pjk)∈Sijk

Xpikpjk
(tpik

, tpjk
)

⎞
⎠

+
∑
i

∑
k∈Ap(i),l∈Ap(i)

⎛
⎝ ∑

(pik,pil)∈Qikl

Zpikpil
(tpik

, tpil
)

⎞
⎠ ,

where Ap(i) is the set of projectors that share the field of

view with camera i, Ac(k) is the set of cameras that share

the field of view with projector k. Sijk is the set of edges

between cameras i and j given by the pattern of projector

k. Qikl is the set of edges between projectors k and l in the

image of camera i.

6. Generating Dense Shape by Integrating All
Cameras and Projectors

The grid-based stereo in the previous section gives sparse

correspondences for the grid points of projected patterns.

The next step is to generate dense correspondences by us-

ing all pixels and a single dense intricate shape by using all

cameras and projectors. To integrate the information of all

cameras, it is necessary to check the visibility of each 3D

points from cameras, which is a common problem of multi-

view stereo. In our proposed system, however, the issue can

be simplified because the visibility from a projector is given

from the projected pattern.

The proposed integration consists of three steps. The

first step is to generate dense range images from the view

point of projectors. The second step is to optimize the range

images to minimize the errors with camera images and the

discrepancy between range images. Third, all range images

are merged into a single mesh model.

6.1. Generating Range Image for Each Projector

Once a grid pattern is detected as that of the projectors,

it is obvious that the detected points are visible from the

projector. Because the correspondence between camera and
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Projector

mask i
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Figure 6. The range image from the viewpoint of projector is gen-

erated.

Projector kProjector l

Camera i

mask l

mask k

p3Dk

rl0
rl1

rl2

rk

p3Dk
p3Dl0 p3Dl1

p3Dl2

Range data kRange data l

Figure 7. The difference between two range data is minimized by

finding the correspondence between projectors.

projector is roughly known by grid-based stereo, a range

image from the view point of the projector can be created.

If the pattern from a projector is observed by multiple cam-

eras, it is easy to merge the information as a range image

without considering the visibility. This approach is pro-

posed in [8] and briefly explained here.

Fig.6 shows the situation that a grid point tp of the pro-

jector pattern has correspondences with points, pi and pj , of

both two cameras. Two 3D points, p3Di and p3Dj , are cal-

culated by the two correspondences, which usually do not

coincide due to the errors of image processing and calibra-

tion. We integrate the depths, di and dj , from the viewpoint

of the projector by averaging them. To generate a dense

range image, the depth dr for a pixel r is calculated by

weighted average of depths of grid points inside the circle

of radius R around r. The mask image is created during the

calculation of the range image. The pixels in R is marked

as valid for camera i.

6.2. Simultaneous Optimization of Multiple Range
Images

Next, we optimize the depths of all range images by min-

imizing the energy. The energy proposed in [8] consists of

the data term and regularization term. The data term is cal-

culated by the difference of intensities between the camera

and the projector, and the regularization term is defined by

using the curvature around each vertex of the mesh model.

Now, we have multiple range images and optimize them si-

(a) (b) (c) (d)
Figure 8. 3D reconstruction of two static objects:(a) input images,

(b) grid-based reconstruction, (c) range data of multiple projectors,

and (d) integrated shape.

multaneously. If two range images are overlapped with each

other, the shapes should coincide, which can be used addi-

tional constraint to optimize the depths.

Fig.7 shows a situation that two range data of projector

k and l overlap. A 3D point p3Dk is calculated from a point

rk of projector k. The point overlaps with projector l if

the projection of p3Dk is in the mask for projector l. Then,

p3Dk is projected onto the image of projector l. If it is inside

of a triangle formed by three points, rl0, rl1 and rl2, they

become the corresponding points.

Now, the depth at a point r is dr, and we consider Δdr,

which is the small movement of dr, which is used to up-

date the depth during iterative minimization. The energy is

defined by using Δdr as follows:

E(ΔD) =
∑
k

EI + α
∑
k

ES + β
∑
i

∑
k,l∈Ap(i)

EP , (7)

EP =
∑
rk

∑
rln∈G(rk)

(P3Dk(Δdrk)− P3Dln(Δdrln ))
2,

where ΔD is the set of Δdr. EI and ES are the data and

regularization terms, respectively. Refer [8] for the detailed

explanation. EP represents the constraint between range

images. G(rk) is the function to find the corresponding

point rln of rk. P3D(Δdr) means the 3D point after p3D
moves Δdr along the line of sight. dr for each pixel is it-

eratively updated by adding Δdr that minimizes the error

E(ΔD) in non-linear minimization manner.

Finally, a single mesh model is created from the set of

multiple range data. In this paper, we apply Poisson recon-

struction proposed in [10] to merge range data.

7. Experiments
We have conducted experiments to confirm the effec-

tiveness of the proposed method. The contribution of this

304304



(a) (b) (c)
Figure 9. The differences of the basic method (b) and the proposed

method (c) from the reference shape (a) are shown by color.

Table 1. The numbers of incorrect correspondences are compared

by changing the constraint used in the grid-based stereo: (a) man-

nequin, (b) plaster figure.

Total Incorrect matches

Num. Basic w/ X w/ Z w/ X,Z

(a) 4950 271 100 101 69

(b) 2803 308 91 150 75

Table 2. The difference from the reference shape is evaluated by

changing the constraint used. The unit is millimeter.

Basic w/ X w/ X,Z w/ X,Z,Ep

2.960 2.867 2.694 2.686

paper is to improve robustness and accuracy by introduc-

ing additional constraints to the framework of grid-based

stereo, and we show that the computational time is suffi-

ciently low to process many frames as one of advantages of

using the active approach. In the experiments, we used six

cameras of 1600 × 1200 pixels that capture images at 30

frames/second, and six liquid crystal projector 1024 × 768

pixels, which are placed around the target objects. The dis-

tance of objects from cameras and projectors is about 2.0m

in the experimental system.

First, we captured static objects and evaluated the robust-

ness and accuracy of finding correspondence. Fig.8 shows

the results of two static objects. (a) is one of input images.

(b) is the result of grid-based stereo, and (c) is the dense

range data after optimization. (d) is the merging result of

the range data.

We evaluate the robustness of finding corresponding grid

points by adding new constraints proposed in this paper.

The number of incorrect matches is counted for the results

obtained by changing the constraint used in the grid-based

stereo. Table 1 shows the results of two objects shown in

Fig.8. The basic method does not use the both constraints,

Xpikpjk
and Zpikpil

in Eq.(6). We tested to use either X
or Z to compare with the proposed method that uses the

both X and Z. The number of incorrect matches is clearly

reduced by the additional constraints. The number of incor-

rect matches on the proposed method is about one fourth of

the basic method.

Next, we evaluated the accuracy by calculating the dif-

Table 3. Computational time for reconstruction in seconds.

Mannequin Plaster figure

Grid detection 2.518 2.463

Grid-based stereo 0.517 0.381

Optimization 0.256 0.228

Integration 4.205 4.159

Total 7.498 7.233

ference from the reference shape obtained by a close-range

3D scanner, which is shown in Fig.9(a). The height of the

figure is about 0.6m. The differences are shown by color

in the basic method (b) and the proposed method (c). The

green area, which indicates that the difference is small, is

increased in (c) compared to (b). The average difference is

summarized in Table 2. Ep means the constraint used in

Eq.(7) of the optimization. The accuracy is improved by

adding the constraints.

One of the advantage of the proposed method is the

two-step approach for finding correspondence that rough

estimation is done by grid-based stereo and dense shape

is obtained by optimization. Moreover, the algorithm is

easy to be parallelized by using GPU. The computational

time for each step of the algorithm is summarized in Table

3. We used a PC with Intel Xeon 3.07GHz and NVIDIA

Quadro4000. The numbers of vertices of the reconstructed

models are about 22K and 54K, respectively. Except for in-

tegration, the computation is mostly accomplished by GPU.

Since the time for a frame is less than 10 seconds, the mod-

els for a long image sequence can be generated in a reason-

able time. The major parts of the time are grid detection

and integration. Since the grid detection is calculated for 12

pairs of camera and projector in the experiment, it is pos-

sible to speed up by further parallelization. We used the

implementation provided by Kazhdan [10] for integration.

One of future work is to develop a method of integration

specialized to the proposed method to speed up.

Finally, Fig.10 shows an example of capturing a person

in motion. They are eight frames out of 60 frames cap-

tured at 30 frames/second. The entire shape of the person is

successfully reconstructed, and it is sufficiently dense and

accurate to represent the details of the cloth.

8. Conclusion
In this paper, we proposed a one-shot active 3D recon-

struction method for capturing the entire shapes of moving

objects. The system reconstructs the single shape, which is

projected by multiple projectors and is captured by multi-

ple cameras. This is done by finding the correspondences

between the cameras and the projectors and applying our

original simultaneous reconstruction algorithm. For stable

and robust image processing, we use just single color for

each pattern, which acquires reliable decomposition from

multiple overlapped patterns on the same object. Another

contribution of the paper is an efficient representation of the

correspondences between multiple cameras and projectors
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Figure 10. 3D reconstruction of a jumping person.

using graph structure, which is suitable to apply state-of-

the art optimization techniques, such as BP or GraphCut. In

the experiments, consistent shapes are reconstructed with

our technique, whereas independent reconstruction results

showed several gaps between shapes. In the future, we plan

to extend the proposed method to achieve real-time process-

ing using GPU and reconstruct a single surface directly.
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