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Abstract

We present a method for reconstructing the geometry
and appearance of indoor scenes containing dynamic hu-
man subjects using a single (optionally moving) RGBD sen-
sor. We introduce a framework for building a representa-
tion of the articulated scene geometry as a set of piecewise
rigid parts which are tracked and accumulated over time
using moving voxel grids containing a signed distance rep-
resentation. Data association of noisy depth measurements
with body parts is achieved by online training of a prior
shape model for the specific subject. A novel frame-to-
frame model registration is introduced which combines it-
erative closest-point with additional correspondences from
optical flow and prior pose constraints from noisy skeletal
tracking data. We quantitatively evaluate the reconstruc-
tion and tracking performance of the approach using a syn-
thetic animated scene. We demonstrate that the approach
is capable of reconstructing mid-resolution surface models
of people from low-resolution noisy data acquired from a
consumer RGBD camera.

1. Introduction
Reconstruction of the dynamic geometry and appearance

of scenes has several application areas including content

creation, scene navigation, digital cartography and biomet-

rics. Current approaches require multiple video cameras

and/or depth sensors. We aim to reconstruct scenes using

only a single low-cost commodity RGBD sensor (such as a

Kinect). This work aims to extend previous work on depth-

based tracking and reconstruction of rigid surface geometry

to articulated structures with piecewise rigid surface geom-

etry, in particular people. We focus on scenes containing

static background geometry and a moving human subject.

The proposed method takes as input a sequence of RGB

and depth maps captured from an RGBD sensor that may be

either fixed or hand-held. A further input to the system is the

approximate and noisy skeletal pose of the subject at each

frame, as obtained from the depth maps by an off-the-shelf

skeletal tracker. The output of the system is a set of tex-

Figure 1: Reconstruction of dynamic human subject and

static background scene, showing partitioning.

tured meshes and their poses at each frame in the sequence,

which together form a piecewise rigid representation of the

dynamic scene.

The proposed approach is summarised in Figure 2. We

use a moving voxel grid for each rigid part to integrate sur-

face measurements. The poses of these grids are tracked

sequentially using the skeletal pose as initialization and re-

fining the pose by performing an ICP-like registration be-

tween incoming frames and synthetic frames ray-cast from

the integrated model. The registration also includes matches

based on optical flow between successive RGB frames as

well as terms based on the deviation of part pose from the

input skeletal pose. We use rules (with parameters trained

online) to assign depth measurements to single parts in

cases where their voxel grids overlap, this helps prevent

generation of spurious geometry.

The model surfaces are incrementally extended and re-

fined as new depth measurements are integrated. The set of

accumulated surfaces can be extracted at any frame using

marching cubes [10] after which a per-vertex texture is ap-

plied to the resulting mesh by back projecting colours from

the RGB images onto each vertex, subject to a visibility test
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with all parts. These meshes together with the sequence of

sensor and part poses allow the reconstructed dynamic se-

quence to be played back. The resulting 3D geometry is

more complete and less noisy than the raw 2.5D geometry

contained in each input depth map.

1.1. Previous work

The KinectFusion system [12] produces models of rigid

scenes from a Kinect depth sensor using truncated signed

distance function (TSDF) [7] measurement integration and

point-to-plane ICP registration between incoming depth

frames and the synthetic depth frames ray-cast from the

TSDF model. GPU parallelization allows KinectFusion to

run at video-rates. In this work we build on this approach

to allow reconstruction of piece-wise rigid scenes using the

additional input of a tracked skeletal pose.

In [4], three depth sensors are used to automatically de-

rive articulation constraints and reconstruct motion and ge-

ometry, while [15] use three Kinects to perform articulated

tracking with prior laser-scanned models of the subjects. In

this work we use only a single sensor view, and use no prior

surface scans.

Iterative closest point (ICP) algorithms have been widely

used for the alignment of point clouds, typically using the

sum of squared point-to-point [2] or point-to-plane [5] dis-

tances between matched points, where the point matches

are re-estimated at each iteration. These registration algo-

rithms tend to work best on geometry that has enough im-

plicit features to constrain the transforms. In the registra-

tion of human parts, there are typically at least two degrees

of freedom which are not well constrained by their geome-

try (consider an upper/lower limb which could rotate about

its axis and translate along its axis without affecting the

closest point error). This motivates the need for additional

constraints in the registration cost function. Image assisted

depth map registration has been proposed in [14], where op-

tical flow on luminance images is used to obtain point cor-

respondences. We combine optical flow correspondences

and point-to-point error, with point-to-plane distances and

skeletal pose constraints.

The ICP framework has been extended to articulated

bodies [13], [8]. Such approaches are unsuitable for this ap-

plication where we assume noisy skeletal input where joint

positions may differ from the true joint positions by several

cm, and bone lengths are not maintained. We therefore use

the skeleton tracking as an additional data term in per-part

registration rather than enforcing articulation as a hard con-

straint.
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Figure 2: Overview of the proposed reconstruction system.

The core registration/integration cycle is in bold.

2. Registration and model integration
2.1. Problem statement

A single moving RGBD sensor is used to capture a scene

containing static background geometry and a moving hu-

man subject. Using the captured depth maps, RGB im-

ages and approximate skeletal tracking as input, we aim to

track the sensor and simultaneously build a piecewise rigid

model of the dynamic human subject without using any pre-

scanned surface models.

2.2. Summary of approach

We treat the background scene as a static object fixed in

the global reference frame, and the human body as a piece-

wise rigid set of surface parts associated with a hierarchical

articulated skeleton. We use the TSDF to integrate depth

measurements into models. The TSDF is an intermediate

volumetric representation which allows incremental build-

ing and de-noising of surface models as new measurements

are added. TSDFs are well suited to integration of sur-

face measurements of general rigid scenes where shape and

topology are unknown. We extend the TSDF representation

to integrate observations of both the static background and

piecewise rigid parts of the foreground.

The moving RGBD camera pose is estimated using

point-to-plane ICP between input depth maps and back-

ground TSDF model. This strategy is shown in [12] to

be less susceptible to drift than raw frame-to-frame ICP. To

increase the robustness of this camera pose estimation ap-

proach we also use point-to-point terms obtained via optical

flow on the RGB images.

Because the subject is moving during the capture, we

also need to track the parts over time. One of the main dif-

ficulties with using ICP for this is that the parts typically

occupy a relatively small portion of the frame (compared to

a static background) and therefore provide far fewer mea-

surements. This, along with symmetries in the parts, makes

standard ICP inadequate for part tracking, even when colour

images are used as well. We propose a method for includ-

308308



ing noisy joint pose data from the skeletal track in the part

registration in order to initialize part pose at the start of reg-

istration and also as an extra constraint in the optimization.

In practice, the bounds of two or more part volumes often

partially overlap with one another. To mitigate the genera-

tion of spurious geometry in the reconstructed surfaces, a

mechanism is therefore required for the assignment of sur-

face measurements to individual parts. This part data as-

sociation approach is based on the measurement’s relative

proximity to simple prior models of each part, trained for

the subject online using the first depth frame.

2.3. Definitions

All subscripted matrices T denote 4×4 rigid body trans-

forms. For example the (known and fixed) pose matrix of

the colour sensor relative to the depth sensor is Tcd (and

Rcd and tcd are its rotation matrix and translation vector

components, respectively). The depth and RGB sensors

have known and fixed 3×3 camera matrices Kd and Kc, re-

spectively. The depth sensor pose at the first frame, Td
0 = I

is defined as the global coordinate system. The sensor may

move from frame having pose Td
k at frame k.

Let a dot above a 3-vector u denote its homogeneous

form u̇ := [uT 1]T and K̇ denote the 4× 4 homogeneous

form of K. In a similar vein, let Ṫ denote the 3× 4 matrix

formed by discarding the last row of a transform T. The

operator ρ denotes conversion from homogeneous to image

pixel coordinates: ρ([x y z 1]T ) := (�x/z�, �y/z�).
The input to the system is a sequence of frames Fk :=

{Dk, Ck, Sk} where Dk is a depth map, Ck is an RGB im-

age and Sk is the skeletal pose estimate at frame index k.

The depth map Dk := {dk(u, v) : 0 ≤ u < wd, 0 ≤
v < hd} where dk(u, v) is the measured depth in metric

units at pixel coordinates (u, v) and hd and wd are the image

dimensions. For pixels where no measurement is available

dk = 0. We define a point map as Vk := {vk(u, v) : 0 ≤
u < wd, 0 ≤ v < hd} where

vk(u, v) = dk(u, v)K
−1
d [u v 1]T (1)

is the re-projected depth point in depth sensor coordinates,

from which a normal map Nk := {nk(u, v) : 0 ≤ u <
wd, 0 ≤ v < hd} is estimated using nearest neighbours

[12].

The RGB image Ck := {ck(u, v) : 0 ≤ u < wc, 0 ≤
v < hc} where ck(u, v) is the measured RGB vector at

pixel coordinates (u, v) and hc and wc are the image di-

mensions.

The input skeletal pose estimate Sk := {Jj
k : 0 ≤

j < n} where n is the number of joints. A joint Jj
k :=

{Tj
k, r

j
k, t

j
k}, consists of a pose Tj

k (w.r.t. the depth sen-

sor coordinate system), and pose estimation confidences

rjk ∈ [0, 1] and tjk ∈ [0, 1] for the joint position and ori-

entation, respectively.

End joint

Base joint

Bone axis

Voxel (0, 0, 0)

Voxel 

(wi -1, hi -1, di  -1)

Figure 3: Left: skeletal pose. Centre: defining part pose and

size in terms of joint poses. Right: initialized part sized and

positions.

We define a part as Pi := {Gi, si, t
o
i ,T

i
k} where Gi is

its voxel grid, si is the voxel size (in metric units), toi is

the metric offset between the grid coordinate origin and the

origin of the local coordinate system of the part, and Ti
k is

the global pose of the part at frame k. We define a voxel grid

as Gi :=
{{fi(u, v, w), gi(u, v, w)} : 0 ≤ u < wi, 0 ≤

v < hi, 0 ≤ w < di
}

where fi(u, v, w) and gi(u, v, w) are,

respectively, the signed distance value and weight at voxel

position (u, v, w), and wi, hi and di are, the width, height

and depth in voxels, respectively.

2.4. Skeletal model and initialization of parts

Our representation consists of two volumetric models

which are simultaneously built from the RGBD observa-

tions: a global rigid background scene model Pbg and a

generic piecewise rigid model consisting of m human body

parts Ph := {P0, . . . , P(m−1)}. The parts in Ph have their

grid dimensions and coordinate system defined using the

skeletal data from the first frame S0 (refer to Figure 3). The

known skeleton joint connectivity defines a base and end

joint for each part. Let λ(i) denote index of the base joint

of part Pi ∈ Ph. The base joint pose of the part defines the

part coordinate system with the part bone along one of its

axes. Thus given this origin and orientation, it remains to set

the six sides of the grid. The sides orthogonal to the bone

axis are set using the base and end joint positions, the sides

parallel to the bone axis are set based on expected anthro-

pometric ratios for limb width to length dimensions giving

part volumes which are sufficient to enclose the part surface.

2.5. Camera and part registration

In a reconstruction cycle at time k, we refer to the current

frame k as the source and the previous frame k−1 as the tar-
get. We define F i

k−1 := {Di
k−1, Ck−1, Sk−1}, where Di

k−1

is a synthetic version of Dk−1 obtained by ray-casting into

the current estimated model Gi from the perspective of the
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depth camera at frame k − 1 [12].

The depth camera pose Td
k is estimated by registering Fk

against F bg
k−1 using Td

k−1 as initialization. Then for each

human part Pi ∈ Ph we estimate pose Ti
k by registering

Fk against F i
k−1 using the estimated skeletal pose from Sk

as initialization. Note that in the case of background part

registration the camera moves and the part is fixed in global

coordinates (moving source), but in the case of human part

registration, the camera is fixed and the part moves (mov-

ing target). However, we find it more convenient to have

a unified formulation for both camera and part registration.

Therefore for each Pi ∈ Ph we re-register the camera using

Pi to give an ‘apparent camera pose’ Td,i
k and then obtain

the actual part pose Ti
k using the inverse of apparent camera

pose change:

Ti
k = (Td,i

k (Td
k)
−1)−1Ti

k−1. (2)

The aim of registration is to find the rigid body trans-

form that brings source points Vk into alignment with target

points V i
k−1 according to an alignment cost function. The

proposed registration system is based on ICP with point-to-

point and point-to-plane distances as well as an additional

constraint based on skeletal pose. At each iteration a cost

function is minimized w.r.t. an incremental pose T̃. The

per-iteration registration cost function for a part Pi at frame

k is

Ei,k(T̃) = Ep
i,k(T̃) + woE

o
i,k(T̃) + wsE

s
i,k(T̃) (3)

where Ep
i,k(T̃) is the point-to-plane term, Eo

i,k(T̃) is the

point-to-point term and Es
i,k(T̃) is the skeletal pose term as

described in the following subsections. Weights wo and ws

control the relative contribution of each error term. We use

equal weighting for projective and and optical flow matches

(wo = 1) and set ws = 3000. (The relatively large weight-

ing for ws compensates for the relatively small number of

skeletal constraints compared to depth data-points.)

An important part of the registration is the data associa-

tion process. Formally, we define a data association as the

assignment of each source depth point vk(us, vs) to a tar-

get depth point vk−1(ut, vt) via a function Ω : (us, vs) →
(ut, vt). We use the projective data association algorithm

[3] defined as

Ωp(us, vs) = ρ
(
K̇d(T

d
k−1)

−1Td
kv̇k(us, vs)

)
(4)

and also an optical flow-based data association Ωo(us, vs)
similar to [14], where the 3D depth point correspondences

are inferred via the 2D correspondences from optical-flow

on the images.

The point-to-plane distance is generally preferred over

point-to-point as it tends to converge faster. However it does

not constrain the transform when the geometry is highly

uniform, even when given matches obtained using another

modality (e.g. optical flow on images). We therefore opt to

use both types of distance in the registration.

The point-to-plane error term Ep
i,k(T̃) which uses the

projective matches is defined as

Ep
i,k =

∑

Ωp(u,v)�=null

( ˙̃TTd
kv̇k(u, v)−

Ṫd
k−1v̇

i
k−1(Ωp(u, v))

) · nk(u, v).

(5)

and the point-to-point term Eo
i,k(T̃) which uses the optical

flow matches is defined as

Eo
i,k =

∑

Ωo(u,v)�=null

|| ˙̃TTd
kv̇k(u, v)−Ṫd

k−1v̇
i
k−1(Ωo(u, v))||2.

(6)

2.5.1 Skeletal pose constraints

The registration of each human part Pi ∈ Ph employs ad-

ditional constraints which serve to minimize the difference

between its pose Ti
k and the pose of its corresponding joint

J
λ(i)
k ∈ Sk, Tji

k . We minimise the squared distance be-

tween the transform origins

t2 = ||tik − tjnk ||2 (7)

and the squared angles between coordinate axes,

θ2x ≈ ||Ri
k î−Rjn

k î||2
θ2y ≈ ||Ri

k ĵ−Rjn
k ĵ||2

θ2z ≈ ||Ri
kk̂−Rjn

k k̂||2
(8)

where î, ĵ and k̂ are the unit basis vectors and a small an-

gle assumption has been used to replace angles with straight

line distances between the basis vectors, as depicted in Fig-

ure 4. The prior skeletal pose constraint term is defined as

Es
i,k =t

λ(i)
k ||tik + t̃− t

λ(i)
k ||2

+ (1/3)r
λ(i)
k

(||R̃Ri
k î−Rjn

k î||2
+ ||R̃Ri

k ĵ−Rjn
k ĵ||2

+ ||R̃Ri
kk̂−Rjn

k k̂||2)
(9)

where the position and orientation constraints have been

weighted by the confidences of the input skeletal track.

2.5.2 Optimization

Assuming small incremental rotations and linearising the

rotation matrices, the cost function (3) can easily be written

as a 6×6 symmetric linear system of the form
∑

ATAx =
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Position constraint Orientation constraints

θx

θy

θz

t

Figure 4: Position and orientation constraints based on rela-

tive pose between part and its joint from the skeleton. Point-

to-point distances approximate angles in the rotation con-

straints.

∑
ATb and solved for the 6D incremental transform vector

x using Cholesky decomposition (similar to [12]). The in-

cremental transform x is used to generate T̃ which is com-

posed onto Td,i
k at each iteration.

2.6. Measurement integration

After the camera pose and all part poses for new frame

Fk have been estimated, each of the raw measured surface

points vk(u, v) ∈ Vk is integrated into the background

model Pbg and/or part models Ph as appropriate. When

vk(u, v) occupies the voxel grid of more than one part, there

is a risk of incorrectly updating the surface models such that

surfaces measurements from one part (e.g. the upper arm)

may be integrated into the surface model of another (e.g.

the thorax). Furthermore it is often the case that the back-

ground volume Pbg overlaps completely with the parts in

Ph. We therefore assign each observation vk to a single

part.

2.6.1 Prior on part surface geometry

The assignment decision is ambiguous when the depth point

occupies two or more body parts. In these cases we make

use of a simple prior surface model representing the approx-

imate size and shape of each part. The prior model Ci for

each part Pi ∈ Ph is a cylinder or elliptic cylinder aligned

with and centred on Pi’s bone axis (requiring only 1 or two

parameters to be estimated). For the head and limb parts we

use a cylinder, for the trunk parts we use elliptic cylinders

(Figure 5). While fitting algorithms such as RANSAC could

be used, we find it sufficient to fit by exhaustive sampling of

the permitted range of radii (in increments of 15 mm) and

choosing the radii which lead to the highest number points

in the first frame depth point map V0 falling within a toler-

ance distance of its candidate (elliptic) cylinder. As shown

in Figure 2, this fitting process is performed once (prior to

the commencement of the reconstruction cycle).

Test models

Fitted models

Depth measurements

Figure 5: Using measured depth points to fit cylin-

ders/elliptic cylinder prior surface models depth map sur-

face measurements. The rectangles are the grid boundaries

and dotted grey lines are the true surface.

2.6.2 Assignment of depth measurements to parts

Let the function c(Pi,vk(u, v)) denote the distance be-

tween vk(u, v) and the fitted elliptic cylinder for Pi. Let

the operator Ψ(vk(u, v), P ) denote the number of parts in

a set of parts P that are occupied by vk(u, v). Algorithm 1

defines the part assignment rules, which assign depth points

to the closest prior surface model in cases of part overlap.

Figure 6 illustrates the approach.

Algorithm 1 Assignment of depth points to parts (the in-

dices of vk(u, v) have been omitted for brevity)

if Ψ(vk, Pbg) = 1 and Ψ(vk, Ph) = 0 then
vk is assigned to Pbg

else if ∃Pi ∈ Ph : Ψ(vk, Pi) = 1 and Ψ(vk, Ph) = 1
then
vk is assigned to Pi

else if Ψ(vk, Ph) > 1 then
vk is assigned to argmin

Pi∈Ph:Ψ(vk,Pi)=1

c(Pi,vk)

else
vk is assigned to null

end if

While it is important not to introduce surfaces into the

wrong part, it is also important that observed free space
is integrated into all parts which lie between that surface

and the depth camera, otherwise any spurious geometry in

free space between the measured point and the depth sensor

camera would be allowed persist.

We define a function φi(u, v, w) :=
diag(si)[u v w]T + t0i which transforms from voxel
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BG
A

TSDF

1

2

3

4

1 → BG

2 → B

3 → C

4 → A

Figure 6: Integration of measurements with multiple rigid

parts. Note that in the variable SDF region (dashed blue)

a depth point only contributes to the part to which it was

assigned, but in the free-space SDF region (red) it may con-

tribute to any parts along its line of sight.

index coordinates to local part coordinates. The projective

signed distance f̂m
i (u, v, w) between a voxel (u, v, w) and

its associated depth point vk is:

f̂m
i (u, v, w) =± ||vk

(
ρ(K̇d(T

d
k)
−1Ti

kφ̇i(u, v, w))
)

− I3×4(T
d
k)
−1Ti

kφ̇i(u, v, w)||
(10)

where the sign of f̂m
i is the sign of the z-value of the ar-

gument of the norm. The update rule is given by Algo-

rithm 2, where gmi (u, v, w) is the weighting of the measure-

ment (constant in our case), μ is the truncation distance and

fm
i (u, v, w) is the truncated version of f̂m

i (u, v, w).

Algorithm 2 Multi-part voxel grid update rules for part

Pi ∈ {Pbg ∪ Ph} at frame k

for ∀{fi(u, v, w), gi(u, v, w)} ∈ Gi do
if ( |f̂m

i (u, v, w)| < μ and pixel is assigned to Pi ) or
( |f̂m

i (u, v, w)| ≥ μ ) then
fi(u, v, w)← (fi · gi + fm

i · gmi )/(gi + gmi )
gi(u, v, w)← gi + gmi

else
do not update voxel (u, v, w)

end if
end for

3. Experimental results
We tested our system both qualitatively on real data from

a consumer RGBD camera and quantitatively on synthetic

data with known ground truth articulated motion and sur-

face shape. We use a skeletal model containing 15 joints

from which we derive 11 parts (see Figures 3 and 1).

3.1. Real and virtual sensor

We used an Xtion Pro Live, which is based on the same

PrimeSense sensor as the ubiquitous Kinect, but allows syn-

chronization of the 30 fps 640×480 RGB and depth stream

and also allows locking of the RGB exposure and white bal-

ance (which helps make the final model texture more con-

sistent). It was calibrated using a chart-based calibration

tool to obtain Kd, Kc and Tcd.

We make use of an off-the-shelf depth map-based skele-

tal tracker from OpenNI’s NiTE middle-ware to obtain the

initial pose estimate Sk for each frame. The NiTE skeleton

representation provides 15 joint position and orientation in

the coordinate system of the depth sensor (Figure 3). The

tracker exhibits significant amounts of jitter in the joint po-

sitions and bone length is not maintained. A significant lim-

itation of the NiTE tracker is that it is unable to function in

the presence of sensor motion1, therefore our real-world ex-

periments are restricted to a fixed sensor.

We aim to make the synthetic data resemble Kinect data

so that the evaluation gives some insight into expected real-

world performance. Thus for the virtual camera we use the

same resolution and calibration as the Xtion. We add Gaus-

sian noise and quantize the depth maps following the Kinect

noise model in [9], where the standard deviation of the

depth map random noise and the quantization steps both in-

crease quadratically with distance, reaching 4 cm and 7 cm

respectively at 5 m. We also add a moderate amount of

Gaussian noise to the RGB images (resulting in a PSNR of

34 dB).

3.2. Evaluation on synthetic sequences

We generated a synthetic scene containing a background

‘lobby’ set and an animated dynamic character (Figure 7a).

The character was animated using skeletal motion from the

CMU Motion Capture Database [6] (Subject 14, Trial 01

- ‘boxing’), simplified to the NiTE skeleton representation

and re-targeted to the character. Subsequently a mesh se-

quence of the moving character was created using Linear

Blend Skinning [11] with skinning weights automatically

calculated according to [1]. The final sequence of textured

3D models along with the skeletal motion sequence used to

drive the character provide the ground-truth data for quan-

titative evaluation.

We generated two RGBD videos of the ‘boxing’ se-

quence - one with the static virtual sensor (689 frames)

and the other with shaky hand-held motion (510 frames).

1We believe this may be due to static background subtraction being

used internally in the NiTE tracker.
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We tested on both the noise-free and noise-corrupted ver-

sions of the data. For the noise corrupted sequences we also

added Gaussian noise (with standard deviation 8.3 mm) to

all joint positions in order to simulate the jitter of the real

depth-map based skeletal tracker. Figure 7 shows selected

results from this data. Videos of these results are provided

in the supplementary material.

Figure 8 shows quantitative results for the synthetic se-

quences under different registration modes (obtained by

disabling the appropriate terms in (3)). Figure 8a illus-

trates how the model becomes more complete as new depth

frames are integrated. The extensive motion of the charac-

ter throughout the sequence results in the inclusion of most

of the scene surface after about 200 frames, after which few

new areas become visible to the camera (the back of the

character is never fully visible to the camera).

We also determine whether or not our registration ap-

proach improves the tracking of the parts compared to the

noisy skeletal tracking input. For this we compute statistics

on the relative pose between each part’s ground truth pose

and its registered pose throughout the sequence. Figure 8b

shows the RMS error in each component of the relative pose

of the upper left arm over the noisy fixed camera sequence.

The proposed surface registration reduces both the trans-

lation and orientation error compared to the noisy skeletal

pose. Including the optical flow point-to-point constraints

improves the orientation error compared to point-to-plane

alone.

Figure 8c shows the camera tracking error (for the noisy

sequence) for both standard ICP and for the proposed im-

age assisted registration. Note that the optical flow as-

sisted registration term maintains tracking to within a few

cm throughout, while the standard ICP diverges.

To evaluate the reconstructed surface quality we com-

pute the RMS distance between every vertex in the recon-

structed surface and its closest point the ground-truth sur-

face (at the first frame). A visualization of this is shown

in Figure 7d. The RMS surface error for the fixed camera

sequence was 10 mm for the clean data and 14 mm for the

noisy input data. For the moving camera sequence it was

12 mm and 22 mm for clean and noisy input, respectively.

The clean data results in more accurate surface reconstruc-

tion. This is because the depth data is less noisy and also

because skeletal pose error does not contribute. In the case

of the moving camera, the camera pose estimation step also

further contributes to the error.

3.3. Evaluation on real sequences

Figure 9 shows the result of running the system on a real

‘turning’ sequence. The subject is roughly 2 m from the

sensor, resulting in very noisy depth map input (left). If

the noisy NiTE skeleton tracking alone is used as the pose,

the resulting surface reconstruction is inaccurate and lacks

Figure 9: Normal colour-mapped visualization of the head

in ‘turning’ sequence. From left to right: raw input frame,

3D reconstruction using noisy skeletal pose only, recon-

struction using proposed registration.

detail (centre). However, when the proposed registration

system is used, a more accurate and detailed model is pro-

duced (right). The complete sequence is given as a video in

the supplementary material (along with a further ‘star jump’

sequence).

4. Conclusion and future work

We demonstrate a feasible approach to modelling of dy-

namic human geometry using a single RGBD sensor, pro-

ducing a high quality piece-wise rigid model of a subject

performing in a scene. The approach integrates noisy sur-

face observations over time to reconstruct a complete sur-

face with mid-resolution detail (creases, facial features)

which are not visible/resolved in the individual depth im-

ages.

The dynamic scene is represented as a static back-

ground volume model and piece-wise rigid articulated vol-

ume structure. A novel data-association approach is intro-

duced to robustly assign observations to the body parts in

the presence of inter-part occlusion and overlap/close prox-

imity. The novel representation is demonstrated to allow fu-

sion of dynamic articulated surface observations over time

to reconstruct a complete surface and integrate out sensor

noise to resolve surface detail.

The proposed reconstruction system is ‘online’ in the

sense that the required computational resources are inde-

pendent of sequence length and it processes the frames se-

quentially. However, our implementation, while making use

of the GPU, is not highly optimized and currently runs at
∼2 fps on our hardware (GeForce GTX 560 Ti GPU, 3.4

GHz Intel Core i7 CPU).

Because of the piecewise rigid approach used, there is no

concept of continuity at joints, therefore the extracted part

surfaces exhibit seams between parts, which leads to visual

artefacts. Future work will investigate extending the sys-

tem for merging of the reconstructed geometry at the joints

seems or using non-rigid representations for continuous in-

tegration between parts.
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(a) RGB frame of synthetic se-

quence.

(b) Normal colour-mapped re-

constructed geometry.

(c) Textured reconstructed ge-

ometry.

(d) Reconstructed surface error

(blue - 0, red 5 cm).

Figure 7: Results on synthetic ‘boxing’ sequence with noisy fixed sensor (FN).
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