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Abstract

Image and video classification is a challenging task, par-
ticularly for complex real-world data. Recent work indi-
cates that using multiple features can improve classification
significantly, and that score fusion is effective. In this work,
we propose a robust score fusion approach which learns
non-linear score calibrations for multiple base classifier s-
cores. Through calibration, original base classifiers scores
are adjusted to reflect their true intrinsic accuracy and con-
fidence, relative to the other base classifiers, in such a way
that calibrated scores can be simply added to yield accurate
fusion results. Our approach provides a unified approach to
jointly solve score normalization and fusion classifier learn-
ing. The learning problem is solved within a max-margin
framework to globally optimize performance metric on the
training set. Experiments demonstrate the strength and ro-
bustness of the proposed method.

1. Introduction

The goal of image and video classification is typically

detecting or retrieving images or videos with particular con-

tent such as object classes (e.g., flower) or complex events

(e.g., flash mob). It is particularly challenging for real-

world datasets which exhibit significant visual clutter, smal-

l inter-class variations, and large intra-class variations. To

deal with such challenges, multiple features are frequently

considered and fused to improve classification. Many algo-

rithms have been proposed for combining multiple features,

and their effectiveness have been proved on various visual

classification tasks [1, 4, 12, 6, 30].
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To fuse multiple features, there are two main strategies.

Early fusion [1, 6] directly learns a single classifier across

multiple features, and outputs a single confidence value on

a test sample. In early fusion (also called feature fusion),

learning is accomplished mostly by concatenating features,

or using multiple kernel combinations (e.g., [1]). In con-

trast, late fusion trains multiple base classifiers indepen-

dently on different features, and then combines their output

[4, 10, 16, 9, 28]. The most common type of late fusion is s-
core fusion, where the scores of the base classifiers are com-

bined. (The alternative is decision fusion, where the binary

decisions of the base classifiers are combined.) Compared

to early fusion, late fusion approaches have a number of ad-

vantages: (1) they are less memory intensive and more par-

allelizable because entire features need not be loaded onto

memory at the same time; (2) late fusion provides a prac-

tical framework to combine additional off-the-shelf classi-

fiers which can not be easily incorporated into early fusion;

and (3) late fusion approaches are of superior or comparable

accuracy to early fusion [4, 27].

However, one major challenge with score fusion is that

scores generated by different base classifiers may exhibit d-

ifferent ranges and even substantially different distributions.

This variation in the score profiles makes it sub-optimal to

blindly apply any fixed score fusion rule (e.g., sum or prod-

uct from [10]) on the raw base classifier scores.

Score normalization schemes [18, 5, 24] have been wide-

ly studied to partly address this challenge. A common char-

acteristic of these schemes is that each set of base classifier

scores is independently normalized into a [0, 1] range us-

ing a priori assumptions, and then are summed to produce

fusion scores. Some normalization schemes include Platt

scaling [18] (to account for the different behaviors of, e.g.

SVM and boosted trees vs neural networks), and other s-

caling techniques using different assumptions on the score

distribution model, including Gaussian [5], sigmoid [5], and

Weibull [24]. Two key limitations of these schemes are that

fusion is sensitive to the accuracy of the assumed score dis-

tribution model, which is difficult to judge in practice for

black-box, off-the-shelf classifiers; and that each base clas-

sifier is treated equally even though individual accuracy can
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Figure 1. First row: distributions of three different score types by

a same classifier on the same dataset: (a) SVM posterior probabil-

ity using Platt scaling [18] on margins (b) SVM margins (c) Rank

scores (uniform in [0,1]). Second row: corresponding calibration

functions learned by our method where x and y axes correspond

to original and calibrated scores. Third row: the distributions of

the calibrated scores, which are clearly comparable.

vary substantially.

In this work, we propose a robust score fusion approach

which learns non-linear score calibration functions for mul-

tiple base classifiers. By calibration, we mean the process

of adjusting raw base classifiers scores to reflect their true

intrinsic accuracy and confidence, in such a way that cali-

brated scores can be simply added to yield accurate fusion

results. The key innovation compared to existing score nor-

malization approaches is that supervised learning is used to

learn the non-linear calibration functions φ(·) which trans-

late different types of scores to a common score space (CSS)

where they are accurately calibrated. An important prop-

erty of our approach is that score calibration functions are

learned simultaneously in a max-margin framework to glob-

ally optimize a performance metric on the training set.

A key observation driving our approach is that different

classifiers, or even a same classifier applied to the same da-

ta, often yield very different score distributions depending

on how scores are processed. For example, the first row of

Fig. 1 shows three different score distributions generated by

the same SVM classifier on the same data, but with three

different ways to represent scores (all of which are quite

common). Accordingly, the intrinsic score distribution of

all three examples are actually same. Existing approaches

to address this issue are tailored for very specific classes of

score distributions, e.g., [22, 5, 24], and cannot be applied

automatically. As the number of base classifiers (and con-

sequently the number of score representation schemes) in-

creases, manually defining proper calibration functions for

each becomes daunting; automatic methods become neces-

sary. Linear methods [28, 9] provide only sub-optimal solu-

tions; for example, no uniform scaling can accurately align

the three score distributions in Fig. 1. Our approach ad-

dresses all these issues by automatically learning non-linear

calibration functions from the training data without making

any assumptions about the score distributions. For example,

the learned calibrations are illustrated in the second row of

Fig. 1, and the third row shows clearly comparable resulting

score distributions after applying calibrations, despite their

original difference.

Another key innovation in our approach is that all the

calibration functions are learned simultaneously to ensure

optimality for fusion. Most existing approaches [5, 24] cal-

ibrate each base classifier scores independently, and do not

guarantee fusion optimality. While there exist approaches

[16, 26] which learn fusion functions jointly across multi-

ple base classifier scores, they typically learn a mixture of

localized fusion functions in the multi-dimensional score s-

pace, resulting in models which are opaque to understand-

ing the contribution of each classifier. On the other hand,

our method explicitly learns transparent calibration func-

tions which can aid the users with useful information on

fusion, while also guaranteeing the optimality of fusion.

In terms of the optimality measure, we use the area under

an ROC curve (AUC) to measure the overall performance,

which is equal to Wilcoxon-Mann-Whitney ranking [3]:

AUC =

N+∑
i=1

N−∑
j=1

1(sj < si)/(N
+N−) (1)

where si are the scores of N+ positive samples, and sj
are the scores of N− negative samples. In particular, we

show (in Sec. 3) that the supervised learning of optimal non-

linear calibration functions can be formulated as solving a

max-margin optimization problem, which can be efficiently

solved by a modified Newton method.

The proposed method has been evaluated through ex-

tensive experiments (see Sec. 4), including both large-scale

video classification, as well as image classification. In addi-

tion, for the video classification task, we have also evaluated

the robustness of our method to changes in the base classi-

fier score distributions. On all experiments, the proposed

method showcased notable performance compared to state-

of-the-art methods, which clearly demonstrates its benefits.

2. Related Work
There exist numerous late fusion methods, which can be

mainly grouped into four categories. The first category can

be understood as blind fusion where fixed rules are applied

regardless of actual base classifier score distributions, prior

to simple score summation. As one of the pioneering work-

s, multiple classifier combination rules are studied in [10],

where extensive experiments showed that Sum and Product
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are top two best performing methods. In recent work [27],

geometric mean is reported to be highly effective despite its

simplicity. Both product and geometric mean can be still

understood to belong to the first category where a logarithm

transformation is used prior to summation. While simplicity

is the main advantage of these methods, as reported in [27],

more sophisticated fusion methods can outperform them at

the expense of additional computation in many occasions.

The second category of late fusion methods [5, 24, 18]

are formulated within a score normalization framework,

where particular assumptions are made on score distribu-

tions, and used to align base classifier scores. However,

most of these methods require the normalization transform-

s to be determined manually, based on expert knowledge.

Hence, it is difficult to build a robust fusion model from a

large set of black-box classifiers. In addition, fusion learn-

ing needs to be conducted separately from score normaliza-

tion, which does not guarantee optimality in fusion.

The third category aims to learn a linear weighting of

base classifiers where score normalization is ignored. (Or,

more precisely, the normalization scheme is a simple scal-

ing by the learned weight.) In [28, 9], weights are learned

by minimizing different target error metrics with different

regularizations. In [17], a linear dependency between fea-

tures is proposed to address the independent assumption is-

sue in fusion process. Compared to these linear models, our

method can learn weights and non-linear calibration func-

tions jointly, allowing more flexibility and providing for s-

cores with very different underlying distributions.

Finally, the fourth late fusion category looks into build-

ing a mixture of fusion models which are optimized locally

across multi-dimensional score space. In Local Expert For-

rest (LEF) [16], multiple local expert fusion classifiers are

built across score partitions, and final fused scores are com-

puted as the average of outputs from many local experts.

Smith et al. [26] treat the confidence scores from multi-

ple models as a feature vector, and then learn a classifier

for different classes using a sample-based approach. Lan et

al. [13] introduced a double fusion technique, which uni-

fies both feature level fusion and score level fusion. While

these approaches work well in practice, the resulting model-

s are opaque and do not provide transparent insight into the

learned fusion model, which is crucial to understanding the

directions for further improving the classification system.

Our method is related to SVMperf [7] in that multivari-

ate SVMs is used to optimize the ROC area. However, both

our goal and problem formulation are very different from

[7], which is not related to late score fusion.

3. Method
We are given a set of base classifiers Bk, k = 1, . . . ,K,

each with a possibly different range of score values Rk. The

classifiers share the common property that a higher score for

a given data sample implies a higher likelihood of belong-

ing to the target class. However, their score values are not

necessarily comparable, therefore, they cannot be directly

combined for fusion.

We associate with each classifier a function φk : Rk →
C, called a calibration function, where C denotes a (new)

common score space. The sets Rk and C are subsets of real

numbers. For each data sample j, given its base classifier

scores skj , k = 1, . . . ,K, the combined score is

sj =
K∑

k=1

φk(s
k
j ) (2)

Our goal is to simultaneously learn all calibration functions

φk, k = 1, . . . ,K, such that AUC of the combined score in

(1) is maximized over the training data.

A unique property of the proposed approach is that func-

tions φk can be non-linear. (As far as we are aware, ours

is the first approach with this property.) In order to provide

meaningful structure in the calibration functions and pre-

vent overfitting to the training data, we assume that func-

tions φk are non-decreasing, i.e., we require that x < x′

implies φk(x) ≤ φk(x
′). Hence scores of each classifier

Bk can be stretched non-uniformly, but with the restriction

that their order cannot be swapped.

Given the scores of the training samples generated by a

classifier Bk, we first evenly discretize the score values into

M bins with the bin boundaries, which we call nodes, de-

noted by ηk0 < ηk1 < · · · < ηkM . We fully define φk by its

values at the node points, φk(η
k
0 ), . . . , φk(η

k
M ), by interpo-

lating between the node points. We use linear interpolation:

the calibration for a score value x obtained by Bk is

φk(x) = φk(η
k
n) +

x− ηkn
ηkn+1 − ηkn

(φk(η
k
n+1)− φk(η

k
n)) (3)

if x ∈ [ηkn, η
k
n+1]; φk(x) = φk(η

k
0 ) if x < ηk0 ; or φk(x) =

φk(η
k
M ) if x > ηkM . The intuition behind the formulation of

the calibration functions is illustrated in Fig. 2.

Observe that since our fusion process is to simply sum

the calibrated scores (Eq. (2)), a constant offset in each cal-

ibration function does not make a material difference. In
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Figure 2. An illustration of our non-linear calibration functions.

Two base classifiers B1 and B2 are calibrated into common score

space based on the learned calibration values at nodes, where B2 is

(learned as being) more accurate. Calibration on nodes are shown

as solid lines, while interpolated values are shown as dashed lines
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particular, defining a new fusion score s′j = sj−
∑

k φk(η
k
0 )

does not make a material difference. Therefore, without loss

of generality, we set φk(η
k
0 ) = 0 for every k.

Given an auxiliary variable wk = (wk
1 , . . . , w

k
M ) defined

as wk
n = φk(η

k
n)−φk(η

k
n−1) for n = 1, . . . ,M , Eq. (3) can

be written in the equivalent form

φk(x) =
n∑

i=1

wk
i +

x− ηkn
ηkn+1 − ηkn

wk
n+1 (4)

if x belongs to bin [ηkn, η
k
n+1]. We also observe that for

i = 1, . . . ,M , wk
i ≥ 0, because the functions φk are non-

decreasing by our assumption. Intuitively, each value wk
i

corresponds to the contribution of that bin towards fusion.

A key idea of our approach is that learning of the non-

linear score calibration functions φk is expressed as learn-

ing the vectors wk, which we learn in a maximum-margin

framework. For this, we first concatenate vectors wk to a

single vector w = (w1, . . . ,wK) of length K ×M , since

we have K base classifiers with scores discretized into M
bins each.

Given the node values {ηk0 , . . . , ηkM} of base classifier

Bk and given a score value x belonging to bin [ηkn, η
k
n+1],

we represent it as an indicator vector xk = (xk
1 , . . . , x

k
M )

such that φk(x) = wk · xk. In particular, we define

xk
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, 1 ≤ i ≤ n

x− ηkn
ηkn+1 − ηkn

, i = n+ 1

0, n+ 1 < i ≤M

(5)

Given a data sample j and its original classifier scores

s1j , . . . , s
K
j , by setting x = skj , we obtain vector xk

j defined

by (5) for k = 1, . . . ,K. We then concatenate these vectors

into a single vector xj = (x1
j , . . . ,x

K
j ) of length K ×M .

The combined fusion score sj in Eq. (2) is then given by

sj =
K∑

k=1

φk(s
k
j ) = w · xj (6)

Consequently, observing that AUC in Eq. (1) is propor-

tional to
∑N+

i=1

∑N−

j=1 1(w·(xi − xj)), we can maximize

AUC by solving the following max-margin minimization

problem:

min
w

1

2
||w||2 + C

N+∑
i=1

N−∑
j=1

1(w·(xj − xi)) s.t. wn ≥ 0

(7)

in which C is the parameter to balance the L2 regularization

term on w and the loss function. Since (7) is difficult to

optimize as a hard margin loss (or 0-1 loss), we need to

Algorithm 1 Modified Newton Method for L2-SVM with

Non-Negative Constraints

Input: w0 and convergence threshold ε
1: repeat
2: It ← {(i, j) |wt · (xj − xi) > 0}
3: zij ← xj − xi ∀(i, j) ∈ It

4: w̄ ← w | ∑(i,j)∈It(I+ 2Cz�ijzij)w = 0

5: w̄ ← (
max(0, w̄t

1), . . . ,max(0, w̄t
K×M )

)
6: αt ← argmin

0≤α≤1
f(wt + α(w̄ −wt))

7: wt+1 ← wt + α(w̄ −wt)
8: until |wt+1 −wt| < ε

Output: wt+1

relax it. We consider two relaxation options, L1 hinge loss

or L2 hinge loss, given as

min
w

1

2
||w||2 + C

N+∑
i=1

N−∑
j=1

max(0,w·(xj − xi))
p

s.t. wn ≥ 0,

(8)

where power p = 1 yields L1 and p = 2 yields L2 hinge

loss. The L1 hinge loss can be solved by many efficient

solvers, such as Pegasos [25]. To enforce the non-negative

constraints on w, an additional projection to the constraint

set need to be performed after every gradient step [12].

Compared to L1-loss, L2 hinge loss gives more penalty

to large violation of the margin. This is a desirable proper-

ty in our setting, since the penalty for swapping the order

of positive and negative examples with a large difference

in calibrated scores is much larger. Our experimental re-

sults also confirm that L2 hinge loss delivers better perfor-

mance1.

Our algorithm to solve the L2 version of the minimiza-

tion in Eq. (8) is outlined in Alg. 1. Key items about it are:

• it is based on a Modified Newton Method [15, 8];

• with It fixed for the current iteration as in line 2, Eq.

(8) becomes

min
w

1

2
||w||2+C

∑
(i,j)∈It

(w ·zij)2 s.t. wn ≥ 0; (9)

without the non-negativity constraint this is a simple

regularized least squared problem, and can be solved

by the linear system in line 4;

• we solve the system in line 4 using a conjugate graident

method following [8];

• line 5 projects the solution to the non-negative feasible

set;

1For brevity, these results are not documented in this paper.
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• line 6 is a line search with f being the error function

in Eq. (9); and

• the iterations stop when the change in w is less than a

threshold ε.

While our model has great flexibility, it also has the po-

tential overfit to the training data, so that the generalization

performance may degrade. We employ both early stopping

and bagging strategy to counter overfitting [23]. When no

separate validation dataset is available, we first divide train-

ing data into Q folds. The training is performed on Q − 1
folds, with 1 fold left out as the validation set. In each it-

eration of Alg. 1, we also compute the target function value

(AUC) on the samples in validation set. The wt which pro-

vides the lowest target function value on the validation set

is chosen as the output for that fold. This is performed Q
times, and the average of the Q wt values is taken as the

final solution.

Solving Eq. (8) yields the optimal w∗. Given a sample

for testing, same as we did for training samples, we first

derive its indicator vector x according to Eq. (5), and then

simply compute w∗ · x as its final fused score.

4. Experimental Results
In this section, we evaluate our non-linear calibration fu-

sion method on various visual classification tasks, such as

object categorization and multimedia event detection.

We compare our results with both learning-free ap-

proaches and learning-based approaches, including: aver-

aging, geometric mean, linear SVM, RBF network, MMSE

[32] and MFoM [9]. Both MMSE (Minimum Mean Square

Error) and MFoM (Maximal Figure-of-Merit) are linear fu-

sion methods, and the optimal weight for each base classi-

fier are learned. We also compare with a very recent fusion

method Local Expert Forrest (LEF) [16]. For linear SVM,

we concatenate base classifier scores of each sample to a

single vector, and use LibSVM [2] for training. For RBF

network, we used a Gaussian kernel, and the kernel width is

optimized through validation set.

We use the one-vs-all SVM as the model for generating

the confidence scores. And we use AUC, i.e., Eq (1), as

the main metric to evaluate the performance. For datasets

consisting of multiple categories, we calculate the average

AUC across all the categories as the final evaluation metric.

Sec. 4.1 describes experiments on a challenging large s-

cale video classification task on the TRECVID Multimedia

Event Detection (MED) 2011 [21] dataset. In addition, we

also evaluate the robustness of the fusion methods in Sec.

4.1.1. In particular, we evaluate their performance under

changes in the distribution of base classifier scores. Sec. 4.2

describes the evaluation of our method on an image classi-

fication task on the Oxford Flower 17 [19] dataset. In all of

our experiments, we used M = 60 bins.

Figure 3. Example images showcasing two MED11 events

4.1. Large-Scale Video Retrieval on MED 2011

In this section, we evaluate our method on a challenging

task, multimedia event detection (TRECVID MED 2011

[21]). The goal is to detect complex events from video clips

in a very large multimedia archive (1000+ hour collection of

about 34000 clips). The videos are unconstrained in terms

of camera motion, background clutter and human editing

(e.g., shot stitching). For illustration, snapshots of samples

belonging to two different event classes are shown in Fig. 3,

where a large intra-class variation can be observed. Such vi-

sual variability makes the performance of any single feature

classifier limited, and motivates the use of fusion based on

multiple features to boost classifier accuracy. The limited

performance of base classifiers, as well as the variations in

the performance of base classifiers, also brings challenges

to late fusion methods.

We used 6 base classifiers, each of which predicts event

probability based on a different multimedia feature. Both

visual information and audio information are used in build-

ing our system. For visual information, we used high-level

features from Object Bank [14] to capture the relationship

between target events and objects, where it computes the re-

sponse of a set of 177 object detectors, such as human and

tree, etc. Object Bank is first run on each frame, then, t-

wo different clip-level representations are extracted by both

max-pooling and average-pooling; this results in two dif-

ferent classifiers based on Object Bank. We also used built

classifiers using static low-level features; in particular, col-

or SIFT and Transformed Color Histogram [29]. To capture

dynamic motion information, we used a classifier based on

3D histograms of oriented gradients (HoG3D) [11]. For au-

dio information, we used Mel-Frequency Cepstral Coeffi-

cients (MFCCs).

For Object Bank features, a linear SVM is used to per-

form the classification. For all the other features, we built

a bag-of-word histogram (codebook size is 4096) as the

clip-level representation, and used a SVM with Negative

Geodesic Distance (NGD) kernel [33] for classification. We

used the NGD kernel because it showed better performance

in our application compared to some other widely-used ker-

nels, such as histogram intersection kernel.

Our experimental results (Table 1) show that our method

achieves the best performance for all 10 event categories

consistently. The numeric improvements in AUC by our
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Events Fusion methods

Avg SVM RBF MFoM LEF GeoMean Ours

Birthday party .9443 .9463 .9420 .9445 .9461 .9454 .9492
Changing a vehicle tire .9108 .9113 .8989 .9027 .9099 .9146 .9162

Flash mob gathering .9818 .9833 .9825 .9821 .9836 .9831 .9846
Getting a vehicle unstuck .9389 .9374 .9311 .9370 .9388 .9358 .9429

Grooming an animal .9008 .9002 .8860 .8998 .9029 .8950 .9077
Making a sandwich .9115 .9125 .9026 .9117 .9130 .9121 .9163

Parade .9668 .9679 .9642 .9662 .9675 .9683 .9716
Parkour .9480 .9495 .9442 .9476 .9492 .9497 .9505

Repairing an appliance .9691 .9699 .9551 .9664 .9521 .9571 .9712
Working on a sewing project .8853 .8870 .8761 .8884 .8865 .8877 .8953

Table 1. Mean AUC results on MED11 test set [21]. Best results are in bold.

method is slight, although the fact that the proposed method

showcases consistent performance gain across all events in-

dicate the benefit of the proposed method. In addition, it

is worth noting that fairly small quantitative difference in

AUC frequently indicates meaningful difference in accura-

cy level, much more so than other metrics such as APs, e.g.,

the AUC by a random method is still as high as 0.5.

In detail, to obtain these results, for each event catego-

ry, we split the training data into two halves. We trained

the base classifiers with the first half of the data and trained

the fusion models on the second half. We randomly gener-

ated 10 such splits, and the average AUC over 10 runs are

reported in Table 1.

In addition to the improved accuracy, our approach pro-

vides qualitative insights into fusion classifiers, which is an

additional benefit. One property is that we can use the range

of each calibration function φk(s
k) as a good indicator of

the importance of each base classifier. Since calibrated s-

core values of each classifier start at zero, the range of cali-

brated scores of classifier k is equal to the maximum value

of calibration function φk(s
k), which is

∑M
i=1 w

k
i accord-

ing to Eq. (4). The visualization of the ranges of calibrated

maximum values of the six base classifiers for two different

event categories are shown in Fig 4. For the event category

Birthday Party, which is filled with people and party ob-

jects along with birthday songs, it can be observed that both

Object Bank (max) and MFCCs (audio) play the most im-

portant roles. On the other hand, for the motion-heavy event

category Parkour, we can see that dynamic motion feature

HoG3D is the most important in making the final decision.

Furthermore, Fig. 5 shows the visualization of normalized

non-linear calibrations φ(x) across different base classifier-

s, learned for the event Birthday Party (also in Fig. 4 (a)).

The diversity in their nonlinear shape showcases the advan-

tage that imposing minimal assumption on score distribu-

tions actually allows our model to flexibly adapt to widely

different score distributions, playing a key role in improving

accuracy.
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wo MED11 event classes, indicating the importance of each base

classifier. Bar 1 to 6 are: Object Bank (max-pooling), Object

Bank(average-pooling), ColorSIFT, TCH, Hog3D, MFCCs.
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Figure 5. Learned calibration functions for SVM scores obtained

for different video features. φ(x) are normalized between 0 and 1

for a better visualization when comparing their shapes.

4.1.1 Robustness Test

In this section, we evaluate the robustness of fusion meth-

ods to changes in the distribution of the scores output by

the base classifiers. Many fusion methods assume that the

scores of the base classifiers are the posterior probabilities

that the samples belong to the positive class. However, this

assumption is generally not true [31], and when this as-

sumption does not hold, the fusion performance may de-

grade. For instance, the scores of maximum margin meth-

ods such as SVMs or boosted trees are originally the dis-

tances to the decision boundary, and they have to be passed
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probability margin rank

Avg .93173 .93531 .93846

SVM .93653 .90515 .93353

RBF .92827 .89859 .84365

MFoM .93464 .93333 .93647

LEF .93496 .92791 .93177

GeoMean .93488 .93253 .93038

Ours .94055 .94142 .94193

Table 2. Mean AUC results on MED11 test set with 3 different

output profiles. Column 2: SVMs posterior probability. Column

3: SVMs margin. Column 4: Scores derived from ranking.

through a sigmoid function to obtain the posterior probabil-

ity [18]. Sometimes, we can only obtain the ranking of sam-

ples, which is the case if a rank system is used as a single

model and treated as black box. Therefore, it is crucial for

fusion methods to have the ability to adapt automatically to

such changes in the output profiles of base classifiers. This

ability also eliminates the significant manual effort of cate-

gorizing the output profiles of base classifiers. We evaluate

3 different types of output profiles: (1) posterior probabil-

ity, which were used in Sec. 4.1; (2) margin values output

by SVMs; and (3) scores derived by the ranking of samples.

For the latter, the samples are sorted from most negative to

most postive, and the rank score is the ratio between its rank

and the total number of samples. Therefore, the scores form

a uniform distribution. The distributions of three different

output profiles are shown in the first row of Fig. 1. We still

use the TRECVID MED11 dataset with same base classi-

fiers where the only changes are to the base classifier output

profiles.

Fig. 1 shows that, when the distributions of scores

change, our method adaptively learns different shapes of

calibration functions. For the distribution in Fig. 1(a), our

calibration function in (d) has a steep slope in the small val-

ue range. For the distribution in Fig. 1(b), the steep slope

occurs in the higher value range, Fig. 1(e). Fig. 1(f) shows

a more linear shape suitable for uniform distribution.

For quantitative evaluation, we used the same training

and testing splitting as in Sec. 4.1, but generated the three

different output profiles for each single base classifier. To

evaluate the overall performance, we computed the mean

AUC over all event categories. The performance is report-

ed in Table 2. The proposed method consistently yields

the highest AUC in all of three settings with small variance

across different profile settings, which demonstrates its ro-

bustness to changes in base classifier score distributions.

4.2. Image Retrieval on Oxford Flower 17

In this section, we report the performance of the pro-

posed approach on Oxford Flower 17 dataset. The Oxford

Flower 17 dataset contains 17 different types of flowers

with 80 images per category. There are 680 training im-

ages (17× 40 images), 340 validation images (17× 20 im-

Single Feature

feature mean AUC

Color .931±.056

Shape .955±.041

Texture .918±.063

HSV .931±.053

HoG .919±.061

SIFTint .956±.049

SIFTbdy .917±.067

Fused

method mean AUC

Avg .983±.016

GeoMean .987±.014

SVM .982±.020

RBF .978±.021

MFoM .982±.018

LEF .981±.019

Ours .988±.015
Table 3. Mean AUC and 3×standard deviation on Oxford Flowers.

ages) and 340 test images (17 × 20 images). Seven differ-

ent types of features including shape, color, texture, HSV,

HoG, SIFT internal, and SIFT boundary, are extracted in

[20]. The author provides the pre-computed distance ma-

trices for the three splits. More details about the features

and kernels can be found in [20]. We follow the experiment

settings in [17]. 5-fold cross-validation (CV) in the training

set is used to select the best classifier for each feature, and

the CV outputs are used for the fusion training.

The fusion results are shown in Table. 3. The perfor-

mance of the single feature classifiers is shown on the left,

and the performance of seven different fusion methods is re-

ported on the right. It is clear that all fusion methods show

some improvement compared to single feature classifiers.

This demonstrates that late fusion techniques, which com-

bine the output of multiple singe feature classifiers, can be

very effective in building a highly accurate fusion classifi-

er. All methods, including ours, report accuracy higher than

97%, which indicates that the performance on this dataset

saturated. In this case, it is difficult to draw statistically

meaningful conclusions about the benefits of certain meth-

ods in comparison to others. Nonetheless, detailed obser-

vations are described below, which highlights that the pro-

posed approach can be considered to be in the group of the

state-of-the-arts.

The proposed method achieves comparable performance

to all learning-based approaches, including the latest state-

of-the-arts [16, 27]. Additionally, we include brief compar-

isons to two recent fusion methods [31] and [17], which re-

ported performance on the same dataset using different met-

rics. The method in [31] is based on low rank minimization,

where their goal is finding a common ranking from several

base classifier rankings and reported mAP on Oxford Flow-

er Dataset. Although our approach optimizes the AUC met-

ric, we achieve mAP of 0.910, compared to 0.898 and 0.917
obtained by RLF and GRLF from [31] respectively, which

indicates comparable performance. In [17], they evaluated

the performance of a multi-class classification task, in ter-

m of classification accuracy. Since our approach is designed

for binary classification task, to extend it to multi-class task,

we simply normalize the calibrated scores generated by our

one-vs-all model between 0 and 1 for each class, and assign
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an image to the class with the highest score. We obtained

a classification accuracy of 86.4%, which is slightly higher

than [17] (86.3%).

5. Conclusion

In this work, we presented our novel score fusion ap-

proach which learns non-linear score calibrations for mul-

tiple base classifier scores. Our approach provides a uni-

fied solution to jointly solve score normalization and fusion

classifier learning. Our extensive experiments demonstrate

the strength and robustness of the proposed approach. We

believe that the proposed approach will allow fusion sys-

tems to scale up further in an automated manner to incorpo-

rate large number of features and additional classifiers.
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