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Abstract

The 2013 iBUG 300-W Challenge [25] tests the ability
of participants’ software to locate landmarks in unseen im-
ages of faces. We approach the challenge with Active Shape
Models (ASMs [6]) that incorporate a modified version of
SIFT descriptors [18]. We make use of multiple ASMs,
searching for landmarks with the ASM that best matches
the face’s estimated yaw. This simple approach is shown to
be effective on a variety of datasets.

1. The Challenge

The 2013 iBUG 300-W Challenge [25] tests the ability
of participants’ software to automatically locate 68 facial
landmarks in images of faces. Two hidden test sets are used
to evaluate the software. These consist of 300 indoor and
300 outdoor faces with reference landmarks created semi-
automatically [24]. Participants submit their software to the
challenge organizers who run the software on the test sets
and report the results.

Accuracy of fit is measured as the mean distance be-
tween the automatically located points and the reference
landmarks, divided by the distance between the reference
outer eye corners. This fitness measure is reported for all
68 landmarks (what we call the ec68 measure in this paper)
and also for the 51 landmarks interior to the face (the ec51
measure).

To prevent variation caused by use of different face de-
tectors, all face positions are estimated with a standard
iBUG face detector. This face detector is not made avail-
able to the participants, although for training purposes the
detector rectangles are supplied for several thousand exam-
ple faces. The organizers also supply reference landmarks
for these faces.

2. Our Approach

Active Shape Models (ASMs [6]) have long been the
starting point for more sophisticated methods of facial land-
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Figure 1.
three-quarter, frontal, and right three-quarter. (The images are
from [21].)

The three canonical yaws used in our model: left

marking. Nowadays ASMs are typically used with 2D gra-
dient descriptors [22] instead of the 1D gradient profiles of
the original method. Such 2D ASMs have performed sur-
prisingly well against more elaborate techniques. For exam-
ple, 2D gradient ASMs outperformed other automatic land-
markers in three of the four tests in an independent 2013
study [2]. (The study was limited to methods for which
software could be freely downloaded.)

Additionally, the conceptual simplicity of ASMs is ben-
eficial in commercial applications where ease of mainte-
nance and integration is important. The execution speed
of ASMs (typically less than one- or two-hundred millisec-
onds a face) is acceptable for many applications.

Given these considerations we felt it worthwhile to pur-
sue an ASM-based approach for the 300-W Challenge. We
have previously used ASMs with SIFT descriptors [18] for
template matching [23]. After some engineering of the
SIFT implementation, this approach on frontal faces gave
significantly better fits and faster search times than 2D gra-
dients. However, performance remained inadequate on non-
frontal faces. Therefore for the 300-W Challenge we adopt
a simple strategy of three submodels. These are SIFT-based
ASMs optimized for frontal views, left three-quarter views,
and right three-quarter views respectively (Figure 1). Using
the position of the face supplied by the iBUG face detector,



we first estimate the face’s yaw and in-plane rotation, rotate
the image so the face is approximately upright, and then
search for landmarks with the submodel that best matches
the face’s estimated yaw (Figure 2).

As we shall see, this straightforward strategy works well
on neutral or smiling faces (wedding photographs) but not
so well for faces that are highly expressive (excited specta-
tors at a sporting event). Since there are no submodels for
large yaws, good results cannot be expected on side views.
However, the use of eye-corner distances for normalization
is a hint that there are no such views in the 300-W test sets.
Very large pitch variation is also a problem, although our
experience has been that ASMs are far more sensitive to
yaw than pitch.

In this paper, after a review of related work we discuss
how the face’s pose is estimated. We then describe the mod-
ified ASMs we use as submodels. Finally results are pre-
sented and future directions are discussed. The focus is on
engineering details because our approach here is essentially
to tailor existing methods to the 300-W Challenge.

3. Related Work

At the core of the approach in this paper are our “HAT”
ASMs. As described later, and in more detail in [23],
these are ASMs that use modified SIFT descriptors for tem-
plate matching. SIFT descriptors have been used in other
face landmarkers. For example, Zhou et al. [27] use SIFT
descriptors with Mahalanobis distances. They report im-
proved eye and mouth positions on the FGRCv2.0 database.
Another example is Li and Ito [15], who use SIFT descrip-
tors with GentleBoost.

The idea of using different submodels for different poses
is not new. Cootes et al. [7] is an early example. They
demonstrate that a small number of models can represent a
wide range of poses. Their model, AAM based, can also
synthesize views of the face from new angles. The ap-
proach presented in the current paper rigidly separates pose
detection and landmarking; a limitation is that if the pose
is misestimated the wrong ASM is applied with no chance
for correction. In contrast it seems that most examples in
the literature unify pose and landmark detection. A recent
example is Zhu and Ramanan [28]. As in our method, Bel-
humeur ef al. [1] use SIFT descriptors and multiple mod-
els, but they use a large number of global models, jointly
optimizing pose and landmark detection using a probabilis-
tic model with SVMs and RANSAC. They report excel-
lent best-case but not so good fourth-quartile fits, and slow
speeds. Kanaujia and Metaxas [12] also use SIFT descrip-
tors and multiple models. They determine pose clusters au-
tomatically, unlike our method which simply assumes that
three models suffice for the poses of interest. They align the
descriptors to the shape border; we do not align the descrip-
tors but rotate the face upright before the search begins. Our
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approach is more basic than any of the methods mentioned.

An ongoing issue has been the difficulty of objectively
comparing algorithms in different papers. Different au-
thors use different landmark definitions, metrics, and test
sets. When graphing results, some authors discard faces for
which the face detector failed; others include such faces,
with a fit of infinity. Some authors do not report search
times. It is impossible from reading papers like those given
above to determine which algorithms are best for a given
application. Given these issues, and the fact that the rank-
ing of models in nonpartisan studies such as Celiktutan et
al. [2] differs considerably from that claimed in papers, we
welcome projects like the 300-W Challenge.

A popular de facto test set has been the BiolD data [11],
but its faces are almost all frontal and were photographed in
an office setting, not “in the wild”. As the state of the art
has progressed the need for a more diverse test set of land-
marked faces has arisen. Complicating the issue are copy-
right concerns preventing redistribution of faces obtained
from the web. For many of us a test set is most informative if
it is representative of the distribution of faces in commercial
applications, such as those for Photoshop-style retouching
or remodeling, or for virtual makeup or eyewear generation.
In this context a test set should not have a too large pro-
portion of faces with extreme expressions (although smiles
are important) or of low resolution (eye-mouth distance less
than 100 pixels). The test set should contain a sufficient
number of faces to minimize over-fitting (optimizing for the
test set) and to bound sampling variation, especially in the
worst 10% of fits (so we would say at least a thousand faces,
more is better). No commonly accepted standard test set has
yet emerged.

4. Pose Detection

We now move on to a description of our model. Before
the ASM search begins we must choose the appropriate sub-
model based on the estimated yaw of the face. We use the
position of the face determined by the iBUG face detector,
but to estimate yaw apply three further face detectors. These
are optimized for frontal, left three-quarter, or right three-
quarter faces respectively. Each of these detectors uses a
truncated cascade of just 12 weak classifier stages, rather
than the typical 20 or more stages. This greatly increases
the number of detections per face, although also increasing
false detections.

Our detectors are Viola Jones detectors [26, 17] with Lo-
cal Binary Patterns [16] built with the OpenCV tools on the
AFLW dataset [13]. The AFLW data was used for training
because apart from its wide variety of faces it also provides
the estimated pose of each face, making it possible to se-
lect subsets with the range of yaws appropriate for training
each detector. Note that we do not need the AFLW manual
landmarks.



yaw

roll

Figure 2. Overview Of Our Method.

(a) The original image with the iBUG face detector rectangle.

(b) Estimate Rotation The image is rotated by -50, -25, 0, 25, and
50 degrees. The left three-quarter, , and right three-quarter face
detectors are applied to each rotated image in the area around the iBUG
rectangle.

In this example, the -25 degrees image has the largest number of de-
tects. The estimated rotation (17 degrees) is a thus a weighted sum of -50,
-25, and 0 degrees. The weights are the number of detects in the -50, -25,
and 0 degree images. The false detects on the highly rotated faces are
essentially ignored.

(c) Estimate Yaw After estimating the in-plane rotation of the face,
the image is rotated so the face is upright. We work with this rotated image
until the ASM search is complete.

The three face detectors are re-applied and a MARS model estimates
the face’s yaw using the relative number of detections of each detector on
the upright face. In this example the estimated yaw is 20 degrees.

(d) Estimate Eye And Mouth Positions Eye and mouth detectors are
applied. (The eye and mouth positions will be used to help position the
start shape.) The false detection on the right eyebrow is ignored because its
centroid is outside the legal zone (cyan).

(e) Start Shape The start shape for the right three-quarter ASM is
aligned to the face, using the face detector rectangle and the eye and mouth
positions if available. We use the right three-quarter model because the yaw
was estimated to be 20 degrees in step (c) above.

(f) Landmark Search The face is scaled to an eye-mouth distance of
100 pixels and the right three-quarter “HAT” ASM is applied (Section 5.3).
The image to the left shows the final shape after the ASM search.

(g) Back to Image Frame The final shape is derotated and scaled
back to the original image. The shape is also converted to the sixty-eight
iBUG points.
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4.1. Rotation

In-plane rotation is used as a surrogate for the face’s roll.
To estimate the rotation, we first generate images rotated
by -50, -25, 0, 25, and 50 degrees (Figure 2b). On these
rotated images we apply the three face detectors indepen-
dently in the area around the iBUG face rectangle. Face
rectangles that are too far from the median rectangle are
discarded as false positives. One of the rotated images will
have the largest number of detections. The estimated ro-
tation of the face is taken to be the weighted sum of this
image’s rotation angle and the rotations to each side of it,
with the weights being the number of detections in the three
rotated images.

4.2. Yaw

The face’s yaw is estimated from the number of detec-
tions by each detector on the upright face. We make this
estimation with a Multivariate Adaptive Regression Spline
model (MARS [9]). The MARS model was trained by re-
peating the process in Section 4.1 on 2000 AFLW images,
for each face regressing the ground truth yaw on the counts
of the three detectors on the upright face. Intuitively, MARS
is appropriate for this regression because the yaw can be
estimated as a weighted sum of the counts but with some
adjustment for non-linearity (Figure 3).

We also trained an SVM to estimate the yaw from the
histogram-equalized patch in the face detector rectangle.
This technique did not give as good estimates of yaw and
we do not use it.

Figure 3. MARS model to estimate the face’s yaw from the num-
ber of detections by the left three-quarter and right three-quarter
face detectors (as a fraction of the total number of detections by
all three detectors). This model gives a regression R? of 0.79 on
the training data. For a linear model the above surface would be a
plane with an R? of 0.76.
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5. The ASMs

Per-face yaw data is needed to train our pose-specific
models. We thus cannot (easily) train our ASMs on the sup-
plied 300-W training data. Instead, the models were trained
on the MUCT data [21]. The AFLW data [13] was also
considered for training, but not used because it has an in-
sufficient number of landmarks for our purposes.

5.1. Conversion to iBUG Landmark Definitions

After the ASM search we must convert the MUCT land-
marks to the 68 iBUG definitions (which follow the Multi
PIE definitions [10]). This is done either by copying points
(e.g. eye corners) or by interpolating between nearby points
(e.g. jaw landmarks). Interpolation constants were gener-
ated with the iBUG re-marked Helen training data. (We also
used the same data for tuning other aspects of our model.)

Because the landmarks are defined differently this con-
version introduces inaccuracies, a significant disadvantage.
Even the points we copy are not defined identically. Our
hope is that in general the conversion noise is small com-
pared to other inaccuracies, but we do not expect our best
case fits to match those of models trained directly on the
300-W data.

5.2. Training Details

The frontal model was trained on the 6008 frontal
and near frontal images of the MUCT abde subset (us-
ing mirroring to bring the number of faces from 3004
to 6008). This model is available as open source
software from http://www.milbo.users.sonic.
net/stasm. The images include faces with some pitch
variation and natural minor tilting of subjects faces, thereby
training the model to cope with such variation. Explicitly
rotated faces are unnecessary because we rotate the face up-
right before starting the search.

The three-quarter models were trained on the much
smaller set of 1502 yawed faces of the MUCT bc subset.
We artificially increased the size of this set by applying x-
and y-stretching, changing the intensity gradient across the
face, and applying small rotations to the descriptor patches
around the landmarks.

5.3. HAT ASMs

First we give a brief overview of ASMs in general [5]
then describe our variant of the ASM.

An ASM starts the search for landmarks from the mean
training face shape aligned to the position and size of the
image face determined by a face detector. It then repeats
the following two steps until convergence:

(i) Suggest a tentative shape by adjusting the locations of
shape points by template matching around each point. In the
classical ASM this is done by matching 1D gradient profiles
along a search line orthogonal to the shape boundary.



(ii) Conform the tentative shape to a global shape model.
This pools the results of the matchers to form a stronger
overall classifier. Each individual template matcher exam-
ines only a small portion of the face and cannot be com-
pletely reliable.

The entire search is repeated at each level in an image
pyramid, typically four levels from coarse to fine resolution.

Our variant of the ASM modifies step (i) above, leaving
step (ii) unchanged. Specifically, for template matching at
landmarks we replace the 1D gradient profiles of the clas-
sical ASM with “Histogram Array Transform” (HAT) de-
scriptors. We search for the best position of a landmark by
searching in a 2D area around the current position of the
landmark. This is done by taking a 15 x 15 patch around
each search point, forming a HAT descriptor from the patch,
and matching the descriptor against the model descriptor.
The new position of the landmark is taken to be the point in
the search area that gives the best match.

Like SIFT descriptors [18], HAT descriptors are grids
of image orientation histograms, with orientations weighted
by the gradient magnitude and smoothed out over nearby
histogram bins. Before starting the ASM search for points,
we prescale the face to a fixed eye-mouth distance of 100
pixels and rotate the face so it is upright. Therefore the
extreme scale invariance of SIFT is not required, nor is
the SIFT descriptor’s automatic orientation of the patch to
the local average gradient direction. By not orienting the
patches we gain both fit and speed advantages. Some rota-
tional variance will still remain in the upright face (not every
face is the same, and the eye detectors sometime give false
positives on the eyebrows or fail to find eyes, causing mis-
positioning of the ASM start shape), and so we must also
rely on the intrinsic invariance properties of the descriptors.

Full details of our HAT ASM may be found in [23],
where we show that HAT ASMs give significantly better
fits and faster search times than 2D gradient ASMs.

6. Results

We start our presentation of results with Figure 4, which
shows the fit for faces at different yaws with different sub-
models. The combined model (black curve) achieves the
best fit across all yaws by automatically selecting the ASM
appropriate to the yaw, as described in Section 4. However,
misestimates of yaw are not uncommon, as can be seen from
misplaced colored dots. The effect of these misestimates is
mitigated by the partial robustness of the models to poses
out of their yaw range, but do cause the poorer performance
of the black curve against the red and green curves on the
edges of the graph.

Note also from the figure that fits are generally worse on
non-frontal faces, even with submodels. The smaller train-
ing set used for our three-quarter models may be playing a
part here (Section 5.2). More importantly, yawed faces have
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Figure 4. Fit versus ground truth yaw using different submodels
applied individually, then combined. The dots show individual
fits of the combined model, with their color indicating the ASM
submodel that was selected using the estimated yaw. The shaded
curve on the bottom shows the density of faces in the test set. Fit is
measured here using the mel7 measure [8] on 3000 faces iid from
the AFLW set [13] with ground truth yaws ranging from -45 to 45
degrees.
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Figure 5. Combined model (solid lines) versus frontal-only model
(dashed lines). The combined model gives better fits on datasets
with non-frontal faces. (The solid curves are the identical to the
curves of the same color in Figure 9. Please see the description of
that figure for details on the fitness measure and datasets.)

lower inter-eye pixel distances, so any fitness measure that
uses inter-eye distances for normalization upweights per-
ceived error on yawed faces.

Figure 5 shows the cumulative distribution of fits on var-
ious datasets using the combined model (solid lines) and
the frontal-only model (dashed lines). For the XM2VTS
set, with nearly all frontal faces, the frontal-only model suf-
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fices; for sets with three-quarter views the combined model
gives better fits. The slight degradation of fits of the com-
bined model on the XM2VTS set (barely perceptible in the
graph) is caused by misestimates of yaw.

Figure 6 shows the mean fit error per landmark of the

combined model. The figure shows that positioning of
points interior to the face is better than that of the exterior
points. Of the interior points, the eyebrows fare the worst,
especially the outer eyebrows (landmarks 18 and 27). Er-
ror is especially pronounced in the upper jaw. Although
our model’s conversion from MUCT to iBUG points con-
tributes to inaccuracies here (Section 5.1), we suspect that
the curve would have approximately the same shape for any
model because it reflects the level of inherent ambiguity in
the landmark positions.

Figure 7 shows representative examples of bad results
with our method. The yaw was misestimated in Figure 7a
because the hair across the side of the face was mistaken as
background by the face detectors. Shadows across the face
can similarly mislead the face detectors. Sunglasses as in
Figure 7b are nearly always a problem. Perhaps a sunglass
detector could be used to indicate that the local texture in
the region of the eyes is not to be trusted, and that the posi-
tion of the eyes should be determined by the overall shape
model or simply marked as not available. Likewise an open
mouth detector could resolve cases like Figure 7c. How-
ever in general we prefer to avoid such accretions to the
algorithm.

Figure 8 shows the results of running our model on the
300-W hidden test sets. Consistent with Figure 6, results
are better on the 51 interior points than across all 68 points.

Figure 9 shows the results of running our model on the
combined hidden test set, and on the datasets supplied on
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Figure 7. Pathologies

(a) yaw was incorrectly estimated as being left-
wards, so the wrong submodel was used

(b) eye locations confused by sunglasses

(c) mouth open, confused bottom lip for chin
(d) confused base of nose for mouth, and mouth
for chin.

the 300-W web page. Not surprisingly we do best on the
clean frontal faces of the XM2VTS set. The Helen test set is
perhaps closest to the test set described in the last paragraph
of Section 3 (although too small). The Helen training set is
not shown because it was used when training the models
(Section 5.1), invalidating its use as a test set.

Figure 10 shows the linear relationship between the me-
dian fit and diversity of the faces. It plots for each dataset
the median ec68 versus the standard deviation of the ratio
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Figure 8. Fits for our method on the 300-W hidden test sets as
reported by the organizers of the challenge. Also shown are the
results for the baseline method (which is an iBUG implementation
of the method in [19] using the edge-structure features in [4]). The
solid red and green curves are identical to the solid red and green
curves in Figure 9.
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Figure 9. Fits for our method on the hidden test set and on the datasets provided on the 300-W web page [25].

Note that the reference landmarks in this and related figures are the iBUG re-marked landmarks [25], not the landmark data from the
original databases (XM2VTS [20], Helen [14], LFPW [1], and AFW [28]).

Left The mean distance between the 51 automatically located points internal to the face and the reference points, divided by the distance

between the reference eye outer corners.
Right The same measure for all 68 landmarks.

of the eye-mouth distance to the eye-corner distance. (The
eye-mouth distance is measured from the mean of the eye
corner coordinates to the bottom of the bottom lip, point
58). This “aspect ratio” will vary as the pose varies and as
the mouth opens. Its standard deviation across a set of faces
is a convenient measure of the diversity of that set. Its mean
value for neutral frontal adult faces is coincidentally close
to 1 (its mean value over the XM2VTS faces for example is
0.98).

Figure 11 shows search times. In the current unopti-
mized implementation, detecting the pose takes about half
the total time. The mean eye-mouth distance in pixels is
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Figure 10. Median fit versus standard deviation of the face “as-
pect ratio”, a measure of diversity. Diversity causes worse median
fits. The dots correspond to the points on the median line (propor-
tion 0.5) in the right figure of Figure 9.
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shown after the set name on the horizontal axis. We see that
pose detection takes longer on bigger faces, because the Vi-
ola Jones detectors are slower.

7. Future Directions

Increasing the number of basic poses above the three in
our current multiview model is an obvious future direction.
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Figure 11. Search times.

Total is for all steps except reading the image from disk and
once-off model initialization. Face detection by the iBUG face
detector is not included.

PoseDetection is for steps b and c in Figure 2.

Times were measured on a 3.4 GHz i7 with the same datasets as
Figure 9.



Certainly models for side views are necessary to handle the
full gamut of faces. Models for pitched views may also
help, but one quickly reaches the point of diminishing or
even negative returns, a problem compounded by combi-
natorial explosion of poses and misestimates by our crude
pose detector.

Ad hoc additions to the model to handle some of the
worst cases in Figure 7 may be of some benefit, but would
affect only a small proportion of faces in realistic test sets
and may have unwanted side effects in the bulk of the faces.

Performance would probably be improved with a better
training set (we trained on the MUCT faces which were
not photographed in the wild and have a limited number
of three-quarter views).

A disadvantage of ASMs is the lack of wider context
around a point during template matching, especially at fine
resolutions. The descriptors of Belhumeuer er al. [1] may
help in this regard, and would fit easily into our scheme.
They form their descriptors by concatenating two SIFT de-
scriptors at different image resolutions — the lower reso-
lution descriptor provides context for the higher resolution
descriptor. Of approaches that also make use of the context
around the landmark (but without impractical search times),
another avenue could be regression based models like the
Random Forest model of Cootes er al. [3].

For efficiency the integral images required by the Vi-
ola Jones face detectors should be shared rather than re-
dundantly regenerated afresh for each of the three detec-
tors. Our current implementation applies the face detectors
and template matchers sequentially, but straightforward par-
allelization on multicore processors could significantly re-
duce the times seen in Figure 11.

We thank the organizers of the 300-W Challenge for their
patient and attentive responses to our queries.
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