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Abstract

Recently, a video representation based on dense trajec-
tories has been shown to outperform other human action
recognition methods on several benchmark datasets. In
dense trajectories, points are sampled at uniform intervals
in space and time and then tracked using a dense optical
flow field. The uniform sampling does not discriminate ob-
jects of interest from the background or other objects. Con-
sequently, a lot of information is accumulated, which ac-
tually may not be useful. Sometimes, this unwanted infor-
mation may bias the learning process if its content is much
larger than the information of the principal object(s) of in-
terest. This can especially escalate when more and more
data is accumulated due to an increase in the number of ac-
tion classes or the computation of dense trajectories at dif-
ferent scales in space and time, as in the Spatio-Temporal
Pyramidal approach. In contrast, we propose a technique
that selects only a few dense trajectories and then gen-
erates a new set of trajectories termed ‘ordered trajecto-
ries’. We evaluate our technique on the complex benchmark
HMDB51, UCF50 and UCF101 datasets containing 50 or
more action classes and observe improved performance in
terms of recognition rates and removal of background clut-
ter at a lower computational cost.

1. Introduction
Human action recognition requires the modelling of the

coordinated motions – the actions – of different parts of the

human body, their interaction with other objects or persons

nearby, and their classification. In early research, human

action recognition focussed on classifying only very few

(6−11) action classes, which mostly involved motion of the

whole body without much interaction with nearby objects or

people. Experimental validations were mainly carried out

on videos collected in very controlled environments, such

as in a laboratory, staged by a single person on several oc-

casions. However, with the widespread use of the internet

these days, users are uploading millions of videos on so-

cial networking sites such as YouTube and Facebook. This

has created challenges for developing robust techniques for

action recognition in real-world videos with a large num-

ber of action classes. Real-world videos can contain move-

ments of the entire body or of only some specific regions,

e.g. facial expressions or moving a limb, possibly repeti-

tive, whole-body movements such as walking and running,

or a number of sequences of body movements such as walk-

ing in a queue or cross-walking at an intersection. It is of

interest to investigate how to adapt, generalise or fuse the

existing techniques to model any kind of human actions. In

real-world videos, context (= the environment / situation)

and interaction of the body with the context (= objects / per-

sons) is also important to correctly classify the action being

performed. In this paper, we propose a feature represen-

tation scheme for large scale human action recognition in

realistic videos.

Amongst several frameworks, local representation based

Bag-of-Words (BoW) techniques are very popular and yield

good results. Firstly, interest points are detected at differ-

ent spatio-temporal locations and scales for a given video.

Then, local feature descriptors are computed in the spatio-

temporal neighbourhood of the detected interest points,

which capture shape (gradient) or motion (optical flow)

or similar measurements describing the human action dy-

namics. Several techniques to detect interest points ex-

ist. Laptev and Lindeberg [11] first proposed the usage of

Harris 3D corners as an extension of the traditional Har-

ris corner points. Later on, cuboid detectors obtained as

local maxima of the response function of temporal Ga-

bor filters on a video were proposed by Dollár et al. [4].

Willems et al. [29] proposed a Hessian interest point de-

tector, which is a spatio-temporal extension of the Hessian

saliency measure for blob detection in images. Wang et al.
[28] proposed a dense sampling approach wherein the in-

terest points are extracted at regular positions and scales in

space and time. Spatial and temporal sampling are often

done with 50% overlap. Further, Wang et al. [26] extend the

dense sampling approach by tracking the interest points us-

ing a dense optical flow field. We have observed that trajec-
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tories obtained by a Kanade-Lucas-Tomasi (KLT) tracker

[8], densely sampled [26] or one of the variants [6, 7, 9, 27],

have been consistently performing well on several bench-

mark action recognition datasets. Early work by Albright et
al. [2] indicates that is it sufficient to distinguish human ac-

tions by tracking the body joint positions. Hence, we focus

our current work on trajectories only.

We divide the existing trajectory based techniques into

three major approaches. In the first approach, a variant of

trajectories [7, 9] and/or new local feature descriptors [6] is

proposed. In the second approach, feature histograms are

computed in different volumes obtained my dividing the

video along height, width and time, and then aggregated.

This approach is akin to the popular Spatio-Temporal Pyra-

midal approach [12, 13, 24]. The trajectories and their vari-

ant can also be aggregated together. In the third approach,

only some trajectories are selected from those obtained by

the above first or second approach. All three categories for

feature representation are still in practice and found to yield

good results on different action recognition datasets. How-

ever, their effectiveness on new large scale action recogni-

tion datasets, which contain many more classes, and videos

collected in realistic conditions has not yet been studied ex-

tensively. Our proposed approach falls into the third cate-

gory. We believe that in large scale datasets, it is important

to have a smaller but richer set of features for efficient ac-

tion recognition. Thus, we propose a scheme to match dense

trajectories in consecutive video frames to select only a few

trajectories and then to generate a set of ordered trajecto-

ries. We study and present our results on large scale action

datasets such as HMDB51, UCF50 and UCF101 contain-

ing at least 50 different action classes. All our experiments

are performed in a BoW framework using a Support Vec-

tor Machine (SVM) classifier. In this paper, we make the

following contributions:

1. A feature selection like approach that selects about

half of the dense trajectories, yet delivers better per-

formance than the original and several other trajectory

variants.

2. Removal of a large number of trajectories related to

background noise.

In the remainder of the paper, Section 2 contains a re-

view of the latest advances in feature representations w.r.t.

large scale action recognition. Section 3 describes the

framework. Section 4 details the local feature descrip-

tors, codebook generation, classifier and datasets. Section

5 presents and discusses the results obtained on the bench-

mark datasets. Finally, conclusions are drawn in Section 6.

2. Related Literature
We now briefly review some of the literature related to

the three kinds of approaches mentioned in Section 1. We

focus particularly on trajectory based techniques in the last

five years as they have been found to perform better than

most other techniques on larger action recognition datasets,

e.g. UCF50 and HMDB51, with 50 or more action classes.

2.1. Trajectories and Variants

Uemura et al. [23] proposed human action recognition

based on the KLT tracker and SIFT descriptor. Multiple

interest point detectors were used to provide a large num-

ber of interest points for every frame. Sun et al. [22] pro-

posed a hierarchical structure to model spatio-temporal con-

textual information by matching SIFT descriptors between

two consecutive frames. Actions were classified based on

intra- and inter-trajectory statistics. Messing et al. [15] pro-

posed an activity recognition model based on the velocity

history of Harris 3D interest points (tracked with a KLT

tracker). Matikainen et al.[14] proposed a model to cap-

ture the spatial and temporal context of trajectories, which

were obtained by tracking Harris corner points in a given

video using a KLT tracker.

Wang et al. [26] proposed dense trajectories to model hu-

man actions. Interest points were sampled at uniform inter-

vals in space and time, and tracked based on displacement

information from a dense optical flow field. Kliper-Gross

et al. [9] proposed Motion Interchange Patterns (MIP) for

capturing local changes in motion trajectories. Based on

dense trajectories [26], Jiang et al. [7] proposed a tech-

nique to model the object relationships by encoding pair-

wise dense trajectory codewords. Global and local refer-

ence points were adopted to characterise motion informa-

tion with the aim of being robust to camera movements.

Jain et al. [6] proposed another variant of dense trajecto-

ries recently, showing that significant improvement in ac-

tion recognition can be achieved by decomposing visual

motion into dominant (assumed to be due to camera motion)

and residual motions (corresponding to the scene motions).

2.2. Spatio-Temporal Pyramidal Approach

To encode spatial information within the bag-of-features

representation, the Spatial Pyramidal approach was first

proposed by Lazebnik et al. [13] for object classification in

images, but has since also been successfully used in videos.

Here, the video sequence is split into (spatial) subsequences

and a histogram is computed for each subsequence. The fi-

nal histogram is obtained by concatenating or accumulating

all the histograms of the subsequences. Zhao et al. [30] di-

vide each frame into cells, over which Dollár’s features [4]

are computed. Additionally, motion features from neigh-

bouring frames are used in a weighted scheme, which takes

into account the distance of the neighbour from the actual

frame. A spatial-pyramid matching, similar to [13], is then

applied to compute the similarity between frames. Finally,

frames are classified individually and a voting scheme is
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Figure 1: Dense trajectories are extracted from video. Proposed ordered trajectories are generated by matching trajectories of

consecutive frames. Codebooks are constructed for each set of local feature descriptors of these trajectories. Separate SVMs

are built and the final decision is obtained by product fusion rule.

used for action recognition in the video. Ullah et al. [24]

used six spatial subdivisions of a video and computed local

features and models for each subdivision. They found sig-

nificant improvement in the recognition rate compared to

using the original video.

2.3. Interest Point Selection

Nowak et al. [16] showed by extensive experiments that

uniform random sampling can provide performances com-

parable to dense sampling of interest points. Another inde-

pendent study [25] showed that action recognition perfor-

mance can be maintained with as little as 30% of the densely

detected features. Bhaskar et al. [1] presented an approach

for selecting robust STIP detectors by applying surround

suppression combined with local and temporal constraints.

They show that such a technique performs significantly bet-

ter than the original STIP detectors. Shi et al. [19] proposed

that with proper sampling density, a state-of-the-art perfor-

mance can be achieved by randomly discarding up to 92%

of densely sampled interest points.

3. Overall Framework and Background

The overall layout of our proposed framework is shown

in Fig. 1. Firstly, dense trajectories are detected. The pro-

posed ordered trajectories are generated by matching tra-

jectories of consecutive frames. Local descriptors – Motion

Bound Histograms (MBH), Histograms of Oriented Gradi-

ents (HOG), Histogram of Optical Flow (HOF) – are com-

puted at the selected matching trajectories, while the Tra-
jectory Shape descriptor is computed from the generated

ordered trajectories. These descriptors are clustered into a

pre-defined number of centres, thus constituting codebooks

for the rest of the process. Using the cluster centres, the lo-

cal descriptors extracted from a given video clip are quan-

tised into feature vectors. These frequency histograms act

as features to learn a classifier (SVM). Separate codebooks

are constructed for each type of descriptor. Decision val-

ues from each SVM are fused using the product rule to

predict the action in a given video. Our work is primar-

ily inspired by the dense trajectories proposed by Wang et
al. [26], which we briefly summarise next.

3.1. Dense Trajectories

Firstly, points uniformly spaced over each frame in 8

spatial scales are sampled. This ensures that points are

equally spread in all spatial positions and scales. By exper-

imentation, [27] report that a sampling step size of W = 5

pixels yields good results over several benchmark datasets.

Points in homogeneous regions are removed by applying

the criterion of Shi and Tomasi [20]. The sampled points

are then tracked by applying median filtering over the dense

optical field. For a given frame it , its dense optical flow field

ωt = (ut ,vt) is computed w.r.t. the next frame it+1, where

ut and vt are the horizontal and vertical components of the

optical flow. A point Pt = (xt ,yt) in frame It is tracked to

another position Pt+1 = (xt+1,yt+1) in frame It+1 as follows

Pt+1 = (xt+1,yt+1) = (xt ,yt)+(M ∗ωt)|(xt ,yt ) (1)

where M is a 3×3 pixels median filtering kernel.

The algorithm proposed by Farneback [5] was used to

compute dense optical flow. To avoid drifting from their

initial locations during the tracking process, tracking is per-

formed on a fixed length L number of frames at a time.

Through experimentation, L = 15 frames was found suit-

able. In a post-processing stage, trajectories with sudden

large displacements are removed.

3.2. Local Feature Descriptors

Four kinds of local feature descriptors were computed

on the neighbourhood of the points derived by the above

trajectories. They are MBH, HOG, HOF and Trajectory

Shape. Each descriptor captures some specific character-

istics of the video content. HOG descriptors capture the lo-

cal appearance, while HOF descriptors capture the changes

in the temporal direction. The space-time volumes (spatial

size 32×32 pixels) around the trajectories are divided into

12 equal-sized 3D grids (spatially, 2× 2 grids and tempo-

rally, 3 segments). For computing HOG, gradient orienta-

tions were quantised into 8 bins. For computing HOF, 9

bins were used with one more zero bin in comparison to

HOG. Thus, the HOG descriptors have 96 dimensions and

HOF descriptors have 108 dimensions. MBH descriptors

are based on motion boundaries. These descriptors are com-

puted by separate derivatives for the horizontal and vertical

components of the optical flow. As MBH captures the gra-
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Figure 2: A trajectory of points beginning in frame i
searches for matching trajectory of points beginning from

frame i+1 based on the distance between the second point

in the former and the first point in the latter trajectories.

dient of the optical flow, constant camera motion is removed

and information about changes in the flow field (i.e. motion

boundaries) are retained. An 8-bin histogram is obtained

along each component of x and y. Both histogram vectors

are normalised separately with their L2 norm, each becom-

ing a 96-dimensional vector. In our experiments, we built

separate codebooks for MBH descriptors along x and y. The

trajectory shape descriptor encodes local motion patterns.

For a trajectory of given length L (number of frames) and

containing a sequence of points (Pt = (xt ,yt)), the trajec-

tory shape is described in terms of a sequence of displace-

ment vectors ΔPt = (Pt+1− pt) = (xt+1−xt ,yt+1−yt). The

resulting vector is normalised by the sum of displacement

vector magnitudes

T =
ΔPt , ...,ΔPt+L−1

∑t+L−1
j=t ||ΔPj||

(2)

For L = 15 frames, a 30-dimensional trajectory shape de-

scriptor is obtained. The dense trajectories code available

online1 [26] was used in all our experiments.

4. Proposed Ordered Trajectories
In this section, we describe the generation of our pro-

posed ordered trajectories from the dense trajectories ob-

tained earlier. There are two stages in this process: the

matching stage and the generation stage.

4.1. Search for a Matching Trajectory

For any dense trajectory, we search for any matching tra-

jectory that potentially exists and begins from immediate

next frame. The approach is described now. Consider a tra-

jectory Pi = (xi,yi), i = 1,2, . . . ,L beginning from frame i.
Potential matching trajectory is sought among all the trajec-

tories Qk
i+1 = (xki+1,y

k
i+1), beginning from frame i+ 1. For

a trajectory to match / merge into another trajectory begin-

ning from the next frame, ideally, the second point in the

1http://lear.inrialpes.fr/software

Figure 3: The first point in the trajectory of frame i and the

last point i+L+1 in the trajectory of frame i+1 are trans-

ferred as first and last points of the new ordered trajectory,

respectively. The remaining trajectory points are merged in

an ordered manner by taking the mean as the intermediate

elements of the new trajectory.

former trajectory should be the closest possible one to the

first point of the latter trajectory. This inspiration is used for

searching the matching trajectory (see Fig. 2).

We pick up the second point Pi+1 = (xi+1,yi+1) from

the former trajectory and compute its Euclidean distance

distance(Pi,Qk
i+1) to all first points of the latter trajectories

(beginning from the immediate next frame). The smallest

distance reveals the identity of potential matching trajec-

tory. However, this ‘smallest’ is relative. To make it abso-

lute, we further impose threshold for a trajectoy to be se-

lected as matching. This threshold is determined as 5
√

2,

owing to the W = 5 pixels uniform spacing chosen in com-

puting the dense trajectories. The matching of two trajec-

tories is, thus, reduced to matching of 2D points, instead of

matching along their full length (L). As this computation is

done only once, separate for each video, this is computa-

tionally inexpensive.

4.2. Generation of an Ordered Trajectory

This stage consists of merging two matched dense tra-

jectories into a new sequence of points, the ordered trajec-
tory. Consider two trajectories of points, Pi = (xi,yi) and

Qi+1 = (xi+1,yi+1) found to be matching. The first and last

elements of the ordered trajectory consist of Pi = (xi,yi) and

Qi+L+1 =(xi+L+1,yi+L+1), respectively (see Fig. 3). The in-

termediate elements of an ordered array are filled by taking

the mean of the remaining elements of Pi+1 and Qi+1. The

pseudo-code to generate ordered trajectories for an entire

video is given in Alg. 1.

4.3. Bag-of-Words Framework

We built separate dictionaries for each descriptor. In

our experiments, dictionaries are constructed with k-means

clustering. We set the number of visual words V to 4000,

which was shown to give good results [28]. We have tried

two types of encoding techniques as follows.
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Algorithm 1: Generating ordered trajectories

Input: Dense trajectories detected in a video

Output: Ordered dense trajectories for the video

1 N←number of frames in the video

2 for i← 1 to N−1 do
3 PJ

i ∈ Trajectories beginning from ith frame

4 QK
i+1 ∈ Trajectories beginning from i+1th frame

5 Count1← 1

6 for j← 1 to J do
7 dist = 0

8 Count2← 1

9 for k← 1 to K do
10 dist[Count2]) = ||Pj

i+1−Qk
i+1)||2

11 Count2← Count2 +1

12 min distance= min(dist)
13 if min distance < threshold then
14 PQi[Count1] = [p j

i mean(p
j
i+1,Q

k
i+1) ...

15 ...mean(p j
i+L,Q

k
i+L)Q

k
i+L+1]

16 Count1← Count1 + 1

17 return Ordered trajectories PQ

Hard Assignment (HA): After creating a codebook C =
{μ1,μ2, ...,μk}, local descriptors are assigned to the closest

centroid as

q : Rd →C ⊂ Rd (3)

x �→ q(x) = argmin
μ∈C
||x−μ||2 (4)

where the norm operator ||.||2 refers to the L2 norm.

Vector of Locally Aggregated Descriptors (VLAD):
This is a very recent technique applied successfully on ac-

tion recognition by [6]. In this encoding, the difference be-

tween the descriptors and the closest centroid is collected as

residual vectors. For each centroid of dimension d (dimen-

sion of local feature descriptor), a sub-vector vi is obtained

by accumulating these residual vectors as

vi = ∑
x:q(x)=μi

x−μ (5)

The obtained sub-vectors are concatenated to yield a D-

dimensional vector, where D= k×d.

Further, two-stage normalisation is applied. Firstly,

the ‘power-law normalisation’ [17] is applied. It is a

component-wise non-linear operation. Each component

v j, j = 1 to D is modified as v j = |v j|α× sign(v j), where

α is a parameter such that α ≤ 1. In all our experiments,

α = 0.2. Finally, the vector is L2-normalised as v = v
||v|| to

yield the VLAD vector. When VLAD encoding is used, we

use a linear SVM for classification.

4.4. Classification

For HA encoded features, we build a non-linear SVM

with an RBF-χ2 kernel classifier for each descriptor sepa-

rately. We compute the χ2 distance for each pair of training

feature vectors and obtain the kernel matrix. We normalise

this kernel matrix using the average χ2 distance value A of

the training samples within themselves. We then map this

Kernel matrix using exponential function e−x, i.e.

K(Hi,Hj) = exp(− 1

2A
(Hi−Hj)

2

Hi+Hj
) (6)

Hi = hin and Hj = hjn are the frequency histograms of word

occurrences.

We next feed this transformed kernel matrix to an SVM

with a Radial Basis Kernel [3]. We have fixed the hyper

parameter C = 100 in all our experiments. For multi-class

classification, we apply the one-versus-all approach and se-

lect the class with the highest score.

4.5. Datasets

We applied our proposed technique on three bench-

mark datasets: HMDB51 [10], UCF50 [18] and UCF101
[21]. HMDB51 contains 51 actions categories. Digitised

movies, public databases such as the Prelinger archive,

videos from YouTube and Google videos were used to cre-

ate this dataset. For evaluation purposes, three distinct train-

ing and testing splits were specified in the dataset. These

splits were built to ensure that clips from the same video

were not used for both training and testing. For each action

category in a split, 70 training and 30 testing clips indices

were fixed so that they fulfil the 70/30 balance for each meta

tag. UCF50 has 50 action classes. This dataset consists of

6680 realistic videos collected from YouTube. As specified

by [18], we evaluate 25-fold group wise cross-validation

classification performance on this dataset. UCF101 data set

is an extension of UCF50 with 101 action categories, also

collected from realistic action videos, e.g. from YouTube.

5. Results and Discussions
We now present the results obtained by applying the pro-

posed ordered trajectories. These results are obtained by ap-

plying HA encoding. Results obtained by VLAD encoding

are presented only in Section 5.5.1.

5.1. Performance of Ordered Trajectories

Results obtained by using the ordered trajectories on

HMDB51, UCF50 and UCF101 dataset are presented in

Table 1. The overall performance on HMDB51 and UCF50
datasets is 47.3% and 85.5%, which is 0.7-1% (absolute)

more than the traditional dense trajectories [26] computed

at 5 different scales in spatial and time [27]. The perfor-

mance of individual local feature descriptors shows that
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Table 1: Ordered trajectory based recognition rates

Approach Descriptor UCF50 HMDB51 UCF101

Dense TrajShape 67.2% 28.0% NA

Trajectories MBH 82.2% 43.2% NA

HOG 68.0% 27.9% NA

HOF 68.2% 31.5% NA

[26] Combined 84.5% 46.6% NA

Proposed TrajShape 72.4% 31.2% 47.1%

approach MBH 82.3% 41.0% 67.9%

HOG 66.2% 26.5% 51.4%

HOF 67.0% 30.9% 52.0%

Combined 85.5% 47.3% 72.8%

only the trajectory shape descriptor performs better than

the Spatio-Temporal Pyramidal approach by 3-4% (abso-

lute) due to the trajectory descriptor being computed on the

merged matching dense trajectories. In the case of other

descriptors – MBH, HOG, HOF – we only retain that of

matching trajectories.

5.2. Minimising Background Clutter

The effect of the proposed ordered trajectories can be

observed in Fig. 4. The ordered trajectories have not lost the

principal object, players or the basketball. At the same time,

some background clutter, e.g. roof top, has been filtered out

by the proposed technique.

5.3. Ordered Trajectories on a Sample Video

For a sample video of 13s duration, 819KB file size,

320× 240 pixels frame size, the number of dense trajec-

tories obtained, by original and different variants is shown

in Table 2. Dense trajectories computed at original scale

in space and time, as shown in Fig. 5 (a) is 21,647. By

the proposed technique, 11,657 ordered trajectories were

obtained, which is about 50% of the actual dense trajec-

tories amount. A natural question that may follow is Why
not compute dense trajectories directly for L = 16?. Actu-

ally, dense trajectories are first detected at different scales

in space. A trajectory that may have ended in one scale,

may have continued in the next frame in the upper or lower

scale. Dense trajectories do not exclusively combine such

trajectories. The number of dense trajectories computed for

L = 16 and L = 17 are shown in Table 2. Although their

number is slightly smaller than for L = 15, it is still nearly

twice the number of our proposed ordered trajectories.

5.4. Comparison with Spatio-Temporal Pyramid

In the Spatio-Temporal Pyramidal approach, features are

computed separately in each of the different sub-volumes

(obtained by dividing the original video along space and

time) and then concatenated. Illustrations are given in Fig.

5. For example, when the original video is divided into three

Figure 4: Top: Original dense trajectories in sample

frames. Bottom: Ordered dense trajectories in correspond-

ing frames. Watch full videos in supplementary material.

horizontal sub-volumes, as shown in Fig. 5(b) three sepa-

rate codebooks are to be constructed for each sub-volume.

Using those dense trajectories that fall in a particular sub-

volume, feature histograms are generated. These feature

histograms are concatenated to yield the overall feature vec-

tor for the video. In current case, the feature vector will

be 3 times larger than that obtained on full scale dense tra-

jectories or our proposed ordered trajectories. In a higher

case, as can be seen in Fig. 5(f) where the original video

is divided into eight sub-volumes, the final vector will be 8

times larger than that that can be obtained by original dense

or ordered trajectories.

5.5. Comparison with Other Techniques

For a fair and consistent comparison, we compared our

results with the latest, best and relevant works in the litera-

ture. We also include a brief description of their methodol-

ogy in Table 3. The performance of dense trajectories [26]

on HMDB51 and UCF50 is 84.5% and 46.6%, respectively,

(a) (b) (c)

(d) (e) (f)

Figure 5: Spatio-temporal grids used by Wang et al. [27]
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Table 2: Number of trajectories for a sample video in dif-

ferent schemes.

Reference Number of Trajectories

Dense trajectories [26] at L = 15 21,647

Dense trajectories at L = 16 21,521

Dense trajectories at L = 17 21,329

Proposed approach 11,657

as reported in [27]. The performance by using the pro-

posed ordered trajectories on respective datasets is 85.5%

and 47.3% respectively. This is nearly 0.7-1% (absolute)

better than for the actual dense trajectories. The results ob-

tained by the Spatio-Temporal Pyramidal approach of dense

trajectories is 85.6% and 48.3% respectively. This is 0.1-

1% better than our proposed technique. However, it has to

be noted that our results are obtained using only 5 chan-

nels while the Spatio-Temporal Pyramidal approach uses

30 channels. The feature vectors in some of these channels

can also be as high as 3-8 times than those used in original

dense trajectories or our proposed ordered trajectories. Shi

et al. 2013 [19] suggested that random selection of 10,000

dense trajectories can yield 83.3% and 47.6%, respectively.

By our proposed technique, we see that only less important

information such as background is omitted, as shown visu-

ally in a few examples in Fig. 4.

5.5.1 VLAD Based Results

The latest work on the HMDB51 dataset by Jain et al. re-

ported the highest recognition rate so far of 52%. This can

be due to two reasons. Firstly, due to the combination of

dense trajectory results and ω-trajectories (motion compen-

sated) results. Secondly, due to the new encoding scheme

VLAD. We have used the same encoding scheme on our or-

dered trajectory descriptors and include our results. Dense

trajectories with VLAD encoding yielded 48.0% [6], while

ordered trajectories with VLAD encoding yielded 49.9%. It

can be observed that our results are 1.9% (absolute) better

even when VLAD encoding is used.

5.6. Future Work

After performing the experiments and the selection of

trajectories, we would like to focus on the choice of local

feature descriptors. There are several types of local feature

descriptors already available in the literature. We would

like to investigate if with minimal choice we can obtain the

state-of-the art performance.

6. Conclusions
A technique to match dense trajectories and merge them

is proposed. The resultant sequence of points were coined

as ordered dense trajectory. A local descriptor, trajectory

shape, computed over the ordered dense trajectories was

found to yield better performance than that obtained by

the original dense trajectories. Moreover, information other

than the main objects of interest captured by the dense tra-

jectories was also found out to be removed effectively by

the proposed technique. Future work will involve develop-

ing tools to merge other descriptors such as HOG, HOF and

MBH of the matching dense trajectories.
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Evaluation of local spatio-temporal features for action recog-

nition. In British Machine Vision Conference (BMVC 2009),
pages 124.1–124.11, Sep 2009. 4321, 4324

[29] G. Willems, T. Tuytelaars, and L. Gool. An Efficient Dense

and Scale-Invariant Spatio-Temporal Interest Point Detector.

In European Conference on Computer Vision (ECCV 2008),
pages 650–663, 2008. 4321

[30] Z. Zhao and A. Elgammal. Human activity recognition from
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