
Processing Geotagged Image Sets for Collaborative Compositing and View

Construction

Levente Kovács

Distributed Events Analysis Research Lab., Inst. for Computer Science and Control, MTA SZTAKI

Kende u 13-17, H-1111 Budapest, Hungary

Dept. of Image Processing and Computer Graphics, University of Szeged

P.O. Box 652, H-6701 Szeged, Hungary

levente.kovacs@sztaki.mta.hu

Abstract

In this paper we present a method for local processing

of photos and associated sensor information on mobile de-

vices. Our goal is to lay the foundations of a collabora-

tive multi-user framework where ad-hoc device groups can

share their data around a geographical location to produce

more complex composited views of the area, without the

need of a centralized server-client - cloud-based - archi-

tecture. We focus on processing as much data locally on the

devices as possible, and reducing the amount of data that

needs to be shared. The main results are the proposal of

a lightweight processing and feature extraction framework,

based on the analysis of vision graphs, and presenting pre-

liminary composite view generation based on these results.

1. Introduction

We have many sources for obtaining images of a ge-

ographical location, as more and more people share their

photos through various online services. We also know of a

number of impressive works that tackled the problem of cre-

ating panoramic/composite views or 3D reconstructions of

locations based on available data [10],[9],[7],[4] and others.

However, most of these methods - probably the most known

of which are based on bundle adjustment [12],[10] - require

large amounts of computing power, processing photo col-

lections offline. Given a set of well-corresponding image

series shot along a continuous path with multiple interest

point correspondences enables the production of stitched

images and panoramas [1],[11] that can be used for cre-

ating location-dependent composite views, even if sensor

information (location, orientation, field of view) is limited

or unavailable.

In this work we intend to produce location-dependent vi-

sualizations which are the results of combining unordered

image sets from multiple devices, by sharing information

among them without a centralized processing core. Thus,

there is no possibility of performing very computationally

expensive processing, and there is little possibility for of-

fline computations. The main purpose of the proposed

method(s) is to be integrated into a collaborative mobile ap-

plication framework, where users can go to a geographical

area, take photos, and then be able to visualize larger com-

posite views of the same area produced by processing the

user’s photos and the data gathered from other users that

are in the same area. To help processing and reduce com-

plexity, we extract and use device sensor data like GPS co-

ordinates, device orientation and field of view (FOV). Such

a system would operate without a centralized architecture,

devices would connect in a peer-to-peer fashion, and pro-

cessing would be done locally on the devices. In such sce-

narios, it is important to provide lightweight methods for

image content processing and also for data propagation be-

tween the devices. Of course, at some point, photos will

need to also be transferred in order to create the composited

views, but our intent is to perform as much pre-processing

- based on propagated data only - locally as possible, then

transfer only those photos which have been deemed relevant

for producing the final visualizations.

The main points of the introduced work are the follow-

ing: being lightweight; building and analyzing local vi-

sion graphs [3] and applying pre-filtering steps to find cor-

responding image groups before computing content-based

correspondences; filtering matched interest points based on

feature-differences and interest point distances and based

on extra, local image features (e.g. LBP, texture, edge his-

togram) to reduce the quantity of interest points and features

(retaining only approx. 4-5% of original interest points);

only trying to match images belonging to the same local

group/component (as opposed to bundle adjustment pro-

2013 IEEE International Conference on Computer Vision Workshops

978-0-7695-5161-6/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.67

460

2013 IEEE International Conference on Computer Vision Workshops

978-1-4799-3022-7/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.67

460

cesses), which is important when targeting device-only pro-

cessing; instead of full panoramas, producing a circular dis-

tribution view of all obtained images around a location.

In [2] an iterative view clustering approach is presented

by constructing a spanning tree based on SIFT descriptor

differences then refining by geometric consistency check-

ing. All processing is done based on image content, re-

quiring a set of training images pairs, and achieving consid-

erable speedup vs. exhaustive geometric matching. How-

ever, in our approach, we concentrate on being lightweight,

and on server-less/on-device applicability. Thus, in the pre-

sented work we build an initial vision graph based on sen-

sor field of view overlap candidates (discarding large graph

parts right away), then build so called score matrices based

on interest point pre-filtering steps which will not only re-

fine the vision graph, but at the same time provide a tree

structure with the order of connecting possibly overlapping

views and reduce the number of points to be matched during

composite view construction (reducing outliers).

Thus, in this work we present the first step in achieving

the above goals, dealing with sensor and photo localization,

determining possible relations between sensors and content,

extracting features for photo matching/stitching, and filter-

ing for reducing the computation time and the quantity of

necessary feature data.

2. Data capture

The first step in creating location-dependent composite

views is image and data capture. In order to facilitate easy

device interconnection in the future, we are using a custom

mobile application, which handles image capture, sensor

data recording, and - in the future - communication. Cur-

rently, for the purposes of this paper, the data capturing is

performed with multiple devices, but processing and visu-

alization is done on a desktop PC. The implementation of

the communication functions and the processing steps on

the mobile devices will be completed at a later stage.

A screenshot of our internal (not yet public) mobile ap-

plication is in Fig. 1. The application continuously displays

sensor information and enables the viewing of the captured

images and sensor data, and can show the user’s location on

a map. Along the captured images, sensor data are recorded

containing device location, orientation (rotations along the

3 axes in 3D) and field of view angles (horizontal and verti-

cal). Fig. 2 shows an example image and data.

For testing purposes we collected two sets of im-

ages at two locations. The locations and the posi-

tions of the devices at the time of capture are shown

in Fig. 3 (a-b). The used datasets are available at

http://web.eee.sztaki.hu/˜kla/cvcp13.

Figure 1. Screenshot of the data capture application.

Figure 2. Example for a captured image and the associated sensor

data file.

3. Vision graph construction

Vision graphs [3] have been a useful tool for visualiz-

ing sensor locations and processing the constructed graph

structure. These graphs consist of sensors (vertices) and

connections (edges) between them if there is some form of

connectivity between sensors. In our case we establish a

connection between vertices if the sensors overlap based

on the extracted location, orientation and FOV informa-

tion. Then we use this information to find groups (graph

components) that contain images which were possibly taken

around the same location. However, since we do not have

map/street/building information to eliminate possible occlu-

sions, as a next step, we need to check the images of a

group for visual correspondences based on extracted inter-

est points and local features around these points. The final

goal is then to propagate the such obtained grouping infor-

mation and filtered interest point data among the participat-

ing mobile devices to enable the creation of collaborative

composite views around a location of interest. Thus mobile

461461

(a) (b)

(c) (d)

Figure 3. (a),(c): Sensor locations shown in KML on map. (b),(d) Sensor locations visualized for internal processing.

clients will have the capability to browse location-based im-

age groups built from multiple (other than their own) sensor

sources.

As an input for building the graphs, we use the sensor

data recorded at the time of capturing the images. Internally,

we use the same relative positioning of the sensors as in the

KML (Fig. 3 (a-b)), keeping the geographical orientation

and relative positioning. When selecting the initial group

of images to process, we need to set a radius that will be

a threshold for being treated as belonging to the same area

(currently we use a 300m radius from the first read image,

but this is freely changeable). Such internal visualization is

shown in Fig. 3 (c-d).

3.1. Finding corresponding candidate groups

As a next step, we locally process the sensor data for

finding sensor locations (and, implicitly, images) where the

cameras were probably “looking” towards the same target.

We do this by looking at the orientation and field of view

angle information of different recordings (visualized in 2D

in Fig. 4), then represent the camera views as cones in 3D

space, and calculate eventual intersections of these cones.

Intersection volumes are calculated for each pair of record-

ings. Let Ci be the cone of the ith recording, then and Vi,j

the volume of the intersection of cones i and j:

Vi,j = vol(Ci ∩ Cj) . (1)

If Vi,j > t (an empirical threshold), then we will label

the two recordings/images as connected candidates.

Figure 4. Internal visualization showing all sensors, their orienta-

tions, approximate FOVs and the captured images.

Using the sensor locations as a basis, we build a graph

G(V,E) where the vertex set V will contain the sensors as

nodes, and the edge set E will contain edges between two

nodes if they were labeled as connected candidates. The ad-

jacency matrices of such graphs are shown in Fig. 5. Then,

Fig. 6 shows the vision graph, with nodes as sensors and

edges connecting the nodes of candidate groups. This vi-

sualization’s purpose is to show the separate graph com-

462462

(a) (b)

Figure 5. Adjacency matrices for the first (a) and the second (b)

location.

(a)

(b)

Figure 6. Connected sensor graphs for the first (a) and the second

(b) location.

ponents (groups), thus it does not show possible multiple

inter-connections between elements of a single group (the

full inter-connected graph structures are shown in Fig. 8 (a)

and (c)).

4. Filtering image groups

There are several methods for creating

stitched/panoramic composites from overlapping images.

Since we intend to target an implementation on mobile

devices in the future, we decided to use the OpenCV

library, which has a version for Android (and others). The

library has keypoint extractor and matcher functions, and

method for calculating homographies and image warping.

However, we intend to reduce the computation and time

complexity of the available approaches for homography

calculation, first by reducing the number of used points

and by eliminating the necessity for using RANSAC (or

any other outlier reduction step). In the following we will

describe the filtering steps we employ for this purpose.

Taking the previously obtained candidate groups, we use

the belonging images to perform content-based analysis,

with multiple goals:

• To determine whether images which are probably

looking at the same scene are actually containing sim-

ilar content. Situations can occur, when although sen-

sor data would suggest that the sensors were looking

towards the same location, the contents will differ be-

cause of occlusions by some urban structure (e.g. large

vehicles, statues, etc.).

• To determine whether there is enough similar content

in the images for stitching/warping them together.

• To obtain a reduced set of interest points and features

from the images, that would be distributed among par-

ticipating devices at a later stage (not part of the current

paper).

First we extract SIFT keypoints [5] from the images

of the groups, at a reduced resolution (so as the longer

side will have 640 pixels). Then we run the obtained

points through the OpenCV library’s FlannBasedMatcher,

which internally uses a kd-tree structure for searching near-

est neighbors. As an output we get a set of M =
{mi(x1, y1, x2, y2)|i = 1...n} matched keypoint pairs

(x1, y1, x2, y2 are the coordinates of two matched key-

points). Let Df = {dfi|dfi = d(mi), i = 1...n} be the

set of feature-based distances between the matched key-

points, and minDf = min(dfi|i = 1...n), maxDf =
max(dfi|i=1...n). Then we will only retain those matched

points, for which the following holds: M∗ = {mi ∈
M |dfi < minDf + (maxDf − minDf) · α}, thus drop-

ping those matches which have high distances. The value

of α is typically set to 0.66 (or higher).

Secondly, we further filter the obtained matched point

set, this time based on the distances of the points’ loca-

tions, dropping those pairs which are too far away, retaining

M∗∗ = {m∗
i ∈M∗|dei < β}, where de(·) is the Euclidean

distance between a point pair from M∗ (β is set to be ap-

prox. half of the image width).

As a third and last step, we extract local image features

around the remaining points in a 8 × 8 or 16 × 16 block

region. We also tested MPEG7 texture and edge histogram

features, but finally chose LBP [6] for computational com-

plexity considerations. We calculate the LBP-based dis-

tances for the pairs in M∗∗, and drop the farthest 25%, re-

sulting in a final set of M̂ point pairs.

463463

After the last filtering step we calculate the percentage

of remaining points vs. the original number of SIFT points

r =
|M̂ |

|M |
, (2)

and we construct a matrix R, containing r(i, j) percentage

values between i, j image pairs of the same group. Fig. 7

shows examples for such matrices for two groups, lower

intensity colors representing higher percentages.

We will use the R matrix as a basis for trying to stitch im-

ages that are in the same group. Figures 8 (a) and (c) show

candidate groups from the original vision graphs of Fig. 6,

showing all inter-connections in the groups. After filtering

the groups with the above steps, we obtain score matrices

for each group as the ones in Fig. 7. Then we use these

values to start a greedy matching process for each group as

follows: For each group (graph component) G:

1. Create the score matrix R;

2. Find the image pair vi, vj ∈ G of the group with the

highest score in R;

3. Add vi, vj to a new graph/component G∗ and remove

them from G;

4. For the nodes in G∗:

(a) Find max r(s, t) > 0 where vs ∈ G and vt ∈ G∗

(i.e. the best matching node from G to G∗);

(b) Add vs to G∗ and remove it from G;

(c) Repeat (a-c) until G becomes empty.

While the above process is similar to the greedy tree con-

struction in [8], we have a different approach in constructing

the initial pre-filtered graph structure, in estimating the con-

nected candidates by reducing the processed interest points

and outliers (improving homography estimation times), and

in not only providing a tree structure, but also an order of

connecting the overlapping view candidates.

The above matching process results in a cleaned-up

graph structure, which will contain components that are ei-

ther single nodes (images which could not be paired to any

other) or disconnected trees. Fig. 8 (b) and (d) show such

outputs. Components in this new graph structure do not

simply show which images are good candidates for content-

based matching, but also tell which images form better pairs

than others, providing a proposed order of calculating ho-

mographies and warping image pairs.

5. Organizing image groups for browsing and

view construction

After we obtained the cleaned-up graph components

above, we begin stitching the images of the components, by

Figure 7. Examples for matching matrices for a smaller (left) and

a larger (right) candidate group. Lower intensity means higher

matching score (self-matching discarded). When processing can-

didate groups for producing image matching/stitching, pairs are

selected in decreasing order of their matching score.

(a) (b)

(c) (d)

Figure 8. (a),(b): First location: graph node structure before and

after content analysis. (c),(d): The same for the second location.

homography time filtering time points used

(a) 137ms – 100%

(b) 128ms – 48%

(c) 1ms 39ms 4%

Table 1. Processing times for calculating the homographies by:

(a) regular with RANSAC (e.g. Fig. 9 (c),(f)), (b) pre-filtered

with RANSAC (e.g. Fig. 9 (d),(g)), (c) pre-filtered & LBP (no

RANSAC) (e.g. Fig. 9 (e),(h)). The “points used” column shows

the percentage of the original keypoints remaining for the homog-

raphy calculation.

calculating homographies and warping the images. We do

this without outlier estimation steps, using the point pairs

remaining after the previous 3-step point filtering process,

resulting in reduced complexity.

464464

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 9. (a-b) Input images. Quantity and matching of feature points by using (c) regular matching with RANSAC, (d) feature pre-filtering

combined with RANSAC, (e) presented approach with filtering & LBP (without RANSAC). (f-g-h) Registered and warped image pairs

corresponding to (c-d-e).

Table 1 shows time data for calculating the homogra-

phies (a) without using the above filtering process and em-

ploying RANSAC for outlier reduction, (b) using the fil-

tering steps 1 and 2 without the extra feature-based (LBP)

filtering and using RANSAC, and (c) using the 3-step filter-

ing without RANSAC. We timed the methods on a desktop

PC, but the comparison still stands to show the difference

in complexity. The table also shows how much of the orig-

inal keypoints remain for the homography calculation step

in each case. When using our proposed method, we can

observe a 3× time reduction, using only 4% of the points.

Fig. 9 shows a visual example for the above compared

approaches, with the goal of showing that similar quality

matching can be performed by all three compared versions,

465465

(a)

(b)

Figure 10. For the first (a) and the second (b) location: top row: all captured images placed relative to their real locations/distances; the

images below show the created composite images produced by combining images that were judged to be correspondent both by location

and by content.

with the presented method having the benefit of lower com-

plexity.

Currently, as a final result of the above methods, we pro-

duce two outputs. One is a composite image which can be

thought of as the internal wall of a cylinder unfolded into a

plane, containing all the images gathered from the current

location, and displayed in the relative sequence and distance

according to the original location information. The second

output, connected to the first one, contains the same im-

agery, but images which were deemed to belong to the same

group are warped together. Work is underway for creat-

ing a more visually pleasing, high quality composite views.

Fig.10 shows current proof-of-concept outputs for the two

locations and image sets used in this work.

Eventually, when multiple devices can be inter-

connected for sharing local information and images, a larger

augmented image set will be available, which will enable

the creation of not only partially warped sub-groups, but of

a more complex panoramic view covering as much of the

surroundings as possible.

6. Conclusions and future work

We presented the foundations of a collaborative location-

based composite image producing framework, by present-

ing methods to create views from unordered image sets con-

nected to a geographical location, without a centralized ar-

chitecture. Our goals were to create a lightweight method

based on pre-filtering images using device sensor data,

which can also integrate data shared by other devices in the

future. Based on the results, we are working to create the

above mentioned framework as a truly distributed, ad-hoc,

location-based service, which could be used at touristic hot-

spots, large public events, etc. Used datasets are available at

http://web.eee.sztaki.hu/˜kla/cvcp13. A

mobile app for data capture and sharing will be made avail-

able later.

Acknowledgements

This work has been supported by the Hungarian Scien-

tific Research Fund (OTKA) grant nr. 83438 and by the Eu-

ropean Union and the State of Hungary co-financed by the

European Social Fund through project FuturICT.hu grant nr.

TÁMOP-4.2.2.C-11/1/KONV-2012-0013.

References

[1] A. Agarwala, M. Agrawala, M. F. Cohen, D. Salesin, and

R. Szeliski. Photographing long scenes with multi-viewpoint

panoramas. ACM Trans. Graph., 25(3):853–861, 2006. 1

[2] A. S. Brahmachari and S. Sarkar. View clustering of wide-

baseline n-views for photo tourism. In Proc. of SIBGRAPI,

pages 157–164, 2011. 2

[3] Z. Cheng, D. Devarajan, and R. J. Radke. Determining vi-

sion graphs for distributed camera networks using feature

466466

digests. EURASIP Journal on Applied Signal Processing,

2007(1):220–231, 2007. 1, 2

[4] J.-M. Frahm, M. Pollefeys, S. Lazebnik, D. Gallup, B. Clipp,

R. Raguram, C. Wu, C. Zach, and T. Johnson. Fast robust

large-scale mapping from video and internet photo collec-

tions. ISPRS Journal of Photogrammetry and Remote Sens-

ing, 65(6):538–549, 2010. 1

[5] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision,

60(2):91–110, 2004. 4

[6] T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution

gray-scale and rotation invariant texture classification with

local binary patterns. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 24(7):971–987, 2002. 4

[7] M. Pollefeys, M. Vergauwen, K. Cornelis, J. Tops, F. Ver-

biest, and L. V. Gool. Structure and motion from image se-

quences. In Proc. Conf. on Optical 3D Measurement Tech-

niques, pages 251–258, 2001. 1

[8] F. Schaffalitzky and A. Zisserman. Multi-view matching

for unordered image sets, or how do i organize my holiday

snaps? In Proc. of ECCV, pages 414–431, 2002. 5

[9] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism:

Exploring photo collections in 3D. ACM Transactions on

Graphics, 25(3):835–846, 2006. 1

[10] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world

from internet photo collections. International Journal of

Computer Vision, 80(2):189–210, 2008. 1

[11] R. Szeliski. Image alignment and stitching: A tutorial.

Foundations and Trends in Computer Graphics and Vision,

2(1):1–104, 2006. 1

[12] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgib-

bon. Bundle adjustment — a modern synthesis. In Proc. of

International Workshop on Vision Algorithms, pages 298–

372, 1999. 1

467467

