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Abstract

The billions of public photos on online social media sites
contain a vast amount of latent visual information about
the world. In this paper, we study the feasibility of observ-
ing the state of the natural world by recognizing specific
types of scenes and objects in large-scale social image col-
lections. More specifically, we study whether we can recre-
ate satellite maps of snowfall by automatically recogniz-
ing snowy scenes in geo-tagged, timestamped images from
Flickr. Snow recognition turns out to be a surprisingly diffi-
cult and under-studied problem, so we test a variety of mod-
ern scene recognition techniques on this problem and intro-
duce a large-scale, realistic dataset of images with ground
truth annotations. As an additional proof-of-concept, we
test the ability of recognition algorithms to detect a partic-
ular species of flower, the California Poppy, which could be
used to give biologists a new source of data on its geospatial
distribution over time.

1. Introduction
Digital cameras and camera-enabled smartphones are

now ubiquitous, with a large fraction of the population tak-

ing photos regularly and sharing them online. These mil-

lions of people taking pictures form a massive social sensor

network that is (in aggregate) observing and capturing the

visual world across time and space. Modern phones and

cameras record metadata like geo-tags and time-stamps in

addition to the images themselves, giving (noisy) calibra-

tion information about how this ad-hoc sensor network is

arranged. Social media sites like Flickr and Facebook thus

contain a large amount of latent visual information about

the the world and how it is changing over time.

For instance, many (if not most) outdoor images contain

some information about the state of the natural world, such

as the weather conditions and the presence or absence of

plants and animals (Figure 1). The billions of images on

social media sites could be analyzed to recognize these nat-

Figure 1. Many Flickr images contain evidence about the state of

the natural world, including that there is snow on the ground at a

particular place and time, that a particular species of bird or animal

is present, and that particular species of plants are flowering.

ural objects and phenomena, creating a new source of data

to biologists and ecologists. Where are marigolds blooming

today, and how is this geospatial distribution different from

a year ago? Are honeybees less populous this year than

last year? Which day do leaves reach their peak color in

each county of the northeastern U.S.? These questions can

be addressed to some extent by traditional data collection

techniques like satellite instruments, aerial surveys, or lon-

gitudinal manual surveys of small patches of land, but none

of these techniques allows scientists to collect fine-grained

data at continental scales: satellites can monitor huge areas

of land but cannot detect fine-grained features like bloom-

ing flowers, while manual surveys can collect high-quality

and fine-grained data only in a small plot of land. Large-

scale analysis of photos on social media sites could provide

an entirely new source of data at a fraction of the cost of

launching a satellite or hiring teams of biologist observers.

The idea of using crowd-sourced data for science and

other purposes is of course not new. Citizen science projects

have trained groups of volunteers to recognize and report

2013 IEEE International Conference on Computer Vision Workshops

978-0-7695-5161-6/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.66

452

2013 IEEE International Conference on Computer Vision Workshops

978-1-4799-3022-7/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.66

452



natural phenomena (like bee counts [1], bird sightings [9],

and snowfall [17]) near their homes. Data mining work has

shown that social networking sites like Twitter can moni-

tor political opinions [7, 15], predict financial markets [4],

track the spread of disease [10], detect earthquakes [28],

and monitor weather conditions [14]. However, the vast

majority of this work has used textual data from micro-

blogging sites like Twitter; very few papers have tried to do

this with images, despite the fact that images offer evidence

that is richer, less ambiguous, and much more difficult to

fabricate. This is of course because it is much easier to scan

for keywords in Twitter feeds than to automatically recog-

nize semantic content in huge collections of images.

In this paper, we test the feasibility of observing the nat-

ural world by recognizing specific types of scenes and ob-

jects in large-scale image collections from social media. We

consider a well-defined but nevertheless interesting prob-

lem: deciding whether there was snow on the ground at a

particular place and on a particular day, given the set of

publicly-available Flickr photos that were geo-tagged and

time-stamped at that place and time. This builds on our ear-

lier work in Zhang et al [34] which considered a similar

problem, but used only tag information (essentially scan-

ning for photos that had the tag “snow” with some very

simple image processing to remove obvious outliers). Here,

we explicitly test whether large-scale recognition of image

content itself could be used to do this task. Of course,

snow cover can already be monitored through satellites and

weather stations (although neither of these sources is per-

fect: weather stations are sparse in rural areas and satellites

typically cannot observe snow cover through clouds [12]),

so this is not a transformative application in and of itself. In-

stead, this application is interesting precisely because fine-

grained ground truth is available, so that accuracy of crowd-

sourced observations of the natural world can be tested at

large scale, potentially paving the way to observe other nat-

ural phenomena for which there are no other sources of data.

We initially expected snow detection to be an easy prob-

lem, in which just looking for large white regions would

work reasonably well. However, amongst the hundreds of

papers on object and scene classification in the literature,

we were surprised to find very few that have explicitly con-

sidered detecting snow. A few papers on scene classifica-

tion include snow-related categories [20,21,33], while a few

older papers on natural materials detection [6,22] consider it

along with other categories. We test a variety of recognition

techniques on this problem, using a new realistic dataset of

several thousand images from Flickr with labeled ground

truth. We find that snow detection in consumer images is

surprisingly difficult, and we hope this paper and our dataset

will help spark interest in this somewhat overlooked vision

problem.

Finally we present some preliminary results of applying

our recognition techniques on geo-tagged and time-stamped

images from Flickr, in order to estimate the geo-spatial dis-

tribution of snow. We compare these maps to ground-truth

from satellite data. We also consider an ecology application

where reliable data does not exist and Flickr image analy-

sis could be potentially quite valuable: estimating the geo-

temporal flowering distribution of the California Poppy.

2. Related work
Crowd-sourcing from social media. Several recent stud-

ies have shown the power of social media for observing the

world itself, as a special case of ‘social sensing’ [2]. This

work includes using Twitter data to measure collective emo-

tional state [11] (which, in turn, has found to be predictive

of stock moves [4]), predicting product adoption rates and

political election outcomes [15], and collecting data about

earthquakes and other natural disasters [28]. Particularly

striking examples include Ginsberg et al [10], who show

that geo-temporal properties of web search queries can pre-

dict the spread of flu, and Sadilek et al [27] who show that

Twitter feeds can predict when a given person will fall ill.

The specific application we consider here is inferring

information about the state of the natural world from so-

cial media. Existing work has analyzed textual content,

including text tags and Twitter feeds, in order to do this.

Hyvarinen and Saltikoff [14] search for images on Flickr

to validate metereological satellite observations, albeit by

hand. Zhang et al [34] take a large collection of geo-tagged

and time-stamped Flickr photos and search for snow-related

tags to produce estimates of geo-temporal snowfall distribu-

tions, and evaluate them against satellite snow maps. Singh

et al [29] visualize geospatial distributions of photos tagged

“snow” as an example of their Social Pixels framework, but

they study the database theory needed to perform this anal-

ysis and do not consider the prediction problem.

Few papers have used actual image content analysis as

we do here. Leung and Newsam [19] use scene analysis in

geo-tagged photos to infer land cover and land use types.

Murdock et al [23] analyze geo-referenced stationary we-

bcam feeds to estimate cloud cover on a day-by-day basis,

and then use these estimates to recreate satellite cloud cover

maps. Webcams offer a complimentary data source to the

social media images we consider here: on one hand, analyz-

ing webcam data is made easier by the fact that the camera

is stationary and offers dense temporal resolution; on the

other hand, their observations are restricted to where public

webcams exist, whereas photos on social media sites offer

a potentially much denser spatial sampling of the world.

We note that these applications are related to citizen sci-

ence projects where volunteers across a wide geographic

area send in observations [1,9,17]. These projects often use

social media, but require observations to be made explicitly,

whereas in our work we “passively” analyze social media
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feeds generated by untrained and unwitting individuals.

Detecting snow in images. We know of only a handful of

papers that have explicitly considered snow detection in im-

ages. Perhaps the most relevant is the 2003 work of Singhal

et al [22, 30] which studies this in the context of detecting

“materials” like water, grass, sky, etc. They calculate local

color and texture features at each pixel, and then compute

a probability distribution over the materials at each pixel

using a neural network. They partition the image into seg-

ments by thresholding these belief values, and assign a label

to each segment with a probabilistic framework that consid-

ers both the beliefs and simple contextual information like

relative location. They find that sky and grass are relatively

easy to classify, while snow and water are most difficult.

Follow-up work [5,6] applied more modern techniques like

support vector machines. Barnum et al [3] detect falling

snow and rain, a complementary problem to the one we

study here of detecting fallen snow.

Papers in the scene recognition literature have consid-

ered snowy scenes amongst their scene categories; for in-

stance, Li et al [20, 21] mention snow as one possible

component of their scene parsing framework, but do not

present experimental results. The SUN database of Xiao

et al [33] includes several snow-related classes like “snow-

field,” “ski slope,” “ice shelf,” and “mountain snowy,” but

other categories like “residential neighborhood” sometimes

have snow and sometimes do not, such that detecting these

scenes alone is not sufficient for our purposes.

Recognizing flowers. There are a number of papers on de-

tecting and recognizing flowers in images, although none

have specifically considered the California Poppies we

study here. Most work on flower classification uses datasets

with close-up images of nearly-centered flowers, not the

cluttered images typical of Flickr. We use the work of

Nilsback and Zisserman [24] as the starting point for our

experiments. They perform a binary segmentation step to

separate flower from background, represent the foreground

with vocabularies of color, shape, and texture features, and

then perform recognition using nearest neighbors. Later

work [25] uses additional features like SIFT and HOG,

combines them using a multiple kernel framework, and ex-

tended the dataset to 103 classes. Other work considering

flower recognition includes the semi-automated method of

Zou and Nagy [35] and the work of Kanan and Cottrell [16],

which uses flower recognition as an application of a recog-

nition technique based on modeling visual attention.

3. Snow detection

As noted above, we are aware of very little work that

has considered the problem of detecting snow in images:

the most relevant work [30] considers snow in the context

of natural materials classification, but is over 10 years old,

uses a small and biased dataset, and does not report classi-

fication results. Recent work on scene understanding [33]

sometimes includes snow-related scenes, but none of this

work applies directly to our problem because snow can ap-

pear across a range of different scene types. Snow is really

an object, not a type of scene, but we are not aware of any

work on recognizing snow in the object detection literature.

We thus begin by assembling a large-scale realistic im-

age dataset, and test a variety of modern classification tech-

niques on the problem of snowy scene detection. We use

a labeled subset of this dataset to train classifiers and to

test their performance, and then apply these classifiers to

the problem of generating satellite-like snowfall maps using

image analysis on geo-tagged, time-stamped Flickr photos.

3.1. Dataset

We collected a large realistic dataset of Flickr images. A

subtle but important issue is how to sample these photos.

The distribution of geo-tagged Flickr photos is highly non-

uniform, with high peaks in population centers and tourist

locations. Sampling uniformly at random from Flickr pho-

tos produces a dataset that mirrors this highly non-uniform

distribution, biasing it towards cities and away from rural

areas. Since our eventual goal is to reproduce continental-

scale satellite maps, rural areas are very important. An al-

ternative is biased sampling that attempts to select more

uniformly over the globe, but has the disadvantage that it

no longer reflects the distribution of Flickr photos. Other

important considerations include how to find a variety of

snowy and non-snowy images, including relatively diffi-

cult images that may include wintry scenes with ice but not

snow, and how to prevent highly-active Flickr users from

disproportionately affecting the datasets.

We strike a compromise on these issues by combining

together datasets sampled in different ways. We begin with

a collection of about 100 million Flickr photos geo-tagged

within North America and collected using the public API

(by repeatedly querying at different times and geo-spatial

areas, similar to [13]). From this set, we considered only

photos taken before January 1, 2009 (so that we could use

later years for creating a separate test set), and selected: (1)

all photos tagged snow, snowfall, snowstorm, or snowy in

English and 10 other common languages (about 500,000

images); (2) all photos tagged winter in English and about

10 other languages (about 500,000 images); (3) a random

sample of 500,000 images. This yielded about 1.4 million

images after removing duplicates. We further sampled from

this set in two ways. First, we selected up to 20 random pho-

tos from each user, or all photos if a user had less than 20

photos, giving about 258,000 images. Second, we sampled

up to 100 random photos from each 0.1◦ × 0.1◦ latitude-

longitude bin of the earth (roughly 10km × 10km at the mid

latitudes), yielding about 300,000 images. The combination
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of these two datasets has about 425,000 images after remov-

ing duplicates, creating a diverse and realistic selection of

images. We partitioned this dataset into test and training

sets on a per-user basis, so that all of any given user’s pho-

tos are in one set or the other (to reduce the potential for

duplicate images appearing in both training and test).

We then presented a subset of these images to humans

and collected annotations for each image. We asked people

to label the images into one of four categories: (1) contains

obvious snow near the camera; (2) contains a trace amount

of snow near the camera; (3) contains obvious snow but far

away from the camera (e.g. on a mountain peak); and (4)

does not contain snow. For our application of reconstructing

snowfall maps, we consider (1) and (2) to be positive classes

and (3) and (4) to be negative, since snowfall in the distance

does not give evidence of snow at the image’s geo-tagged

location. In total we labeled 10,000 images.

3.2. Snow classification

Snow is a somewhat unique visual phenomenon, and we

claim that detecting it in images is a unique recognition

task. In some cases, snow can be detected by coarse scene

recognition: ski slopes or snowy landscapes are distinctive

scenes. But snow can appear in any kind of outdoor scene,

and is thus like an object. However, unlike most objects

that have some distinctive features, snow is simply a white,

near-textureless material. (In fact, our informal observation

is that humans detect snow not by recognizing its appear-

ance, but by noticing that other expected features of a scene

are occluded; in this sense, detecting snow is less about the

features that are seen and more about the features that are

not seen. We leave this as an observation to inspire future

work.) We tested a variety of off-the-shelf visual features

for classifying whether an image contains fallen snow. We

used Support Vector Machines for classification, choosing

kernels based on the feature type. Intuitively, color is a very

important feature for detecting snow, and thus we focused

on features that use color to some degree. Our features are:

Color histograms. We begin with perhaps the simplest of

color features. We build joint histograms in CIELAB space,

with 4 bins on the lightness dimension and 14 bins along

each of the two color dimensions, for a total of 784 bins.

We experimented with other quantizations and found that

this arrangement worked best. We encode the histogram

as a 784 dimensional feature and use an SVM with a chi-

squared distance (as in [33]).

Tiny images. We subsample images to 16 × 16 pixels, giv-

ing 256 pixels per RGB color plane and yielding a 768 di-

mensional feature vector. Drastically reducing the image

dimensions yields a feature that is less sensitive to exact

alignment and more computationally feasible [31].

Spatial Moments. Tiny images capture coarse color and

spatial scene layout information, but much information is

discarded during subsampling. As an alternative approach,

we convert the image to LUV color space, divide it into 49

blocks using a 7 × 7 grid, and then compute the mean and

variance of each block in each color channel. Intuitively,

this is a low-resolution image and a very simple texture fea-

ture, respectively. We also compute maximum, minimum,

and median value within each cell, so that the final feature

vector has 735 dimensions.

Color Local Binary Pattern (LBP) with pyramid pooling.
LBP represents each 9×9 pixel neighborhood as an 8-bit bi-

nary number by thresholding the 8 outer pixels by the value

at the center. We build 256-bin histograms over these LBP

values, both on the grayscale image and on each RGB color

channel [18]. We compute these histograms in each cell of a

three-level spatial pyramid, with 1 bin at the lowest level, 4

bins in a 2×2 grid at the second level, and 16 bins in a 4×4
grid at the third level. This yields a (1 + 4 + 16)× 4× 256
= 21504 dimensional feature vector for each image.

GIST. We also apply GIST features, which capture coarse

texture and scene layout by applying a Gabor filter bank

followed by down-sampling [26]. Our variant produces

a 1536-dimensional vector and operates on color planes.

Scaling images to have square aspect ratios before comput-

ing GIST improved classification results significantly [8].

We experimented with a number of other features, and

found that they did not work well; local features like SIFT

and HOG in particular perform poorly, again because snow

does not have distinctive local visual appearance.

3.3. Results

We tested these approaches to detecting snow on our

dataset of 10,000 hand-labeled images. We split this set into

a training set of 8,000 images and a test set of 2,000 images,

sampled to have an equal proportion of snow and non-snow

images (so that the accuracy of a random baseline is 50%).

Table 1 presents the results. We observe that all of the fea-

tures perform significantly better than a random baseline.

Gist, Color Histograms and Tiny Image all give very similar

accuracies, within a half percentage point of 74%. Spatial

Moments and LBP features perform slightly better at 76.2%

Feature Kernel Accuracy

Random Baseline — 50.0%

Gist RBF 73.7%

Color χ2 74.1%

Tiny RBF 74.3%

Spatial Color Moments RBF 76.2%

Spatial pyramid LBP RBF 77.0%
All features linear 80.5%

Table 1. Performance of different features for snow detection, all

using SVMs for classification.
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Figure 2. Snow classification results for different features and combinations, in terms of (left): ROC curves for the task of classifying

snow vs. non-snow images; and (right): Precision-Recall curves for the task of retrieving snow images.

and 77.0%. We also tested a combination of all features by

learning a second-level linear SVM on the output of the five

SVMs; this combination performed significantly better than

any single feature, at 80.5%.

Figure 2 shows classification performance in terms of an

ROC curve, as well as a precision-recall curve in which the

task is to retrieval photos containing snow. The precision-

recall curve shows that at about 20% recall, precision is very

near to 100%, while even at 50% recall, precision is close

to 90%. This is a nice feature because in many applications,

it may not be necessarily to correct classify all images, but

instead to find some images that most likely contain a sub-

ject of interest. To give a sense for the difficulty and failure

modes of our dataset, we show a random sample of correct

and incorrect classification results in Figure 4.

Reconstructing satellite snow maps. Finally, we tested

whether this automated photo classification run on large-

scale collections of geo-tagged, time-stamped social im-

ages could be used to approximate snow maps generated by

satellites. An advantage of considering the snow recogni-

tion task is that ground truth, in the form of daily snow cover

maps, is publicly available from NASA and others [34].

This is thus a somewhat artificial task because very good

datasets already exist for snow cover, but we use this prob-

lem here as a test case of the more general idea of using

Flickr to observe nature. (Nevertheless, satellites are also

limited because they require the ground to be visible, and

thus are not effective when there is cloud cover.)

To test this idea, we downloaded public, geo-tagged,

time-stamped Flickr photos taken in North America on

three days: March 3, April 6, and December 21 2009 (4422,

5606, and 9906 photos respectively). We ran our combined

classifiers on these images. We discretized the image geo-

tags into 1 degree by 1 degree bins, and interpreted each

snowy image as evidence of snow in that bin and each non-

snowy image as evidence against snow in that bin. We com-

bined this evidence together using the simple Bayesian ap-

proach proposed by [34]. Figure 3 shows the resulting map

Nov 30, 2009

Non-snow Snow Uncertain No data

Figure 3. Snow cover maps generated by our Flickr analysis (left),

compared with satellite maps (right), on three days in 2009: March

3 (top), April 6 (middle), and December 21 (bottom). Green indi-

cates snow, blue indicates no snow, and gray indicates uncertainty

(caused by too few photos in Flickr analysis, or by cloud cover in

satellite maps).

produced by our automated Flickr analysis, and compares it

to the corresponding snow cover map produced by NASA’s

MODIS instrument [12]. We note that the Flickr map is

much sparser than the satellite map, especially in sparsely

populated areas like northern Canada and the western U.S.

On the other hand, the Flickr maps give some observations

even when the satellite maps are missing data due to clouds.

4. Detecting California Poppies

We have also studied whether we can apply computer

vision analysis of Flickr photos to a problem of interest to

biologists: tracking the geo-temporal distribution of flow-
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(a) Random true negatives (non-snow images classified as non-snow)

(b) Random true positives (snow images classified as snow)

(c) Random false negatives (snow images classified as non-snow)

(d) Random false positives (non-snow images classified as snow)

Figure 4. Snow classification results on some random images from our dataset, including (from top) true negatives, true positives, false

negatives, and false positives. These results were obtained using the combined classifier that uses all of the image features.

ering plants. Plants and animals will respond as climates

change over time, and biologists would like fine-grained,

continental scale information about how flowering and mi-

gratory patterns are changing. Unlike weather conditions,

this data is very difficult to monitor from satellites or air-

craft, so biologists currently rely mostly on traditional data

collection techniques like longitudinal studies of small plots

of land by expert biologists. Analyzing Flickr images could

provide an alternative data source for these studies.

As a step in this direction, here we consider one par-

ticular class of flower: the California Poppy. We chose

this flower both because of its distinct visual appearance (a

bright orange) and because it is of interest to biologists be-

cause it grows in a relatively small area of the western U.S.

and thus may be particularly sensitive to changes in climate.

4.1. Dataset

From our collection of about 100 million U.S. Flickr

photos, we selected all images tagged “poppy” (about 8100

images). Some of these images are of California Poppies

but most are not, since there are other species of poppies

and amateur photographers often confuse them with other

flowers. We took a random sample of about 2000 images

and asked biology students to label them into one of four

categories: (1) close-up of a California Poppy; (2) multi-

ple California Poppies (e.g. in a photo of a field perhaps

amongst other flowers); (3) no California Poppy; and (4)

special cases like drawings of poppies. We discarded im-

ages from category (4) and sampled from the remaining

dataset to have an equal proportion of the three classes. This

gave 150 training images and 450 independent test images.

Figure 5 shows a few sample images from our dataset.

4.2. Classifying poppies

We used the same features described above in Section 3.2

for classifying snow images, including tiny images, color

histograms, color-aware local binary pattern with spatial

pyramids, and GIST. For comparison, we also implemented
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Figure 5. Some images from the three classes in our California

Poppy dataset: (left): close-ups of true poppies; (center): longer-

range images of true poppies; and (right): images with no poppies.

techniques based on bag-of-words vocabularies of color,

texture, and shape features that have been applied to flower

recognition in past work [24]. In particular:

Color vocabulary. We clustered the HSV color values from

all images into a 200-word vocabulary, and then represented

each image as a histogram over these visual words.

Shape vocabulary. We use SIFT features to represent lo-

cal image “shape.” We extracted SIFT features densely (on

25×25 pixel regions, at strides of 20 pixels), and again built

a vocabulary using k-means clustering with k = 200.

Texture vocabulary. We used MR8 features [32] to capture

local texture information. MR8 applies a filter bank of 8

filters (4 Gaussians and 4 Laplacians of Gaussians) at dif-

ferent scales and orientations, and then characterizes local

texture in terms of the maximal filter responses. We again

cluster these into a vocabulary with size 200.

We also define a combined feature which incorporates

all three of the above features. This feature computes the

histogram for each of the three filters, and then concatenates

these together after normalizing each vector.

4.3. Results

Table 2 shows the performance of the different features

on the problem of classifying close-up California Poppy

photos versus photos of fields and non-poppies. We observe

that the vocabulary-based features work significantly better

in combination than separately, yielding a combined accu-

racy of 65.0% versus the 33.3% baseline. The LBP and Gist

features perform better, with the best performance achieved

by the combination of features (72.1%). Figure 6 shows

ROC and Precision-Recall curves.

5. Conclusion
In this paper, we propose using photo-sharing social me-

dia sites as a means of observing the state of the natural

world, by automatically recognizing specific types of scenes

and objects in large-scale social image collections. This

work is an initial step towards a long-term goal of monitor-

ing important ecological events and trends through online

Feature Accuracy

Random Baseline 33.3%

Shape Vocabulary 45.0%

Texture Vocabulary 48.6%

Color Vocabulary 53.6%

Combination of color, shape and texture 65.0%
Tiny Image 58.8%

RGB histogram 61.3%

LBP 68.4%

GIST 68.8%

Spatial pyramid LBP 70.4%
Combined 72.1%

Table 2. Results for California Poppy classification.

social media. Our study shows that snowy scene recogni-

tion is not nearly as easy a problem as one might expect,

when applied to realistic consumer images; our best result

using modern vision techniques gives 81% accuracy. Nev-

ertheless, as a proof-of-concept we demonstrated that this

recognition accuracy still yields a reasonable map that ap-

proximates observations from satellites. We also test recog-

nition algorithms on their ability to recognize a particular

species of flower, the California Poppy. In future work,

we plan to combine evidence from tags and other meta-

data with visual features for more accurate estimates, and

to develop novel techniques for these challenging recogni-

tion problems. More generally, we hope the idea of observ-

ing nature through photo-sharing websites will help spark

renewed interest in recognizing natural and ecological phe-

nomenon in consumer images.

6. Acknowledgements
This work was supported in part by the National Science

Foundation (IIS-1253549), the Lilly Endowment and by the

Data to Insight Center at Indiana University. We also thank

Prof. Gretchen LeBuhn and biology students at San Fran-

cisco State University for labeling the poppy images.

References
[1] http://www.greatsunflower.org. 2

[2] C. Aggarwal and T. Abdelzaher. Social Sensing. In Manag-
ing and Mining Sensor Data. Springer, 2013. 2

[3] P. Barnum, S. Narasimhan, and T. Kanade. Analysis of rain

and snow in frequency space. IJCV, 86(2-3), 2009. 3

[4] J. Bollen, H. Mao, and X.-J. Zeng. Twitter mood predicts the

stock market. Journal of Computational Science, 2(1):1–8,

2011. 2

[5] M. Boutell. Exploiting context for semantic scene classifi-
cation. PhD thesis, University of Rochester Department of

Computer Science, 2005. 3

[6] M. Boutell, A. Choudhury, J. Luo, and C. M. Brown. Using

semantic features for scene classification: How good do they

need to be? In ICME, 2006. 2, 3

[7] J. DiGrazia, K. McKelvey, J. Bollen, and F. Rojas. More

tweets, more votes: Social media as a quantitative indicator

of political behavior. PLOS One, 2013. 2

458458



Figure 6. California Poppy classification results for different features, where the goal is to find close-up pictures of California Poppies, in

terms of (left): ROC curves of classification performance and (right): Precision-Recall curves showing retrieval performance.

[8] M. Douze, H. Jegou, H. Sandhawalia, L. Amsaleg, and

C. Schmid. Evaluation of gist descriptors for web-scale im-

age search. In ICIVR, 2009. 4

[9] D. Fink, T. Damoulas, and J. Dave. Adaptive spatio-temporal

exploratory models: Hemisphere-wide species distributions

from massively crowdsourced eBird data. In AAAI, 2013. 2

[10] J. Ginsberg, M. Mohebbi, R. Patel, L. Brammer, M. Smolin-

ski, and L. Brilliant. Detecting influenza epidemics using

search engine query data. Nature, 457:1012–1014, 2009. 2

[11] S. A. Golder and M. Macy. Diurnal and Seasonal Mood Vary

with Work, Sleep, and Daylength Across Diverse Cultures.

Science, 333(6051):1878–1881, Sept. 2011. 2

[12] D. Hall, G. Riggs, and V. Salomonson. MODIS/Terra Snow

Cover Daily L3 Global 0.05Deg CMG V004. National Snow

and Ice Data Center, updated daily. 2, 5

[13] J. Hays and A. A. Efros. IM2GPS: Estimating geographic

information from a single image. In CVPR, 2008. 3

[14] O. Hyvarinen and E. Saltikoff. Social media as a source

of meteorological observations. Monthly Weather Review,

138(8):3175–3184, 2010. 2

[15] X. Jin, A. Gallagher, L. Cao, J. Luo, and J. Han. The wis-

dom of social multimedia: Using Flickr for prediction and

forecast. In ACM Multimedia, 2010. 2

[16] C. Kanan and G. Cottrell. Robust classification of objects,

faces, and flowers using natural image statistics. In CVPR,

2010. 3

[17] J. King, A. Cabrera, and R. Kelly. The Snowtweets Project:

Communicating snow depth measurements from specialists

and non-specialists via mobile communication technologies

and social networks. In AGU Fall Meeting, 2009. 2

[18] M. Korayem, A. Mohamed, D. Crandall, and R. Yampolskiy.

Solving avatar captchas automatically. In AMLTA, 2012. 4

[19] D. Leung and S. Newsam. Proximate Sensing: Inferring

What-Is-Where From Georeferenced Photo Collections. In

CVPR, 2010. 2

[20] L.-J. Li and L. Fei-Fei. What, where and who? classifying

events by scene and object recognition. In ICCV, 2007. 2, 3

[21] L.-J. Li, R. Socher, and L. Fei-Fei. Towards total scene un-

derstanding: classification, annotation and segmentation in

an automatic framework. In CVPR, 2009. 2, 3

[22] J. Luo, A. Singhal, and W. Zhu. Natural object detection in

outdoor scenes based on probabilistic spatial context models.

In ICME, 2003. 2, 3

[23] C. Murdock, N. Jacobs, and R. Pless. Webcam2Satellite:

Estimating cloud maps from webcam imagery. In WACV,

2013. 2

[24] M.-E. Nilsback and A. Zisserman. A visual vocabulary for

flower classification. In CVPR, 2006. 3, 7

[25] M.-E. Nilsback and A. Zisserman. Automated flower clas-

sification over a large number of classes. In ICVGIP, 2008.

3

[26] A. Oliva and A. Torralba. Modeling the shape of the scene:

A holistic representation of the spatial envelope. IJCV,

42(3):145–175, 2001. 4

[27] A. Sadilek, H. Kautz, and V. Silenzio. Predicting Disease

Transmission from Geo-Tagged Micro-Blog Data. In AAAI,
2012. 2

[28] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes

Twitter users: real-time event detection by social sensors. In

WWW, 2010. 2

[29] V. K. Singh, M. Gao, and R. Jain. Social pixels: genesis and

evaluation. In ACM Multimedia, 2010. 2

[30] A. Singhal, J. Luo, and W. Zhu. Probabilistic spatial context

models for scene content understanding. In CVPR, 2003. 3

[31] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny

images: A large data set for nonparametric object and scene

recognition. PAMI, 30(11):1958–1970, 2008. 4

[32] M. Varma and A. Zisserman. Classifying images of materi-

als: Achieving viewpoint and illumination independence. In

ECCV, pages 255–271. Springer, 2002. 7

[33] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.

SUN database: Large-scale scene recognition from abbey to

zoo. In CVPR, 2010. 2, 3, 4

[34] H. Zhang, M. Korayem, D. Crandall, and G. LeBuhn. Min-

ing Photo-sharing Websites to Study Ecological Phenomena.

In WWW, 2012. 2, 5

[35] J. Zou and G. Nagy. Evaluation of model-based interactive

flower recognition. In ICPR, 2004. 3

459459


