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Abstract

This paper proposes a novel image parsing framework

to solve the semantic pixel labeling problem from only la-

bel strokes. Our framework is based on a network of voters,

each of which aggregates both a self voting vector and a

neighborhood context. The voters are parameterized using

sparse convex coding. To efficiently learn the parameters,

we propose a regularized energy function that propagates

label information in the training data while taking into ac-

count of context interaction and a backward composition

algorithm for efficient gradient computation. Our frame-

work is capable of handling label strokes and is scalable to

a code book of millions of bases. Our experiment results

show the effectiveness of our framework on both synthetic

examples and real world applications.

1. Introduction

Image parsing is the task to assign semantic class labels

(e.g., tooth, arm, sky, building) to each pixel in the im-

age. It has a variety of real world applications, including

parsing street-view images for scene understanding and au-

tonomous vehicle driving.

Many image parsing algorithms, including commonly-

used Conditional Random Field (CRF) and exemplar-based

methods, require a large set of images with complete per-

pixel label maps either as training data or as exemplars.

Complete label maps are expensive to collect (in terms of

time, money, and skill), which limits the robust performance

of such methods. Even with the state-of-the-art labeling tool

(e.g. LabelMe [17]), it still takes over 3 minutes (see task

3 in [19]) to label each image with quasi-complete label

maps (only objects of interested are labeled; large regions

and background pixels are not labeled).

In this paper, we propose an image parsing model that re-

quires only strokes. Figure 1 is an overview of our frame-

work. Our goal is motivated by the success of single im-

age segmentation tools, such as Lazy Snapping [12] and

GrabCut [16], where a few strokes are provided to seg-

ment foreground and background for image editing applica-

tions. These label strokes are cheaper to acquire than (quasi-

)complete label maps, hence more scalable. In addition, we

do not even require users to label all semantic classes in one
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Figure 1: An overview of our image parsing framework.

The first row contains raw input images. The second row

contains the label strokes for the input images. Each image

can have zero, one, two, or multiple semantic regions that

are labeled by strokes. The output of our framework is an

image parsing model as well as a set of full label maps for

all the images.

image; it is sufficient to label only a small subset of classes

to achieve reasonable parsing performance.

To this end, we formulate semantic image segmentation

as a vector-valued function approximation problem. Let x

be an input image. We seek a function Φ that maps x to

an output vector y = [yi,k] that represents a label proba-

bility map, where yi,k is the probability that pixel i belongs

to semantic class k. In other words, the output y is a soft

semantic segmentation map. We express the function as

y = Φ(x; Θ) (1)

where Θ is the parameter set of the function Φ. This paper

is about designing the architecture of Φ and estimating the

value of Θ from massive data with tiny supervision.

Technically, we propose a new framework that computes

the label probability map of an input image as the equilib-

rium label distribution on a pixel network of the input im-

age. Our framework is inspired by classic voter models [2],

2013 IEEE International Conference on Computer Vision Workshops

978-0-7695-5161-6/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.129

468

2013 IEEE International Conference on Computer Vision Workshops

978-1-4799-3022-7/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.129

468



where each voter (a pixel) both has self opinion and is in-

fluenced by its neighbors’ opinions. We propose algorithms

that automatically construct a pixel network for a given im-

age using a large amount of training images, of which only

a small number of strokes are labeled. Our algorithms also

efficiently compute the equilibrium label distribution on the

pixel network for segmentation. Our contributions include:

• A new model for soft semantic segmentation that out-

puts pixel label probability.

• A novel algorithm that learns the model parameters

from partially labeled stroke images.

• An approach that facilities label propagation in a large

image collection while taking into account of context

interaction.

2. Related Work

CRF and exemplar-based methods are two well-accepted

approaches to semantic image segmentation. Early CRF

models use unary and pairwise terms [5, 18], while more

recent ones employ high order potentials [8] and long range

context interactions [3, 11, 4]. All these CRF methods are

fully supervised. More recently, dictionary learning is com-

bined with latent structured-SVM for semantic segmenta-

tion [6], in which the latent variables are visual word as-

signment and fully per-pixel labeled images are assumed

as training data. Exemplar-based methods [13, 20, 9, 25]

require a large collection of per-pixel labeled images as ex-

emplars. One exception is [14], in which CRF is used to

learn segmentation model from partially labeled images.

There are a few other types of weakly-supervised works

for semantic image segmentation [21, 22, 23, 24]. The ear-

liest work [21] assumes that an image is associated with a

set of words and uses EM-style algorithm to segment the

image. More recent work [23, 24] makes a similar input

assumption and constructs a multi-image graph with super-

pixels as nodes for segmentation. Associating many labels

to an entire image may be too weak to improve the robust-

ness of a segmentation system. Consider street view im-

ages, most of them contain similar object types: sky, build-

ing, cars, etc. For another example, consider face images,

most of them have mouths, eyes. Associating a few labels

to a very small number of pixels may be a more informative

form of supervision for training an image parser.

Our work is also related to the recent development of

parameter-rich CRF [7, 15], in which decision trees are used

to map local features to local potential energy for discrete

CRF [7] and continuous CRF [15]. These methods have

not yet been used in semantic segmentation, nor have they

been shown to deal with partial labels in training data.

Our work is much inspired by [1]. By adding novel

constraints and simplifying their formulation, we propose

a model that has probabilistic interpretation for both model

q0(x0; ) 
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0 2 1 

Figure 2: An illustration of a voter in a 3-pixel scenario. To

form its label probability y0, pixel 0 receives both its self

vote q0 as well as propagated votes from its two neighbors

via label probability transition matrices U1 and U2.

parameters and model output. More importantly, we pro-

pose algorithms that can handle significant amounts of

missing labels in training data while [1] is a fully super-

vised method. Furthermore, our algorithm is scalable to

millions of “quantized” states while [1] is limited to a few

hundreds. As a result, [1] has been used to post-process

an initial semantic segmentation rather than producing one

from scratch.

3. A Voter Model for Image Parsing

Given an input image x, we seek to predict its label prob-

ability map y = [yi,k] where yi,k is the probability that

pixel i belongs to semantic class k. Denote the label prob-

ability vector for pixel i by yi,1:K = [yi,k]
K
k=1 ∈ RK . In

our model, we assume that yi,1:K is determined by both the

feature of pixel i and the context of surrounding pixel label

probabilities. We model y to be the stationary label distri-

bution on a pixel network that is constructed from the input

image x.

Specifically, given the input image x, we compute a K-

dim self voting vector qi(x; Θ) = [qi,k]
K
k=1 ∈ RK for

each pixel i based on its own feature, where Θ is the pa-

rameter set of our system. Each qi,k is non-negative, repre-

senting the self confidence for pixel i belonging to class k;∑K

k=1 qi,k is the total label votes from its own feature. We

require
∑K

k=1 qi,k ≤ 1, so that the remaining label votes for

pixel i will come from the pixel labels in its neighborhood.

For example, assuming K = 3, qi = [0.45; 0; 0.45] indi-

cates a strong self vote that pixel i belongs to either class

1 or class 3; qi = [0; 0.1; 0] indicates a weak self vote that

pixel i belongs to class 2. In both cases, context informa-

tion needs to be added to the self voting vector qi to form

the label probability for pixel i.

To model context, let Bi be the neighborhood of pixel

i, which contains the index offsets between pixel i and its

neighboring pixels. That is, if b ∈ Bi, i and i+ b are neigh-

bors. For each b ∈ Bi, we compute a K ×K non-negative

label probability transition matrix Ui,b(x; Θ) that propa-

gates yi+b,1:K , the label probability vector of pixel i+ b, to
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pixel i as a voting vector Ui,b(x; Θ)yi+b,1:K . As illustrated

in Figure 2, we then aggregate the propagated votes with

self votes to form the label probability vector for pixel i as:

yi,1:K = qi(x; Θ) +
∑
b∈Bi

Ui,b(x; Θ)yi+b,1:K (2)

Putting together Eq. (2) for every pixel in the image x into

a big matrix equation, we have

y = h(x; Θ) +A(x; Θ)y (3)

where h(x; Θ) is a vector with qi(x; Θ) as sub-vectors,

capturing label votes from self features; A(x; Θ) is a ma-

trix with Ui,b(x; Θ) as sub-matrices, capturing propagated

votes due to label interaction between pixels. Eq. (3) de-

fines an equilibrium label distribution y among all pixels,

which we use as the output label probability map, denoted

by Φ(x; Θ) in Eq. (1). The key question is, given x, how

to construct qi(x; Θ) and Ui,b(x; Θ), so that the station-

ary label distribution represents a desired soft semantic seg-

mentation. We next discuss (i) when a valid equilibrium

label distribution exists, (ii) how to compute the equilib-

rium distribution, and (iii) how to construct qi(x; Θ) and

Ui,b(x; Θ).

Self-Consistent Constraints We want to ensure that

Eq. (2) is self-consistent, that is, if yi+b,1:K is a valid proba-

bility vector1 for all b ∈ Bi, the right hand side of Eq. (2) is

guaranteed to be a valid probability vector, regardless of the

specific values that each yi+b,1:K takes. Otherwise, a valid

equilibrium label distribution may not exist. Specifically,

for each pixel i, we enforce the following two constraints

on qi and {Ui,b}b∈Bi
:

1TUi,b = vi,b1
T

and

K∑
k=1

qi,k +
∑
b∈Bi

vi,b = 1 (4)

The first constraint requires that the sum of elements along

each column in Ui,b is the same for all columns, where vi,b
represents the total label votes propagated from pixel i + b

to pixel i. The second constraint requires that the accumu-

lated label votes for each pixel is 1, including self votes and

propagated votes. It is easy to verify that the two constraints

in Eq. (4) guarantee Eq. (2) to be self-consistent.

The Equilibrium Solution for y Eq. (3) can be solved

efficiently using Jacobi (or Gauss-Seidel) iteration as

y(t) = h(x; Θ) +A(x; Θ)y(t−1) (5)

Since Eq. (2) is self-consistent, each iteration produces a

valid label probability map. Further, the second constraint

in Eq. (4) guarantees that
∑

b∈Bi
vi,b = 1−

∑K

k=1 qi,k ≤ 1,

which suggests that Eq. (3) is diagonally dominant and

therefore Jacobi (or Gauss-Seidel) iteration is guaranteed to

converge. We have verified via simulation that the conver-

gence is fast (≤ 10 iterations).

1A probability vector has non-negative components that sum up to 1.

Parameterization of qi(x; Θ) and Ui,b(x; Θ) We for-

mulate qi(x; Θ) and Ui,b(x; Θ) using sparse convex cod-

ing. Without loss of generality, we assume that features

extracted at different image locations share the same code-

book (bases) for sparse coding, and that the neighborhood

for each pixel is the same: Bi = B for all pixel i.

Specifically, let fi(x) be a local feature extracted from

image x for pixel i. Given fi(x), we approximate it using a

sparse convex combination of bases as

fi(x) −→
L∑

l=1

ci,lgl (6)

where {gl}
L
l=1 is the codebook of feature bases, ci =

[ci,l]
L
l=1 is the sparse convex code for fi(x).

To compute qi(x; Θ) given ci, we associate each ba-

sis gl in the codebook with a K-dim non-negative vector

θ
q

l = [θqkl ]Kk=1 and define qi(x; Θ) as a sparse convex com-

bination of {θql }
L
l=1 using ci(x)

qi(x; Θ)←−
L∑

l=1

ci,lθ
q

l (7)

Similarly, for each b ∈ B, we associate each basis gl

in the codebook with a K × K non-negative matrix θUb

l ,

and define Ui,b(x; Θ) as a sparse convex combination of

{θUb

l }Ll=1 using ci(x)

Ui,b(x; Θ)←−
L∑

l=1

ci,lθ
Ub

l (8)

In Eq. (7) and Eq. (8), qi(x; Θ) and Ui,b(x; Θ) are de-

fined as convex combinations of θ
q

l and θUb

l , respectively.

With this definition, qi(x; Θ) and Ui,b(x; Θ) are guaran-

teed to satisfy the self-consistent constraints in Eq. (4) if θ
q

l

and θUb

l satisfy the self-consistent constraints as: 1TθUb

l =

θvb

l 1T and
∑K

k=1 θ
qk
l +

∑
b∈Bi

θvb

l = 1, where θvb

l is the

summation result along each column of the matrix θUb

l .

In summary, our system has two sets of parameters: the

codebook {gl}
L
l=1 and Θ = {θl}

L

l=1, where each θl ={
θ
q

l ,
{
θUb

l

}
b∈B

}
is the parameter associated with the ba-

sis gl in the codebook. We next discuss codebook construc-

tion followed by parameter learning for Θ.

4. Construction of the Codebook {gl}
L

l=1

Our codebook construction is unsupervised. Given a set

of image patch features {fi} without label information, we

compute the codebook {gl}
L
l=1 by minimizing the follow-

ing error function.

∑
i

L∑
l=1

ci,l‖fi − gl‖
2 (9)
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We require that for each feature vector fi, its coefficient

vector ci = [ci,l]
L
l=1 has only R non-zero elements, each of

value 1
R

. If R = 1, then Eq. (9) is a L-means clustering

problem with a large number L. The result of L-means is L

isolated clusters. Since we have a small number of labeled

patches, many isolated clusters do not facilitate well label

propagation for semi-supervised learning. Therefore, we

require R > 1 to have a better-connected bipartite graph be-

tween nodes {fi} and {gl}, as shown in Figure 3(a), where

each non-zero ci,l defines an edge.

The algorithm for computing {gl}
L
l=1 is straightforward,

which alternates between finding R nearest cluster centers

for each fi and updating each cluster center gl. To speed up

the procedure for large data sets, we adopt an approximate

R-NN algorithm using tree structure to partition the feature

space. Specifically, we create R′ trees, where R′ ≥ R; the

leaf nodes of all the trees correspond to {gl}. Each tree r

maps a feature vector fi to a leaf node lri . As a result, at each

iteration, we only need to find R nearest cluster centers out

of R′ candidates (one from each tree query).

We find that trees whose node splitting criteria are based

on a single feature component (e.g., K-d trees or decision

forests) are not effective for finding approximate nearest

neighbors; instead we build vantage point trees (VP trees),

which is one type of ball trees recommended in [10].

5. Learning Θ from Partially Labeled Images

Assuming that the codebook {gl}
L
l=1 has been con-

structed in advance without the need of label information,

given a set of N training data {xn,yn}
N
n=1, where xn is

an image and yn is a partial label map, we learn the pa-

rameter set Θ by finding an optimal Θ so that the “correct-

ness” of computed label maps using Θ over labeled pixels

is maximized. Mathematically, we minimize a regularized

loss function:

min
Θ

N∑
n=1

∑
i∈Ln

ei(Φ(xn; Θ),yn)

︸ ︷︷ ︸
E(Φ(xn;Θ),yn;Ln)

+λR(Θ) (10)

where Ln is the set of labeled pixel indices in the training

image xn, ei(·, ·) is a loss function that compares the esti-

mated label probability map Φ(xn; Θ) and the correspond-

ing training label map yn at pixel i, and R(Θ) is a regu-

larization function for parameter Θ with weight λ. Note

that our formulation of loss function Eq. (10) requires only

partially labeled images as training data.

Regularization R(Θ) The regularization function R(Θ)
encourages similar bases gl1 and gl2 in the codebook to

have similar parameters θl1 and θl2 , so that the label infor-

mation in the training data can be propagated. We use the
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Figure 3: The sparse correspondence (R = 2) between

patch features {fi} and codebook bases {gl} forms a bipar-

tite graph in (a). The same graph structure connects pixel

voter parameters and voter parameter bases in (b).

following heuristic to design the regularizer and leave other

design choices as future work.

Specifically, if a feature vector fi for pixel i is associated

with R nearby cluster centers, we encourage these R clus-

ter centers to have similar parameters by minimizing their

parameter value variance. Recall in Eq. (7) and Eq. (8), the

self voting vector qi and label probability transition matrix

Ui,b are defined as a weighted average of these parameters

(θ
q

l and θUb

l ) associated with the cluster centers. To mini-

mize the variance, we define our regularizer as

R(Θ) =
N∑

n=1

∑
i∈In

L∑
l=1

ci,l

(
‖qi − θ

q

l ‖
2 +

∑
b∈B

‖Ui,b − θUb

l ‖2
)
(11)

Recall that for each i, only R components of ci,l are non-

zero. As a result, the definition of R(Θ) in Eq. (11) pro-

pogates label information in the training data over the bi-

partite graph in Figure 3(b). Weighted averaging one group

of nodes leads to optimal estimation of the other group of

nodes to minimize R(Θ). For example, fixing {θql , θ
Ub

l },
weighted averaging based on Eq. (7) and Eq. (8) leads to

optimal values of qi and Ui,b that minimize R(Θ). The

propagation effect strongly depends on the graph structure,

i.e., the non-zero weights of [ci,l]. We evaluate the rela-

tionship between the propagation effect and the parameter

settings in the experiment section.

Training Algorithm To minimize Eq. (10), we need to

take its derivative with respect to Θ. dE
dΦ and dR

dΘ are straight-

forward to compute; dΦ
dΘ is non-trivial to compute because

Φ(x; Θ) represents the stationary label distribution on a

pixel network that uses Θ as parameters.

Although the derivative dΦ
dΘ is inconvenient to evaluate

analytically, numerical approximation can be computed ef-

ficiently. Specifically, in practice, we always use an iterative

algorithm to compute the stationary distribution Φ(x; Θ),
such as Jacobi iteration in Eq. (5). Such algorithms can be
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described as transforming the solution in a previous itera-

tion, y(t−1), to a new solution, y(t):

y(t) = Ψ(t)(y(t−1);x,Θ) (12)

where Ψ(t) is the transformation at iteration t that depends

on the parameter Θ as well as the input x. At each iteration,
dy(t)

dΘ can be recursively evaluated using dy(t−1)

dΘ as

dy(t)

dΘ
=

∂Ψ(t)

∂y(t−1)

dy(t−1)

dΘ
+

∂Ψ(t)

∂Θ
(13)

where the partial derivatives ∂Ψ(t)

∂y(t−1) and ∂Ψ(t)

∂Θ can be com-

puted based on the chosen iteration scheme (e.g. Gauss-

Siedel or Jacobi ).

We set T to be the maximum number of iterations. We

use the last iteration result y(T ) to approximate Φ(x; Θ) and

use dy(T )

dΘ to approximate dΦ
dΘ . Eq. (13) defines a forward it-

eration of computing the Jacobian matrix dΦ
dΘ , which is slow

because each iteration requires the matrix-matrix product
∂Ψ(t)

∂y(t−1)

dy(t−1)

dΘ and both matrices become dense after many

iterations. Note that we only need the product of dE
dΦ and

dΦ
dΘ , which is a vector, instead of the Jacobian matrix dΦ

dΘ
itself. Inspired by the back propagation algorithm in neu-

ral net training, we can compute the product of dE
dΦ

dΦ
dΘ ef-

ficiently using a backward iteration in which only vector-

matrix products are required, as shown in Algorithm 1.2

Algorithm 1 Backward Iteration

Input: g(T ) = dE
dΦ

Output: a = g(T ) dΦ
dΘ

a← 0
for t = T to 1 do

a← a+ g(t) ∂Ψ
(t)

∂Θ |y(t−1)

g(t−1) ← g(t) ∂Ψ(t)

∂y(t−1) |Θ
end for

a← a+ g(0) dy
(0)

dΘ

6. Experiments

We did three experiments to evaluate our voter model

with missing labels, our regularization, and the overall

method, respectively.

6.1. Experiments on Snake Dataset

The Snake dataset is used in [1, 15] to evaluate a context

label interaction model with weak local evidence. A snake

is a sequence of ten adjacent snake pixels, where the color

of each snake pixel indicates the relative position of the next

2The intuition behind backward iteration is: to compute a ·B ·C where

a is a vector (gradient) and B and C are matrices (Jacobian), it more effi-

cient to compute (a ·B) · C than a · (B · C).

(a) snake image (b) snake label

Figure 4: A sample snake image (left) and its corresponding

ground truth label (right).

Table 1: The accuracy of snake head, mid, and tail estima-

tion with different training image sizes and missing label

rates.

missing training size = 20 training size = 60

label rate Head Mid Tail Head Mid Tail

0% 100% 100% 100% 100% 100% 100%

25% 100% 100% 100% 100% 100% 100%

50% 80.4% 100% 100% 100% 100% 100%

75% 35.4% 35.7% 100% 100% 100% 100%

snake pixel in the sequence (red = 1 pixel above, yellow =

1 pixel right, cyan = 1 pixel left and green = 1 pixel below).

The snake pixels are labeled 1 to 10 from head to tail, while

the rest pixels (blue) are labeled 11 as background. A sam-

ple snake image is shown in Figure 4.

It is clear that local features (pixel colors) have little cor-

relation with the labels, e.g., a red pixel can be any part

of a snake given no context information. It is also worth

noting that the difficulty of correctly labeling a snake pixel

increases from tail to head, in particular with labels missing

in the training data, because a correct head label depends

on correct labels of all its successors, but a correct tail label

does not depend on the labels of other snake pixels.

We test our method on the set of 300 images provided

in [15], using both the first 20 images and the first 60 im-

ages as our training sets. For each of the two training sets,

we control the missing label rates to be 0%, 25%, 50% and

75% at random pixel locations. The performance is reported

in Table 1. Our method correctly labels all the snake pix-

els using only 20 fully labeled training images, which is as

good as what is reported in [1], and requires much less train-

ing data (200) as used in [7] and [15]. Our method produces

perfect results even when 25% of the labels in the 20 images

are missing. The result starts to degenerate as we increase

the missing rate to 50% and 75%. When we use the 60

images as training set, our method performs perfectly even

when 75% of the labels are missing.

We are surprised by the convergence of our algorithm,

especially in the presence of severe missing data. Figure 5

helps to explain the success of our method on this dataset.

Even with a missing rate of 75%, so long as we have enough

data, the algorithm can first label tail correctly at the begin-

ning (< 20 iterations). Afterwards, mid pixels gradually
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Figure 5: The accuracy on testing data of intermediate

model estimation in the training optimization process, sam-

pled for every 20 iterations. In (a), with 60 training images,

the label accuracy on tail pixels first converges to 1, and

then propagate to mid pixels and head pixels. In (b), with

the number of training images reduced to 20, the propaga-

tion is hindered and the label accuracy of mid pixels and

head pixels converges at a relatively low level.

become correctly labeled, and tail pixels follow the trend.

6.2. Image Rotation Experiment

In this experiment we take an image from the CamVid

dataset along with its ground truth label map. The image

is then rotated 119 times with an interval of 3◦, creating a

series of 120 images. The four images with rotations of 0◦,

90◦, 180◦and 270◦ are chosen as training images and are

fully labeled. We ignore the context term Ui,b and only use

the self vote term qi. Therefore, this experiment is a multi-

class classification problem; we seek to illustrate the effect

of parameter settings on codebook construction and label

propagation using the regularization.

There are two independent variables in this controlled

experiment: the depth of the vantage point forest, and the

number of cluster centers R, with which each patch is as-

sociated. Increasing the depth of the vantage point forest

expands the codebook, generating finer grained partition of

the feature space. This increases the discriminative power

of the codebook, but decreases the connectivity of the bipar-

tite graph shown in Figure 3, and hinders the propagation.

Decreasing R has a similar impact on the resulting bipar-

tite graph. The trade-off between the quality of codebook

bases and the connectivity of the bipartite graph indicates

that there might exist an optimal combination.

In Figure 6 we compare the overall performance of dif-

ferent parameter settings. The baseline method directly uses

the average label distribution 3 to vote for the associated

patches. The result shows that increasing the depth of the

forest as well as decreasing the clustering parameter boost

the accuracy in general. However, for small clustering pa-

rameters, the performance suffers as tree depth increases,

due to the poor connectivity of the bipartite graph.

3Unlabeled patches do not contribute to the average label distribution.
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Figure 6: Performance comparison between our method

with different parameter settings and the baseline method.

It shows that with a fixed tree depth, the accuracy favors

smaller clustering parameter R, when the tree is not too

deep. However, a smaller R weakens connectivity, resulting

in less satisfactory performance when the tree is deep.

6.3. Experiments on CamVid Dataset

To demonstrate the performance of our model on stroke-

labeled real-world images, we test our algorithm on the

CamVid dataset [9]. This dataset consists of 600 annotated

driving-scene images with 32 classes. Like many other lit-

eratures (e.g. [25, 1]), we choose only the most populated

11 classes and split all images into 367 training data and

233 testing data.

Our label strokes are generated from the training label

maps using the following three steps:

1. Blurring each label map using a 21x21 large window to

remove small isolated components for each semantic

class region;

2. Applying a morphological thin operation to generate a

skeleton of the semantic class regions;

3. Generating a stroke for each semantic class region by

thickening (dilating) its skeleton until 10% of the pix-

els of the region are labeled.

To further mimic a realistic setting that a human annota-

tor may not give strokes to all semantic classes in each im-

age, we gradually and randomly discard some of the label

strokes and use only k percent of the strokes in the train-

ing set. Examples of generated labels with different k are

shown in Figure 7.

In this experiment, we extracted HOG features with a

stride of 1. The cell size for HOG features is 9 x 9, and

each block consists of 5 x 5 cells. We created 10 VP trees

to construct the codebook for all 46 million patches from

600 CamVid images. Each tree is about 22 level deep, and

contains roughly 0.5 million code words. We use the same

baseline described in Section 6.2 (i.e., the average label dis-

tribution without context interaction) to compare with our

method. Note that strokes of all semantic classes are known

in baseline (i.e., k = 100%). In the learning step, we adopt
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(a) Original image (b) Groundtruth label (c) k = 100% (d) k = 60% (e) k = 10%

Figure 7: Examples of generated label strokes with different percentages of known semantic classes. The original image is

shown in (a), along with its groundtruth label in (b). This groundtruth label is processed with a blurring-thinning-dilating

procedure, and forms our label strokes in (c). We further discard some label strokes until only k percent of strokes are labeled

on average in the training set. Label strokes with k = 60% and k = 10% are shown in (d) and (e).

Table 2: Accuracy for most populated classes on CamVid.

Baseline is the average label distribution without label prob-

ability transition matrix Ui,b(x; Θ) when k = 100%.

Sky Road Bldg Sidewalk Car Tree

k=100% 88.1% 95.3% 86.8% 34.6% 28.2% 56.2%

k=60% 89.2% 95.5% 86.1% 33.7% 27.7% 55.8%

k=10% 88.6% 95.7% 80.9% 36.4% 21.2% 49.5%

baseline 83.0% 95.1% 83.8% 11.8% 4.3% 39.2%

hinge loss as loss function for Eq. (10), and use a 5 x 5

neighborhood. All the parameters are initialized as 1, fol-

lowed by a normalization step to satisfy the self-consistent

constraints in Eq. (4), and each element in the label proba-

bility vector is initialized as 1
K

.

A visual result can be viewed in our supplementary

video. Table 2 shows the overall accuracy for most pop-

ulated classes on CamVid dataset. Our overall accuracy is

75.0% for k=100% and 73.0% for k=10%. Compared with

baseline, whose overall accuracy is 68.0%, our voter net-

work model improves the accuracy on almost all populated

classes. This improvement is attributed to the label inter-

actions within neighborhood. In addition, as we gradually

increase the labeled semantic classes on each image by in-

creasing k, we find that additional strokes are mostly help-

ful for labeling “object classes” like cars and trees, but are

less helpful for labeling “region classes” like sky and road.

It suggests a more effective way of acquiring image labels

is to ask users to draw strokes in object classes rather than

region classes.

To further study the effectiveness of context interactions,

we have designed another experiment. Given our proba-

bilistic voter model, the context interaction is captured by

the K ×K non-negative matrix Ui,b(x; Θ). Therefore, by

variating the size of the neighborhood B for each pixel, we

can control how much context information is used to cal-

culate the current label probability vector. We evaluate the

overall accuracy of all the classes on the testing set and the

result is reported in Table 3. It again shows that our voter

network is effective in modeling neighborhood context.

Note also that our voter network method is relatively fast

in training the parameters and inferring the labels for query

Table 3: Overall accuracy for different window size

window size 0 (baseline) 4 8 24

accuracy 68.0% 74.0% 74.8% 75.0%

image. On our test machine (dual Xeon E5-2670), the train-

ing takes about 30 minutes for every 20 iterations (gradient

calculation and line search) using a cluster of 15 machines.

In the testing stage, it takes around 1 second on average for

each image using multi cores, with most of the time spent

on feature generation and forest query.

7. Conclusion

In this paper, we present a novel voter network model

to address the image parsing problem with only stroke la-

bels. On small controlled synthetic experiments, we show

that our framework is robust to handle severe missing la-

bels in training data. On real experiments, we show that our

framework is able to propagate label information in training

data and to process a codebook of millions of bases.

We would also like to compare our Voter Network model

with some other learning methods:

• Our method differs from existing energy-based struc-

tural learning, e.g., structural SVM, in that our loss

function is defined based on label probabilities of in-

dividual pixels while existing structural learning meth-

ods define loss using the energy value of an entire im-

age. As a result, our method can easily handle training

data with only partial labels. Furthermore, it naturally

provides per-pixel label uncertainty (rather than per-

image label map uncertainty).

• CRF is another common tool used for semantic seg-

mentation. Learning the parameters of a CRF can be

tricky because of the normalization factor. CRF infer-

ence can be challenging as well. Our parameter learn-

ing does not involve the normalization factor and our

inference (based on Gaussi-Seidel or Jacobi iteration)

is straightforward and simple.

• The backward iteration (Algorithm 1) of derivative cal-

culation in our paper is similar to the Back Propagation

algorithm in neural nets because both are applications
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Table 4: Comparison between our method and alternating

approach on the snake dataset. The alternating approach

fails even when missing label rate is relatively low, e.g. at

10%. Our method generates correct estimation even when

the missing rate reaches 25%.

Head Mid Tail

Alternating (missing = 1%) 84.29% 95.36% 99.64%

Alternating (missing = 5%) 91.07% 95.36% 99.29%

Alternating (missing = 10%) 22.50% 26.79% 44.29%

Alternating (missing = 25%) 9.64% 12.86% 27.50%

Ours (missing = 25%) 100% 100% 100%

of the chain rule for computing derivatives. In fact,

each iteration in the Jacobi (or Gauss-Seidel) iteration

is analogous to one layer of a neural net as it maps

one solution state to another solution state. However,

our approach is fundamentally different from neural

nets in two ways. First, our iteration steps corre-

spond to a chosen optimization algorithm in a prin-

cipled way, while neural net architectures (number of

layers, neuron connectivity, response function) are de-

signed ad hoc. Second, every iteration step in our ap-

proach shares the same set of parameters to be esti-

mated while each layer in a neural net has its own pa-

rameters, which makes parameter learning of a neural

net prone to local minima.

• A common approach to handle partially-labeled data is

alternating between updating missing labels and model

parameters. This approach is susceptible to local min-

ima. However, our optimization algorithm simultane-

ously estimates model parameters and missing labels,

making it less sensitive to local minima. A comparison

is reported in Table 4.

There are several interesting future research topics, in-

cluding (1) generalizing a neighborhood in a pyramid to

take into account context in scale space, (2) increasing the

system scalability to handle millions of images, (3) han-

dling thousands of class labels, and (4) exploring label un-

certainty in interactive labeling of large image collection

(crowd sourcing).
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