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Abstract

We propose a generalized approach to human gesture
recognition based on multiple data modalities such as depth
video, articulated pose and speech. In our system, each ges-
ture is decomposed into large-scale body motion and local
subtle movements such as hand articulation. The idea of
learning at multiple scales is also applied to the temporal
dimension, such that a gesture is considered as a set of char-
acteristic motion impulses, or dynamic poses. Each modal-
ity is first processed separately in short spatio-temporal
blocks, where discriminative data-specific features are ei-
ther manually extracted or learned. Finally, we employ a
Recurrent Neural Network for modeling large-scale tempo-
ral dependencies, data fusion and ultimately gesture classi-
fication. Our experiments on the 2013 Challenge on Multi-
modal Gesture Recognition dataset have demonstrated that
using multiple modalities at several spatial and temporal
scales leads to a significant increase in performance allow-
ing the model to compensate for errors of individual classi-
fiers as well as noise in the separate channels.

1. Introduction
Understanding human motion is one of the most intrigu-

ing aspects of computer vision, not only as a captivating

scientific puzzle, but also due to its practical importance.

Various applications require interpreting near-range human

activities, where body parts are clearly visible and articu-

lated, i.e. gestures.

Numerous gesture taxonomies have been proposed, but

there is little agreement among researchers on what gesture

characteristics are the most discriminative and useful. In

this work we focus on intentional gestures, bearing com-
municative function and targeting enhancement of the com-

Figure 1. Examples of two-scale gesture decomposition: upper

body movement and hand articulation. The gesture in the top row

can be fully characterized by large-scale body motion, whereas in

the one below, subtle finger movements play the primary role.

municative value of speech by doubling or conveying addi-

tional semantic information. Depending on the application,

their functional load may be more significant than simply

augmenting the audio channel: in robot-computer interac-

tion, for example, gestures often play the primary role.

Conversational gestures, i.e. hand movements accom-

panying speech, may convey semantic meaning, as well

as information about a speaker’s personality and cultural

specifics, momentary emotional state, intentions and atti-

tude towards the audience and subject at hand. Interest-

ingly, a number of psychological studies (e.g. [28]) sug-

gest that motor movements do not only aim at illustrating
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pronounced utterances, amplifying their emotional impact

or compensating for the lack of linguistic fluency, but, in

turn, influence the process of speech production allowing

the speaker to produce more complex and vivid verbal de-

scriptions. Therefore, an ability to recognize and interpret

non-verbal cues coupled with verbal information would be

a natural step towards understanding and plausible simula-

tion of human behavior and, consequently, making human-

machine communication truly effortless and intuitive.

Much of this work has been conducted in the context of

speech recognition, while the vision community has tackled

the problem of motion recognition from its own perspective.

The fusion of data so different by nature is not straightfor-

ward both in terms of modeling the underlying processes

and simply due to engineering issues. However, with recent

advances in GPU computing together with a rapidly grow-

ing market of consumer-grade multimodal sensors, the pos-

sibility to collect and process large amounts of multimodal

high-dimensional data present new opportunities.

The vision community has recently seen a number of

efforts made in applying the idea of multimodality to rec-

ognizing human activities. An action recognition system

proposed in [25] is built on extracting depth-based spatio-

temporal descriptors (in the spirit of HoG) and combining

them with joint angle similarities calculated from skeletons.

In a similar approach [40] local depth and skeletal features

are fused using random forests. There are a number of re-

cent works based on fitting 3D models of hands and dedi-

cated to hand tracking [26] and pose recognition [19] from

video RGB-D input. In [24] the authors detect head nodes

from video by considering the audio channel as self-context

and conditioning sensitivity of the visual detector response

on whether or not the person is speaking.

In this work we explore three data modalities: range

video data, articulated pose, and speech. In our model, each

gesture can be seen as a composition of large-scale motion

(for example, of torso, limbs or a head) and subtle move-

ments, such as finger articulation (see Fig. 1). Most modern

gesture recognition systems exploit only one of these levels.

Existing touchless interfaces based on precise finger track-

ing have a limited working range of distances (typically 0.5-

1.2m) or require that the subject wear special markers or

other attire, such as colored gloves or t-shirts [35]. They are

therefore often impractical, while full body skeleton-based

models typically require unnatural exaggerated articulation,

have a very limited vocabulary and therefore lack expres-

sive power. By comparison, our model can be extended or

narrowed to any required level or scale based on data.

We also apply the hierarchical approach to the tempo-

ral dimension: by decomposing each gesture into a set of

(typically ordered) characteristic motion impulses, or “dy-

namic poses” and integrating consecutive poses extracted

from different modalities over a longer time span.

2. Related work
Motion related vision, which encompasses both gesture

and action recognition, has gained the attention of many

vision scientists over the last two decades. Dozens of pa-

pers published each year consider this problem in various

contexts: still images, video, multiple views and range

data, point clouds, etc. An extensive overview of action

recognition from images can be found in numerous sur-

veys (e.g. [36, 14]), while we will focus exclusively on ap-

proaches applicable to spatio-temporal data.

Most existing methods proposed for human motion

recognition from video are based on extracting spatial and

temporal features (representations) followed by classifica-

tion. Such representations can be either engineered or

learned from the data, either separately from each dimen-

sion or together from a spatio-temporal 3D volume.

Spatio-temporal descriptors are typically extracted

densely (on a regular grid or globally), sparsely around

salient interest points or along sparse or dense trajecto-

ries [33]. However, it has been shown by [34] that dense

sampling generally leads to higher classification rates when

it comes to complex realistic data. Among the most widely

accepted engineered local descriptors one could name

Cuboid [5], HoG/HoF [11], HoG3D [15], ESURF [37] ,

3D-SIFT [29] and several others.

In parallel with general approaches, a great amount of

ad-hoc methods have been proposed specifically for hand-

gesture recognition in narrow contexts. Most of them rely

on hand detection, tracking, and gesture recognition based

on global hand shape descriptors such as contours, silhou-

ettes, fingertip positions, palm center, number of visible fin-

gers, etc. [30, 20]. Similar descriptors have been proposed

for depth and RGBD data [21].

The family of deformable part models forms a separate

class of methods broadly explored in the context of actions

([6], [39]). Nevertheless, there are no fundamental obstacles

for their adaptation to gesture recognition.

Instead of hand-crafting, efficient representations can be

inferred directly from data by minimizing reconstruction er-

ror, e.g. as in autoencoders, or some predefined energy func-

tion, e.g. as in Restricted Boltzmann Machines (RBMs).

Le et al. [16] used Independent Subspace Analysis (ISA)

for computationally efficient learning of hierarchies of in-

variant spatio-temporal features. In [1] the authors adapted

the original work of Ranzato et al. [27] by adding a tem-

poral dimension to 2D sparse convolutional autoencoders.

Taylor et al. [7] extended and scaled up the Gated RBM

(GRBM) model proposed by Memisevic and Hinton [22]

for learning representations of image patch transformations.

Chen et al. [3] used convolutional RBMs as basic building

blocks to construct the Space-Time Deep Belief Networks

(ST-DBN) producing high-level representations of video se-

quences. Ji et al. [13] applied hardwired filters to obtain low
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level feature maps and then fed them to a 3D convolutional

network (ConvNet) for joint learning of mid-level spatio-

temporal representations and classification.

Treating spatial and temporal dependencies in the same

way is often problematic, since the particular nature of the

temporal dimension is ignored. Alternatively, the tempo-

ral dynamics of motion can be modeled by a time-series

algorithm. In this context, generative Hidden Markov Mod-

els (HMMs), discriminative Conditional Random Fields

(CRFs) and their extensions have gained mainstream accep-

tance and proven to be efficient in many relatively simple

recognition tasks. A comparative study [23] has shown that

in the context of action recognition CRFs generally perform

better than HMMs when using spatial features and worse

when optical flow is used. Most of the highly-ranked partic-

ipants of a recent ChaLearn Gesture recognition challenge

claimed to use HMMs, CRFs or similar models [8].

At the same time, sequence models that do incorporate

temporal dynamics often oversimplify the data structure and

fail to capture high-dimensional, non-linear and long-range

dependencies. Drawing an analogy with the previous case

of static spatio-temporal features, supporters of connection-

ist approaches went one step further aiming to learn repre-

sentations of temporal dynamics from data rather than ex-

plicitly modeling them under hardwired assumptions. In

this context, Time Delayed Neural Networks (TDNN) were

applied to American sign language recognition as early as

in 1999 [38]. Recurrent Neural Networks (RNNs), being

promising in theory, in practice appear to be difficult to

train. To address this issue, several techniques such as Long

Short-term Memory RNN (LSTM-RNN) [10] and Echo-

State Networks (ESN) [12] have been proposed. In [1] the

authors applied LSTM-RNN to action recognition in com-

bination with 3D ConvNets and sparse autoencoders.

The inability to model highly structured multimodal data

can be a serious issue in the context of human motion recog-

nition. This has prompted more representationally powerful

generative models based on distributed hidden states, such

as Temporal RBMs [31]. Their special case, Conditional

RBMs [32], where connections between temporal hidden

units are removed, are known to be faster and easier to train.

3. Model description
Our multimodal system is based on integrating three

sources of information: raw range video data, body skele-

ton (articulated pose) and an audio stream. It benefits from

operating at two spatial scales: upper body motion and hand

articulation, and at two temporal scales: gestures and mo-

mentary movements, or “dynamic poses”.

For each modality, dynamic poses are modeled sepa-

rately by stacking a small number of consecutive frames

in short spatio-temporal blocks, while final data fusion is

performed at a larger time scale using a recurrent neural

network (RNN) for capturing temporal dependencies and

integrating over a time span corresponding to the average

duration of a gesture.

We denote by L1 the duration of a short spatio-temporal

block corresponding to a dynamic pose (in practice set to

5 frames, or 1/4s) and by L2 time span of a typical ges-

ture (in our model roughly corresponds to 2s). We sam-

ple overlapping dynamic poses starting from each second

data instance and long sequences starting from each dy-

namic pose: thus, a video consisting of F frames can be

decomposed into I = (F − L1)/2 + 1 dynamic poses and

R = I − L2 + 1 = (F − L1)/2− L2 + 2 long sequences.

Let N be the size of the gesture vocabulary to recog-

nize. Here we do not limit ourselves to a pure classification

task, since in an unconstrained “real-world” context detec-
tion is crucial. To address this problem, we introduce an

additional “clutter” class number 0 and train our model on

a huge amount of instances containing out-of-vocabulary

movements using a bootstrapping strategy.

On the first step, we exploit short spatio-temporal blocks

to train individual classifiers for all three modalities. For the

depth video data we train a convolutional network followed

by a multilayer perceptron, for the skeletons we formulate

a pose descriptor and, in turn, train another multilayer per-

ceptron on it. We treat the output of the speech recognition

system as a “bag-of-words”. The exact way of processing

of each channel is described in the following subsections.

In all three cases, for each spatio-temporal block and

each modality we obtain a distribution over N + 1 classes

corresponding to neuron activations (for visual data) or

class frequencies (for audio channel). These distributions

are then concatenated in longer sequences and fed to a re-

current neural network classifier. On the testing stage all

dynamic poses are labeled, each dynamic pose i ∈ [1 . . . I]
participates in the classification process several times as

a member of L2 consecutive overlapping long sequences

r ∈ [1 . . . R] (or less, at boundaries), and each time it

is assigned a distribution of neuron activations σi,r,n over

classes [0 . . . N ] (n is a class index). The averaged distribu-

tion for each dynamic pose is then calculated as follows:

σi,n =

ri,2∑
r=ri,1

σi,r,n

ri,2 − ri,1
, (1)

ri,1 = max (1, i− L2 + 1), ri,2 = min (i, I − L2 + 1).

The resulting label is then calculated via finding the most

probable class and thresholding:

li =

{
argmaxn (σi,n), if max(σi,n) > τ

0, else
(2)

The parameter τ is set empirically. All neighboring dy-

namic poses assigned to the same labels are then aggregated
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Video stream

(depth): hand 1
4-layer

ConvNet
MLP

Output:

0 . . . N

Video stream

(depth): hand 2
4-layer

ConvNet
MLP

Output:

0 . . . N

RNN
Output:

0 . . . N

Skeleton stream
139L1-dimensional

pose descriptor
MLP

Output:

0 . . . N

Audio stream VAD + ASR BoW
Output:

0 . . . N

tied weights

short spatio-temporal blocks (dynamic poses)

long sequences (gestures)

Figure 2. The proposed model operates at two temporal scales: first, we train individual classifiers for each data modality (depth video,

articulated pose, audio stream) at the level of short spatio-temporal blocks (which we call “dynamic poses”); second, the outputs of all

classifiers are fused using a recurrent neural network (RNN) at the time span of an average gesture.

into a single gesture. The full diagram of the model work-

flow is shown in Fig. 2.

3.1. Video stream

Starting with the depth video stream, we do not rely on

hand-crafted descriptors and instead consider pixel values

of the depth map as low-level features. Since in this case

we are interested in capturing fine movements of palms and

fingers, from each frame we extract two bounding boxes

around the right and left hand centered at the hand positions

provided by the skeleton (joints HandRight and HandLeft).

To eliminate the influence of the person’s position with re-

spect to the camera and keep the hand size approximately

constant, the size of each bounding box is normalized by

the distance between the hand and the sensor:

H{x,y} = h{x,y}
{X,Y }

z · tan (αFoV,{x,y})
, (3)

where H{x,y} is the hand size (px) along the x and y axes of

the camera sensor, h{x,y} – the physical size of an average

hand, in mm, X × Y – the frame size in pixels, z – the dis-

tance between the hand and the camera in mm, αFoV,{x,y} –

the camera field of view along the x and y axes respectively.

Due to built-in smoothing parameters, skeleton tracking

is often inertial. Thus positions of quickly-moving joints

are typically detected less accurately. Reduced smoothing

results in introducing additional noise and jitter. To com-

pensate for these effects, we correct positions of the hand

joints by minimizing inter-frame square root differences be-

tween corresponding blocks within each dynamic pose.

As a preprocessing step, we subtract background from

each frame by simple thresholding along the depth axis and

apply local contrast normalization to zero mean and unit

variance over local neighborhoods.

Finally, we use extracted blocks for supervised training

of a convolutional network [17] consisting of 2 convolu-

tional layers with tanh activations and 2 sub-sampling lay-

ers (ConvNet in Fig. 2). The first pair of layers performs

3D convolutions of short spatio-temporal blocks (dynamic

poses), followed by max pooling over spatial and temporal

dimensions. The second pair of layers performs 2D convo-

lutions and spatial max pooling. The output of the 4-th layer

is fully connected to a multilayer perceptron (MLP).

All layers of the network are trained jointly and in a su-

pervised way by backpropagation. During training, we do

not differentiate between “right hand” and “left hand” im-

ages. Instead, all left-hand blocks are mirrored horizontally

to eliminate differences in hand orientation.

In real-life contexts both single-hand and two-hand ges-

tures may take place. To avoid manual annotation of which

hand is active and which is passive, we calculate variances

in positions of both hands within each dynamic pose. Then,

if the gesture is known to involve both hands or if the given

hand is more active, it gets assigned with the ground truth

label corresponding to the gesture, otherwise it is labeled

with the class 0.

The output of the MLP is a N +1-way softmax, indicat-
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Figure 3. The pose descriptor is calculated from normalized coor-

dinates of 9 upper body joints (shown on the left) as a set of angles

formed by triples of joints (shown on the right) and pairwise dis-

tances. The body coordinate system (shown in blue) is calculated

based on 6 torso joints (shown in white).

ing the probability of the hand pose instance to be assigned

to each of the N + 1 gesture classes.

3.2. Articulated pose

The full body skeleton provided by current consumer

depth cameras consists of 20 joints identified by their co-

ordinates in a 3D coordinate system aligned with the depth

sensor. For our purposes we exploit only 11 of them corre-

sponding to the upper body (see Fig. 3), we also do not use

wrist joints as their detected positions are often unstable.

To calculate pose descriptors we follow the logic pro-

posed in [2]. First, we translate the origin of the coordinate

system to the HipCenter position and normalize all coor-

dinates by the distance between the HipCenter and Shoul-

derCenter joints in order to compensate for differences in

human heights. Second, we calculate 3 vectors �x, �y and �z
describing body orientation: to do that we apply PCA on

6 torso joint coordinates (shown in white on Fig. 3). As a

result, vectors �x and �y form the body plane, while �z is ap-

proximately perpendicular and points towards the camera.

On the next step, we calculate 9 inclination angles α1...9

between real and virtual “bones”, i.e. vectors connecting

pairs of joints (see Fig. 3). Also, to characterize the orien-

tation of all joints with respect to the body coordinate sys-

tem, for each pair of “bones” used in the previous case, we

calculate another 9 angles β1...9 between projections of the

first bone vector and the vector �y on the plane perpendicular

to the orientation of the second bone. The third set of an-

gles γ1...11 is calculated between each of vectors connecting

joints with the camera sensor position and vector �z.

Finally, we calculate pairwise distances di,j between all

11 joints (i �= j). Overall, it gives us a 139-dimensional

pose descriptor for each video frame:

PD = [α0...9, β0...9, γ0...11, d0...110]. (4)

We stack pose descriptors extracted from L1 consecutive

frames into a single feature vector which thus describes the

corresponding dynamic pose. Such vectors are then used

for training a fully-connected MLP with sigmoid units (see

Fig. 2). To account for the fact that each gesture can be per-

formed by either right or left hand (or both), we augment the

training dataset with pose descriptors mirrored horizontally

with respect to the camera coordinate system.

As in the case of the depth video stream, the output at

this step is a N + 1-way softmax, with the only difference

being that here we consider dynamic poses not with respect

to each hand but to the whole body.

3.3. Audio stream

Our audio processing module uses a simple word-

spotting strategy which assumes that each gesture has a lim-

ited verbal vocabulary associated with it. However, numer-

ous practical issues such as illiterate speech, variations in

dialects, differences in speech levels (i.e. idiomatic, casual,

even ungrammatical colloquial speach vs grand style) make

high demands on the level of system generalization.

In order to avoid using complex language models, we as-

sociate each class with a single virtual gesture “word”: a set

of verbal words (in the linguistic sense), word-combinations

or short phrases having the same semantic meaning and typ-

ically accompanying each given gesture. To do that, we

construct a dictionary including all possible utterances as-

sociated with each gesture word in the form of sequences

of phonemes. Here we do not differentiate between slight

variations in phrase constructions and different pronunci-

ations of the same phrase. For example, an Italian gesture

“sei pazzo?” (”are you crazy?”) can be associated with pho-

netic transcriptions “s E i p a tts o”, “m a s E i p a tts o” and

“s E i m a tt o” (corresponding to the “sei pazzo”, “ma sei

pazzo” and “sei matto” orthographic forms). Depending on

the training data and the task at hand, the dictionary can be

populated by hand, aiming on including the greatest possi-

ble number of ways to express every single gesture.

The proposed framework consists of two modules (im-

plemented with the Julius LVCSR engine [18]). First, Voice

Activity Detection (VAD) is applied to isolate single speech

gesture events (with start and end timestamps), then an au-

tomatic speech recognition (ASR) system takes over con-

sidering each isolated event as a word instance.

Typically, ASR systems provide a lattice (also called

a “wordgraph”) that for each recognised word gives tim-

ing, scores and possible connections with other recognised

words. For this task, we simplified the algorithm to produce

an n-best list for every gesture event. Each list contains
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an infinite-dimension sparse vector of “hypotheses” (ges-

ture classes with associated confidence scores).

As the last step, we select a fixed number W of hypothe-

ses with the highest scores and treat the ASR system output

in the bag-of-words fashion calculating frequencies of ap-

pearances of each of N gesture classes and normalizing the

counts by W . As a result, we obtain a distribution of class

probabilities that has the same structure as the outputs pro-

duced from the video and skeleton modalities.

3.4. Data fusion

All outputs of the ensemble of single-modality classi-

fiers are fused with a recurrent neural network (RNN) which

serves as a meta-classifier. By output here we, as before,

mean a distribution over N + 1 classes produced either by

a softmax output of an MLP (in the case of the video and

skeleton streams) or the bag-of-words model (in case of the

audio stream). Here we prefer to fuse outputs of sole classi-

fiers rather than merging extracted features since, apart from

the fact that this strategy is extremely computationally de-

manding and depending on training data may result in the

curse of dimensionality, it allows the model to benefit from

pre-training of individual modalities in discriminative way.

Since we assume that all gestures are independent from

each other and their order is randomized, incorporating re-

ally long-term dependencies in the model is not beneficial

and even harmful. Therefore, for RNN training and testing

we do not use a continuous data stream, but rather split the

input into sequences with the length L2 roughly correspond-

ing to the duration of a typical gesture. As a result, the RNN

input is a sequence of L2 4L1-dimensional feature vectors.

During meta-classification all modalities are synchro-

nized and the combined stream is represented as a sequence

of overlapping integrated multimodal dynamic poses. All

such poses are processed successively, while for each given

pose its components are fed to their own preliminary classi-

fiers in parallel (see Fig. 2).

Straightforward training of RNNs by backpropagation

through time is known to be problematic due to exponen-

tially vanishing gradients [9]. To address this issue, we em-

ploy a 2-stage training procedure. All recurrent weights are

first set to 0 and the RNN is trained as a vanilla MLP. Once

the process has converged, we fine tune the weights keeping

the feedforward connections unchanged.

4. Experimental results
We participated in the 2013 Multi-modal Gesture Recog-

nition Challenge (see Fig. 4) ranking 6th overall (54 teams

participated with 20 submissions on the final test set, 17

method descriptions provided, see Table 1). The compe-

tition dataset consists of RGB-D video and audio record-

ings (shot with the Kinect sensor) of 13,858 manually an-

notated Italian conversational gestures, where 20 classes of

“useful” gestures (i.e. recognizable) are augmented with ar-

bitrary out-of-vocabulary gestures, movements and sounds.

Skeleton data is also provided.

The dataset is initially split into training, validation and

test subsets. In our experiments, we combine the first two

subsets, use 90% of the data for training and the rest for

validation. The performance is reported on the test subset.

For these experiments, we set the temporal length of a

dynamic pose equal to L1 = 5 frames and the duration of

a gesture equal to L2 = 16 dynamic poses (estimated from

the training data).

As video input, we use depth blocks of 72 × 72 pixels

and perform local contrast normalization, where standard

deviation is estimated over a 11 × 11 neighborhood. The

hand size is set to 180 mm with a safety factor of 1.5. The

first layer of the convolutional network consists of 25 filters

11×11×3 (the last dimension is temporal) and is followed

by spatio-temporal max pooling 2× 2× 3 transforming 3D

feature maps into 2D. The third layer again consists of 25

filters 5×5 followed by spatial pooling 2×2. The last, fully

connected layer of the video path consists of 700 neurons.

The pose descriptor in our implementation is a 139 ×
5 = 695 dimensional vector. The MLP operating on pose

descriptors consists of 350 hidden units.

An acoustic model of the ASR system has been built

using the EVALITA speech data set, which is a subset of

the CLIPS corpus published for the EVALITA 2011 Forced

Alignment task [4]. This is a relatively small Italian adult

speech corpus featuring colloquial speech and including nu-

merous Italian dialects. The audio data from the gesture

recognition dataset has not been used, neither for training

nor for adapting the ASR module. The number of hypothe-

sis used in a bag-of-words model is set to W = 9.

Finally, a RNN having 200 hidden units is used for data

fusion. For this challenge, we put a prior on the sequence

length and the confidence threshold τ is set accordingly (for

the proposed method τ = 0.925).

Following the procedure originally proposed by the chal-

lenge organizers, we evaluate the performance as the edit

(Levenshtein) distance (ED) between an ordered sequence

of gestures recognized by the system and the ground truth

(one sequence corresponds to one video from the dataset).

This metric is calculated as a number of uniformly penal-

ized edit operations (substitution, insertion, deletion) nec-

essary to transform one sequence into another. The overall

score is a sum of the edit distances over the whole test set

divided by the real number of gesture instances. We also

provide values of precision and recall.

As is shown in Table 2, combining multiple modalities

leads to a significant gain in performance when the quality

of predictions from individual channels is not satisfactory.

The model has proven to be invariant to person position and

height, and insensitive to environment and illumination.
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Team ED Rank Team ED Rank

Team 1 0.1276 1 Our team 0.1773 6
Team 2 0.1539 2 Team 7 0.2445 7
Team 3 0.1711 3 . . .
Team 4 0.1722 4 Team 16 0.8746 16
Team 5 0.1733 5 Team 17 0.9207 17

Table 1. Official results of the challenge on gesture recognition.

Modalities used Recall Precision ED

Independent dynamic poses (MLP)

Depth video only 0.5433 0.5494 0.6613
Articulated pose 0.7298 0.7420 0.4250
Audio stream 0.6754 0.6590 0.4966
Depth + Pose 0.7618 0.7739 0.3809
Depth + Audio 0.7669 0.7796 0.3742
Pose + Audio 0.8765 0.8885 0.2125
Depth + Pose + Audio 0.8784 0.8920 0.2091

Modeling time dependencies (RNN)

Depth + Pose 0.7810 0.7972 0.3440
Depth + Pose + Audio 0.8939 0.9072 0.1786

Random predictions 1.4747

Table 2. Experimental results on the competition dataset. Increase

in recall and precision and decreasing edit distance indicate im-

provement in performance.

The major weakness of the audio module (partially com-

pensated by combining with visual predictions) is map-

ping all sounds into predefined 20-gesture categories, which

gives a large amount of false positives in gesture detection.

In addition, the speech recognition module often fails when

speech is too fast and continuous. In the case where sev-

eral gesture-associated words are uttered in the same breath,

it is likely that only one will be recognized. Finally, the

ASR may produce ambiguous results when several gesture

classes have the same meaningful words associated with

them (e.g. “messi daccordo” can be associated with both

“MESSIDACCORDO” and “DACCORDO” classes).

The visual module alone is sensitive to quality of anno-

tations and data input: its performance can be significantly

decreased if gestures are weakly articulated, too fast or too

slow in comparison with training instances and have no pro-

nounced boundaries between them. Too short gestures are

the most difficult to recognize, since fast movements often

cause errors in detection of skeleton joint positions (due to

smoothing) and motion blur, which create additional dif-

ficulties for recognition from the video channel. In addi-

tion, our system, trained as a dynamic pose-based RNN, is

not automatically time-scale invariant and assumes a certain

Figure 4. Examples of gestures: correctly recognized and correctly

ignored (the first row), false detections due to high similarity be-

tween gesture elements (the second row).

range of possible speeds learned from the training data.

Combining all modalities in a single framework allows

the model to compensate for major weaknesses of individ-

ual modules and reduce the negative influence of noise.

5. Conclusion
We have described a generalized method for gesture and

near-range action recognition from a combination of range

video data, audio and articulated pose. The model can

be further extended and augmented with arbitrary channels

(depending on available sensors) by adding additional par-

allel pathways without significant changes in the general

structure. Multiple spatial and temporal scales per chan-

nel can be easily introduced. As future work, we aim to

reformulate and generalize the problem from gesture detec-

tion and recognition to sensing gesture parameters (such as,

for example, motion amplitude in scrolling-like gestures).

In this case, the video stream providing information about

subtle hand movements will play a primary role.
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