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Abstract

This paper proposes an iterative scheme between human
action classification and pose estimation in still images. For
initial action classification, we employ global image fea-
tures that represent a scene (e.g. people, background, and
other objects), which can be extracted without any difficult
human-region segmentation such as pose estimation. This
classification gives us the probability estimates of possible
actions in a query image. The probability estimates are
used to evaluate the results of pose estimation using action-
specific models. The estimated pose is then merged with
the global features for action re-classification. This itera-
tive scheme can mutually improve action classification and
pose estimation. Experimental results with a public dataset
demonstrate the effectiveness of global features for initial-
ization, action-specific models for pose estimation, and ac-
tion classification with global and pose features.

1. Introduction

This paper focuses on two kinds of representations for
human activities, human body pose and action class.

Most action classification methods classify actions in
videos by using temporal cues. As the cues, a set of local
features (e.g. spatio-temporal points [18], a bag of spatio-
temporal words [26], a bag of spin-images [22], and a bag
of motion words [35]) are widely used because of their ef-
fectiveness. The difficulty in using the local features is to
extract them only from the region of a person of interest.
In particular, region extraction in still images is difficult,
while action classification in still images [33, 14, 37, 23] is
not only challenging but also useful for several uses (e.g.
context-based image retrieval and static cues for classifica-
tion in videos).

In addition to the local features, the effectiveness of
global scene features for action recognition has been proven
[15]. While the global features are weak and auxiliary for
identifying actions performed in an image, it can be ex-
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Figure 1. Pose representation with 10 body parts. (a) and (b) are
classified to the same action, badminton, and (c), (d), (e), and (f)
are baseball. Different poses are contained in the same class.

tracted without human region segmentation.

A human body pose in images is defined by, in general,
a deformable part model. The model consists of nodes and
links, which respectively correspond to a part and a geomet-
ric relationship between parts. Pose estimation is achieved
so that all parts are located in an image in accordance with
the body configuration of a target person (e.g. Fig. 1). The
deformable part model has two kinds of parameters, namely
the appearance parameters of each part and the relative ge-
ometric configuration between neighboring parts.

For detecting each part based on its appearance, image
features are crucial for coping with a huge variety of part
appearances. The features of each part can be divided into
several clusters and then trained individually (e.g. cluster-
ing based on the configurations of 2D parts [38] and 3D
parts [2]) for maintaining their discriminativity as well as
generality. Discriminative training of part appearance can
also improve part discriminativity [9, 1].

For parameterizing the relative configuration between
parts, pictorial structure models [10], are widely used as de-
formable part models because of their ability to efficiently
get the globally-optimal configuration of all parts.

For accurate pose estimation with a deformable part
model, optimizing the above two parameters (i.e. appear-
ance and configuration parameters) is a fundamental issue.

The contributions of this work are 1) to improve the ac-
curacy of pose estimation by training multiple deformable
part models in accordance with actions of interest and 2)
to employ an estimated pose as a local feature merged with



global image features for improving action classification.

2. Related Work

Mutual action and pose recognition: While the above
mentioned algorithms for action classification and pose es-
timation work independently, these two types of recogni-
tion can enhance each other. Action classification can be
achieved by pose matching (e.g. view-invariant 3D pose
matching in videos [25, 31, 39]). In an opposite manner,
for pose tracking in videos, action-specific model selection
has been studied (e.g. switching dynamical models [4] and
efficient particle distribution in multiple pose models [12]).

An essential problem for mutual action and pose recog-
nition is that a human pose is required for action classifica-
tion achieved with the human pose. This is a chicken-and-
egg problem. To cope with this problem, joint recognition
of action and pose has been studied (e.g. [37, 40, 7]). Un-
like this approach, this paper proposes an iterative scheme
between action and pose recognition, where each recogni-
tion is simpler than joint recognition. In general, simplicity
results in robustness in recognition.

Recognition in still images: Compared with video anal-
ysis by the above methods [25, 31, 39, 4, 12], it is more
difficult to extract discriminative features from still images.
For action classification, a large variety of body poses might
be contained in the same action class. In examples in Fig. 1,
(a-b) and (c—f) show significantly different 2D body poses
in the same action classes, baseball and badminton, respec-
tively. The difference is caused by the following problems.
1) Class resolution: different primitive actions, batting and
pitching, are contained in the same class, 2) view depen-
dency: the same poses are captured from different view-
points, and 3) classification in still images: different mo-
ments (i.e. different poses) of batting are contained in the
baseball class. While problems 1 and 2 must be coped with
also in videos, problem 3 is a unique problem in still im-
ages.

Furthermore, one more difficulty in recognition in still
images is person localization, as tackled in [7]. This prob-
lem is clearly more difficult than the one in videos [30], in
which motion cues can be used for foreground object seg-
mentation. This difficulty is absent in classifying a scene,
where each target action is performed, by using global im-
age features. Indeed, the co-occurrence between actions and
scenes is a useful clue for mutually improving their classifi-
cation [24]. Unlike traditional approaches using only global
features (e.g. GIST [27]), more recent ones fuse multi-
ple features and/or classifiers; joint optimization of multi-
ple classifiers [19], simultaneous classification and annota-
tion using regional features [34, 20], classification using de-
formable part based models [28], and scene representation
with responses to a wide variety of objects [21]. In particu-
lar, the Object Bank [21] allows us to obtain the responses
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to any kinds of objects including people and objects relevant
to the action, as well as background objects.

Objects interacting with a person of interest also gives
important clues for pose estimation (e.g. [13, 40]). While
the interacting objects might be more characteristic for
identifying the human pose than a global scene, this paper
focuses on the global features of the scene, which are easy
to be extracted from an image for robust recognition.

3. Basic Scheme

The proposed method iteratively performs action classi-
fication and pose estimation so that 1) action classification
is performed by global features and 2D pose-based features
and 2) a body pose is estimated by an action-specific de-
formable part model optimized to the action observed in
a still image. The overview of the proposed method is il-
lustrated in Fig. 2. For this iterative framework, we have
to cope with two issues; i) robust initialization of iteration
between action classification and pose estimation and ii) a
large variety of body poses that are observed in images of
the same action class.

The proposed method achieves robust initialization by
global features (denoted by ”Object Bank feature O™ in Fig.
2), for which neither human localization nor human pose
estimation are required, for initial classification.

A variety of body poses in the same class are produced
by the three problems mentioned in the last section (i.e.
class resolution, view dependency, and classification in still
images). The pose variety in the same class makes it dif-
ficult to achieve 1) non-overlapping pose clustering among
different action classes and 2) precise pose modeling. The
proposed method alleviates these two difficulties as follows.
1) Inspired by a mixture of parts [38], a pose is featurized
by a set of relative positions of parent and child parts. This
featurization is robust to a partial change in the pose of the
whole body because the relative position between a parent
and its child parts is independent from that between other
parent and child parts. As well as the pose-based features
(denoted by “Pose feature P in Fig. 2), global features
are used for action classification in iterative steps (described
in Sec. 4.3). This is the difference from previous pose-
based action classification [25, 31, 39]. 2) For precise pose
modeling, after training images are divided to each action
class based on the ground-truth labels, poses in each ac-
tion class are clustered based on their similarity (described
in Sec. 4.2). Compared with clustering all possible poses
[38, 16, 17], pose clustering in each action class is easier
and results in precise modeling.

In what follows of this section, two base approaches for
action classification [21] and pose estimation [9, 38], which
are used in the proposed method, are described.
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Figure 2. Overview of the proposed method. Red, green, and black arrows depict the data flows of feature vectors, model parameters, and
estimated values, respectively. The model parameters are employed with the features for action classification and pose estimation, which
are performed in left and right dotted rectangles, respectively. Pose features, which are produced from estimated poses, are fed back to be
merged with global image features (i.e. Object Bank feature) for iterative action classification. After iteration between action classification
and pose estimation is finished, their final results are determined, as depicted by blue arrows.

3.1. Action Classification using Global Appearance
Features

The Object Bank [21] provides a set of high-level im-
age features with scale-invariant response maps of a va-
riety of generic object detectors. While the Object Bank
accepts any object detectors, 177 object detectors, which
are provided by its author’s codes, are used in our imple-
mentation. In total, the size of the Object Bank feature is
44604-dimension. A high-level representation of the fea-
tures has been demonstrated in terms of scene classification
with large-scale datasets.

The huge dimensional feature can be compressed by a
sparse coding regularization. The sparse coding allows us
to reduce the feature dimension up to 10 % or lower while
maintaining the classification accuracy.

3.2. Pose Estimation using Deformable part Models

A tree-based model is defined by a set of nodes, V', and
a set of links each of which connects two nodes, EZ. One
of the nodes is regarded as a root node. Each node has its
pose parameters (e.g. x and y positions, orientation ¢, and
scale s) that localize the respective part. By optimizing the
pose parameters in accordance with a human pose in an im-
age, pose estimation is achieved. The pose parameters are
optimized by maximizing the score function below:

S+ Y. PY(pipy),
icV ije

(D

where p, and P denote a set of the pose parameters of i-th
part and a set of p, of all parts (i.e. P = [py,--- 7pNv]T,
where NV denotes the number of nodes).

A unary term S*(p;) is a similarity score of i-th part at
p,. In our model, S%(p,) is the filter response using HOG
features [5], each of which consists of 5 x 5 cells and 18
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orientation bins: S%(p,) = F' - ¢(I,p,), where F' and
¢(I, p;) denote the filter of i-th part and the HOG extracted
from p, in image I. A pairwise term P*J (pi,pj) = whi’

¥(p;, p;), where w7 is a weighted parameter, is a spring-
based score between i-th and j-th parts, which has a greater
value if the relative configuration of p; and p; is highly

probable. In our model, 1 (p;, p;) = [df ;, dfj, dy;, df;]T,
where d7 ; and dy respectively denote x; — x; and y; — y;,

where (x;,y;) is the location of i-th part.

In a tree-based model proposed in [10], the globally op-
timized pose parameters, P, can be acquired efficiently by
dynamic programming. To make this model work robustly
to in-plane rotation and foreshortening of limbs, each rigid
part (e.g. limb) is divided into several smaller parts in [38].
In accordance with this base model [38], 26 parts were used
in our implementation; 2 for the head, 4 for the torso, 10 for
the shoulders to the hands, and 10 for the hips to the feet.

4. Iterative Action and Pose Recognition

4.1. Initial Action Classification with Global Ap-
pearance Features

Initial action classification is achieved by employing
only Object Bank features. The extracted feature (denoted
by O) is classified by linear [8]/nonlinear [3] SVM. These
SVM classifiers give us not only the action class of O but
also its probability estimate P° denoting the probability to
belong to a-th action (e.g. PP --- Pﬁa in Fig. 2) as pro-
posed in [36].

4.2. Pose Estimation by Action-specific Deformable
part Models and Action Probability

Next, pose estimation is performed independently using
all action-specific models, which are trained in a training



phase. All training images are divided to those of each
action based on the ground-truth action labels. Then each
action-specific model is trained with the training images of
its respective action.

Training data in each action-specific model are clustered
in each part 7. This part clustering is useful for precisely
representing the model parameters (i.e. F* and w*/) of i-th
part. Our method adopts clustering based on the 2D config-
uration of parts as with [38]. In [38], each part ¢ has its z-y
location and scale parameter s as its parameters. Instead of
having an orientation parameter 6, each part model consists
of a mixture of fypes as follows. The training data of ¢ is
clustered depending on the relative location of ¢ with respect
to its parent part. This clustering is achieved by K-means
with 5 or 6 clusters depending on the part in our experi-
ments in accordance with the base model [38]. The ID of
the cluster is called a fype, which is denoted by ¢. The pose
parameter of i-th part, p,, is expressed by [x;, Y, S;, ti]-

The above two kinds of independent modeling (i.e.
action-specific models and clustering based on the 2D con-
figuration of parts) are essentially different in terms of the
number of the estimated pose(s).

Action-specific models: Given N4 action-specific models
(denoted by “Modell - - - ModelN4” in Fig. 2), all of
them are used independently for acquiring N4 poses
(denoted by “P; --- Pya” in Fig. 2), each of which
has the best score in each action-specific model. The
action-specific modeling is effective in particular for
representing the typical configurations of body parts
depending on the action; for example, a handstand-like
pose in athletics.

Clustering based on the 2D configuration of parts:
Only one best pose of the whole body is acquired
in each model, regardless of the number of types.
Specifically the type having the best score is selected
in each pair of parent and child parts.

The proposed method obtains N poses (denoted by P,
where a € 1,---,N%), each of which has the top score
(denoted by s,) in a-th model. With the score s, and the
probability estimate of a-th action, Pf , which is obtained
in action classification, the best pose P (denoted by “Best
pose P;” in Fig. 2) is selected so that:

@ = arg max(s, P?)
a

2

While previous clustered models [16, 17] have no
weights between different models, the proposed method has
the benefit that the probability estimate of an action gives
the weight to each model as shown in model selection (2).
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4.3. Action Classification with Global Appearance
Features and Pose Features

To provide an estimated pose as an important clue to ac-
tion classification, the absolute positions of parts in an im-
age, P, should not be used as they are. This is because a
pose feature should fit with the region of a human body in
any location and of any scale. In our method, P; is changed
to the following expression, P, (denoted by “Pose feature
P.”), represented by the normalized relative positions with
respect to the center of all parts (denoted by (Cy, Cy)):

P

[I<&,1> - C(Ev Y<a1> — Cya T

T
T, NV> — Ce, Y<a,NV> — Cy] )

3

where x4 i~ and Y4 ;> denote z-y positions of ¢-th part in
P;. In the body model with 26 parts, P} is 26 x 2 = 52D.
In our implementation, the pose feature (3) is compressed
by a sparse coding regularization, as with Object Bank fea-
tures [21]. This compression is for improving not efficiency
but classification accuracy. The accuracy is improved by
the compression because some components in (3) are com-
pletely indistinguishable among actions. The compressed
dimension was empirically determined to be 22.

To leverage P’ for action classification, the following
two kinds of methods are possible:

e P is concatenated to the Object Bank feature O for
obtaining a new feature for action classification:

0" P,.|" (4)

This feature is then employed for action classification
by multi-class SVM [3, 8], as with initial action clas-
sification. Here again multi-class SVM gives us the
probability estimate of each action (denoted by P97).

Multi-class SVM [3, 8] is applied to P} in order to
estimate the probability of being classified into action
a. This probability estimate, P, is then multiplied by
PO as follows:

P" =PrPy 5)

The max PO of all actions is detected, and a-th ac-
tion corresponding to the max score is regarded as the
classification result. (5) assumes that global scene fea-
tures are independent of pose features, P?.

With the newly estimated probabilities, P, o P97,
pose estimation is executed again. Iteration between pose
estimation (Sec. 4.2) and action classification (Sec. 4.3) is
performed like the hard EM algorithm, where action clas-
sification and pose estimation are respectively regarded as
the E and M steps, observed data are global features, latent
variables are action classification probabilities and action-
specific models, and unknown parameters are the pose pa-
rameters of the whole body. Note that, in the iterative steps,
PO is used instead of P in Eq. (2).
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Figure 3. Sample images of nine action classes.
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Table 1. The number of images of each action class in training and test data.

\ Athletics \ Badminton | Baseball | Gymnastics | Parkour | Soccer \ Tennis \ Volleyball \ General
Training 32 145 157 44 70 147 103 112 190
Test 49 138 133 54 91 147 99 121 168

Table 2. Comparison of PCP. (a) our model (final iteration), (b) our model (initial iteration), (c) mixture model of non-oriented parts [38],
(d) clustered pose [17], (e) parts dependent joint regressor [6], and (f) poselet conditioned pictorial structures [29].

| Torso | Head | Upper-legs | Lower-legs | Upper-arms | Lower-arms | Total

(a) Ours (final iter) 873 | 77.9 74.7 68.5 54.1 36.9 63.4
(b) Ours (initial iter) 869 | 77.9 73.3 67.8 54.1 36.4 62.8
(c) Mixture of parts [38] | 84.1 | 77.1 69.5 65.6 52.5 35.9 60.8
(d) Clustered pose [17] 88.1 74.6 74.5 66.5 53.7 37.5 62.7
(e) Joint regressor [6] 81.6 | 79.2 66.5 61.0 45.1 24.7 55.5
(f) Poselet PS [29] 87.5 | 78.1 75.7 68.0 54.2 33.9 62.9

5. Experiments

We tested the proposed method with the LEEDS sports
dataset [16], in which 2000 pose-annotated images are in-
cluded. In all comparative experiments in this section, 1000
images were used for training and other 1000 images for
evaluation. Each image was manually annotated by one
of the following nine action classes: athletics, badminton,
baseball, gymnastics, parkour, soccer, tennis, volleyball,
and “general”!. The class general is required because the
objective of action-specific models is to precisely represent
the pose variation triggered by each action, while general
pose variations should be modeled by non-selective train-
ing images. Figure 3 shows examples of the nine classes.
The number of sample images clustered to each action class
is listed in Table 1.

In training, 1) the models of multi-class SVM for action
classification and 2) action-specific deformable part mod-
els for pose estimation are acquired. For augmenting the
action-specific deformable part models by discriminative
training [9], negative samples were given from background
images in the INRIA Person database [5].

The results of initial action classification only with the
Object Bank features are shown in Fig. 4. Non-linear SVM

IThe action annotations will be available in the author’s website.
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[3] and linear SVM [8]* with high-dimensional and com-
pressed Object Bank features were tested. The dimension
of the compressed feature was 400, which was around 1%
of the high-dimensional one. While the compressed fea-
tures could get nice results as reported in [21], the high-
dimensional features were still better. As regards accuracy
in different actions, it can be seen that a smaller number of
training data resulted in lower accuracy (i.e. lower accuracy
in athletics, gymnastics, and parkour).

Then the probability estimate of each action class is used
in pose estimation. Even if the probability estimate of a cor-
rect class is not the max score, it gives a useful clue to pose
estimation if it is 1) not much lower than the max score and
2) relatively higher than other scores. Figures 5 and 6 show
evidences about these two requirements. Figure 5 shows the
mean of p°” /p™** where p®°" and p™** denote the prob-
ability estimate of a correct class and the max score of all
probability estimates in each image, respectively. It can be
seen that 1) nonlinear SVM with high-dimensional features
(indicated by blue bars) was superior to other classifiers and
2) in many classes, p°°" was not much lower than p™?* (at
least, 60% of the max score) by using nonlinear SVM with
high-dimensional features. Therefore, nonlinear SVM with
high-dimensional features was used for obtaining s, in Eq.

2For SVM, default parameters given by [3] and [8] were used.
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Figure 4. Comparison of classification performance of different
classifiers in initial action classification with high-dimensional and
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Figure 5. Comparison of probability estimates of correct classes
versus classes having the max scores in initial action classification.
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Figure 6. Comparison of probability estimates of correct classes
versus other classes in initial action classification. Nonlinear SVM
with high-dimensional features was used. The mean probability of
the other classes is shown in the graph (indicated by red bars).

(2). Figure 6 shows the mean of p®*" /p™®* where p®*" de-
notes the mean of probability estimates of all classes except
a correct class in each image, estimated by nonlinear SVM
with high-dimensional features. In addition to p®¥" /p™a®
(indicated by red bars in Fig. 6), p°” /p™?* is also indi-
cated by blue bars for comparison. It is clear that p“°” was
higher than other scores on average.

Initial pose estimation accuracy is shown by red bars in
Fig. 7. The accuracy is evaluated by PCP (percentage of
correctly estimated body parts) [11]. Note that gymnas-
tics and parkour classes used the same action-specific model
that was generated from their training images. This is be-
cause 1) the training images of these classes are fewer than
those of other classes and 2) human poses in the two classes
are similar. For comparison, the results of the base model
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Figure 8. Comparison of classification performance of different
classifiers in action classification by pose features with high-
dimensional Object Bank features. The results were obtained by
nonlinear SVM after twice-iterated action-and-pose recognition.
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Figure 9. 2D representation of a 52D pose feature space.

(i.e. mixture of parts) [38], clustered pictorial structure
models [17], and several state-of-the-arts [0, 29] are shown.
Since the proposed method employs additional clues (i.e.
action class), it is natural that the accuracy of the proposed
method is better than others.

Next, action classification using high-dimensional Ob-
ject Bank features with pose features was performed. For
this classification, two kinds of methods that respectively
use (4) and (5) were tested. The results of action classifi-
cation after two iterations between action classification and
pose estimation are shown in Fig. 8. For comparison, the
initial results obtained only with the Object Bank features
are also indicated by blue bars in the figure, while those ob-
tained by (4) and (5) are indicated by red and green bars,
respectively. The classification rates of gymnastics, park-
our, and volleyball were improved from the initial results,
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Figure 10. Pose estimation results. For each test image, two results are shown: (Top) the proposed method and (Bottom) a mixture model

of parts [38], which is the base model of the proposed method. The number of correctly localized parts is shown under each result. All of
the images were selected from gymnastics and parkour classes, where human poses are significantly different from natural upright poses.

while those of other classes were close enough between the
initial and final results. To validate this result, the distri-
bution of the pose features is shown in Fig. 9. Indeed it
can be confirmed that many features of gymnastics, park-
our, and volleyball are apart from those of others. On the
other hand, most of other features are crowded. This means
that the pose feature (3) should be improved so that those of
different classes are distinguishable from each other.

Pose estimation accuracy after two iterations is shown
by blue bars in Fig. 7. It can be seen that the accuracy
was a bit improved compared with the results of the initial Fig. 8, while their impact is relatively small in contrast
estimation (indicated by red bars). Figure 10 shows several to the action-specific models.
examples of the estimated poses. The results of the base
method [38] are also shown in the figure. As shown in these
examples, the proposed method was successful in particular
in gymnastics and parkour in contrast to the base method This paper proposed an iterative method for human ac-
[38]. This is because the body poses of these actions are  tion classification and pose estimation in still images. Ac-
significantly different from those of other actions, but the  tion classification is achieved by global appearance fea-
variety of poses in each action was represented well by the  tures with pose features, and pose estimation is enhanced
proposed action-specific models. by action-specific deformable part models.

On the other hand, Fig. 11 shows two examples of un- Future work includes developing 1) joint optimization of
successful results obtained by the proposed method. In the ~ multiple deformable part models that share the basic struc-
lefthand example (i.e. parkour image), both of the proposed ~ ture of a human body and 2) more discriminative pose fea-
method and the base method [38] failed completely. In the  tures that are robust to the change in a viewpoint. The for-
righthand example (i.e. soccer image), the proposed method mer is useful for improving pose estimation even if a small
was inferior to the based method [38]. An inappropriate =~ number of training images are given in each action class.

(Ours)0/10 (Base)0/10  (Ours)8/10 (Base)10/10
Figure 11. Unsuccessful results of the proposed method. For com-
parison, the results of the base model [38] are also shown.

6. Concluding Remarks

action-specific model, which was selected due to miss ac-  For this optimization, hierarchical modeling such as [32]
tion classification, caused such an inferior result. might be useful. The latter enables more correct action clas-

The contributions of the proposed method validated in  sification. Dividing each action class into sub-classes (e.g.
the experimental results are summarized as follows: “baseball” to “pitching” and “batting™) might be also effec-

tive for more detailed deformable part modeling. On the
e The positive effects of action-specific deformable part  other hand, if a more general framework, which is not lim-
models are proved as shown in Table 2 and Fig. 10. ited to predefined action classes, is required, pose models
should be produced for unsupervised clusters of image fea-

e Pose features improve action classification as shownin  tures such as the Object Bank.
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